2019 Encore-Uhler Sports Medicine Symposium

ACL Rehabilitation: Revisiting the Early Stages of Recovery

Terry Trundle ATC, LAT, PTA

Orange Beach, Alabama

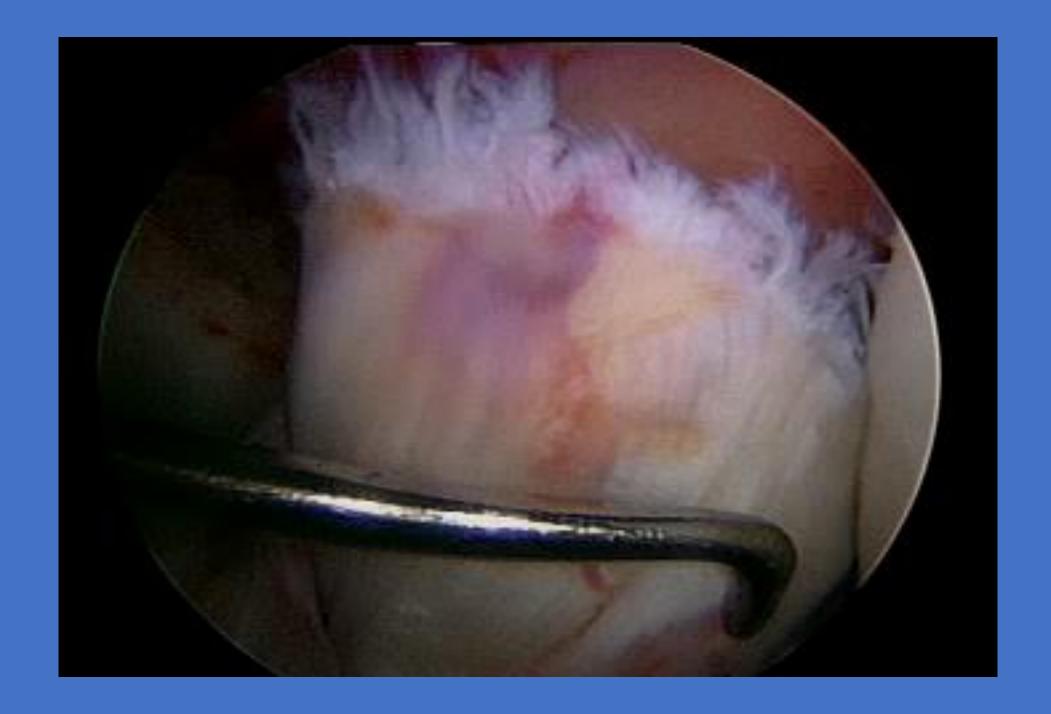
- Historical research one of the most published pathologies in history
 - Overall injury rate is approaching 300,000 annually
 - 2-8x higher in women than men participating in the same sport
 - Average cost of surgical repair of an ACL repair is approximately \$15,000-20,000
 - 30% of ACL individuals may incur a second ACL injury
- 2. Current published reports state
 - If 33% of athletes return to sports within one year and 37% never return to their prior level of sport participation
 - The question continues: What changes do we need to make?
 - What exercises should be recommended?
 - What needs to change due to:
 - A) Meniscus repair
 - B) Articular cartilage lesions
 - Is proprioception the key to recovery?

Ref: Greenberg EM, Greenberg ET. Et. Al. JOSPT 48(10) 2018.

Concepts of Early Implementation of Current Evidence for ACL Outcomes

What should we reconsider?

- Proper patient counseling- sometimes involves graft selection
- Managed care limitation: criteria for discharge should be based on function
 - Patients sometime base it on money
- Why the first two months of post-operative rehab may be the most important
- Functional testing
- Return to play
- Rate of re-injury

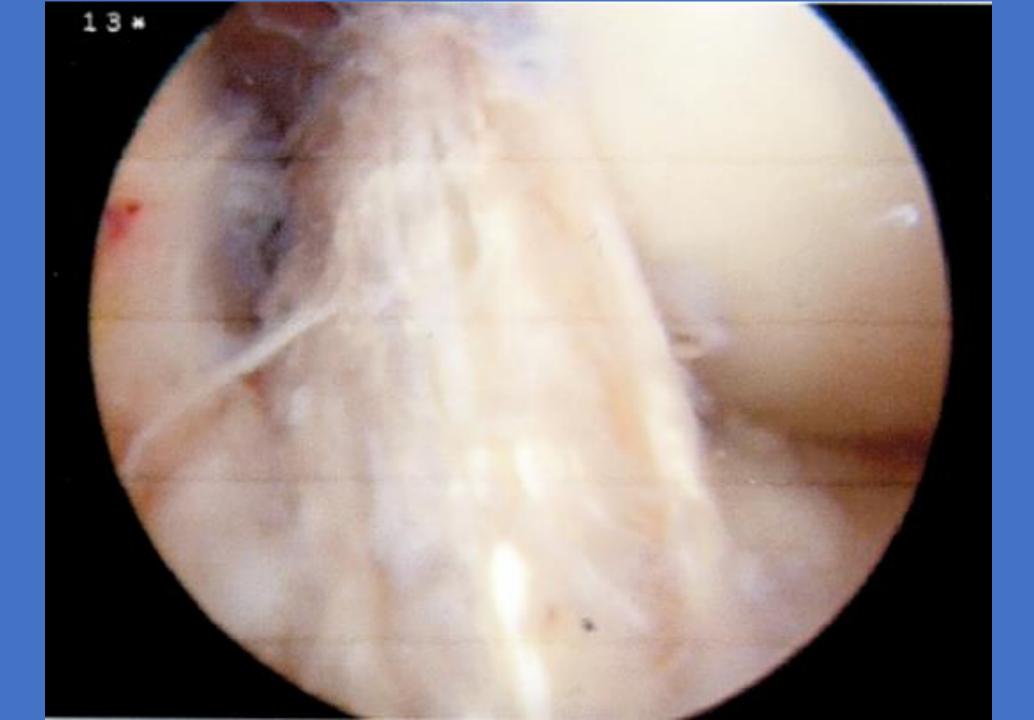

Reference: Fisberg, Grindem, Olestad JOSPT 2016
Miller CJ, Christenson JC 2015

- Athletes who have had a ACL reconstruction are 6x more likely to go through it again within 2 years
- Female athletes are 4x more likely to be injured within 24 months
- Female athletes are twice as likely to suffer an injury to the opposite knee
- High school study presented at CSM 2017: Female high school athletes were 3 times more likely to suffer loss of time compared to male athletes
- Dramatically increased rates of meniscus repairs and follow-up meniscus surgery in adolescence ages 13-17- greater percentage reported in males

Herzog MM, Marshall SW, et.al. Sports Health 10(8) 2018.

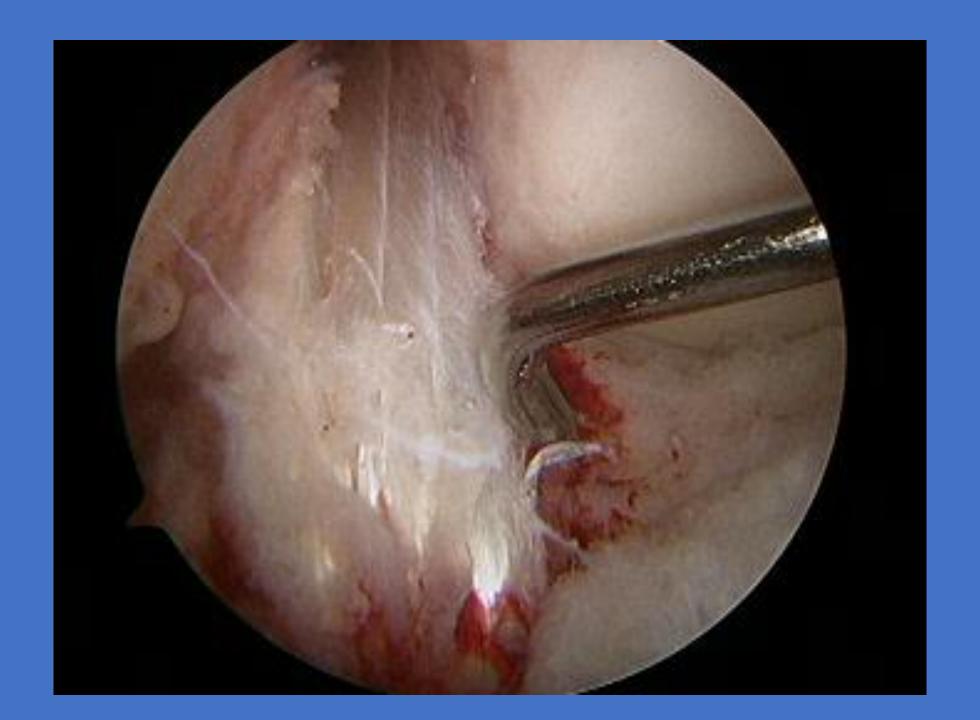
MV Paterno PT PHD- American Orthopedic Society Annual Meeting 2013

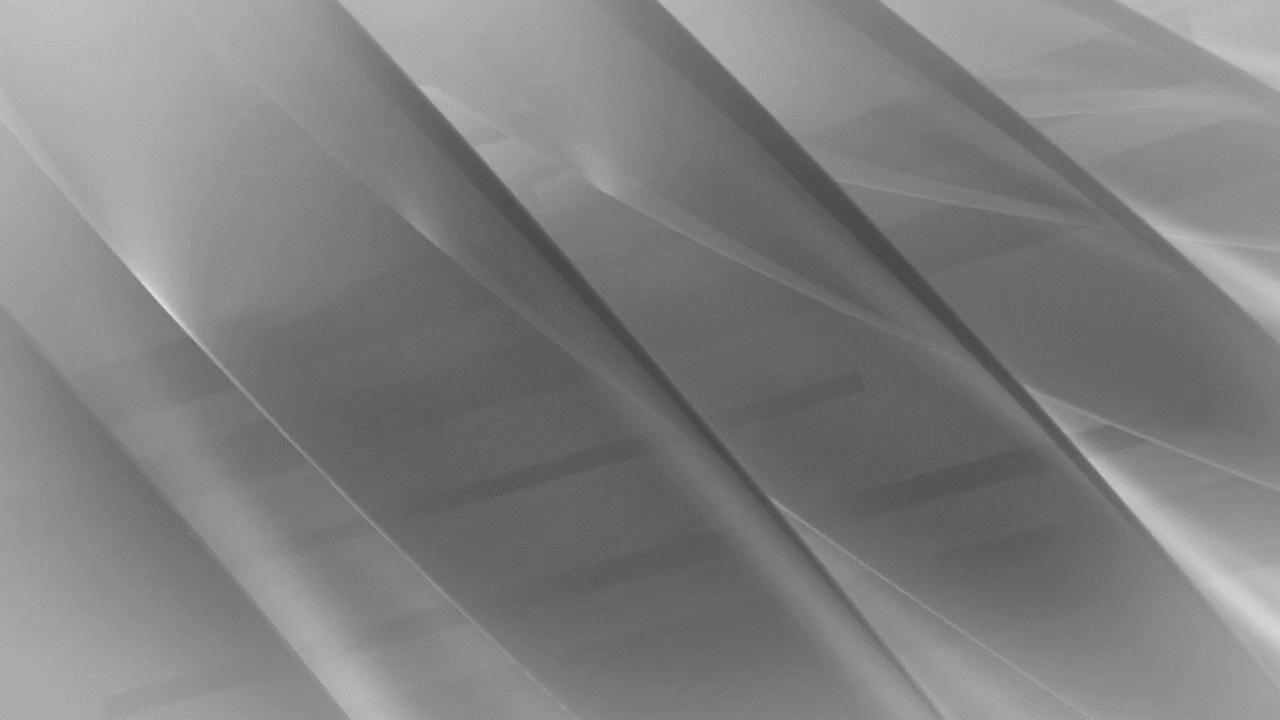
Fox, Shanley, Chaaban, et. al – JOSPT 2017


Pre-operative Goals

- Reduced or absent effusion
- Full terminal extension in comparison
- Normal flexion
- Normal gait
- Leg control symmetrical quadriceps strength 90% strength level
- Hamstrings strength compared to opposite knee
- Co-contraction and hip core strengthening

References: BRJ Sports Med 2016





Three Phases of Rehabilitation

- I Pre-Functional
 - Immediate post-op early motion
 - Controlled Ambulation-early weight bearing if allowed
- Il Return to Function
 - Muscle re-education OKC/CKC progression
 - Early proprioception- neuromuscular training
- III Return to Activity
 - Advanced strengthening and sports-specific training

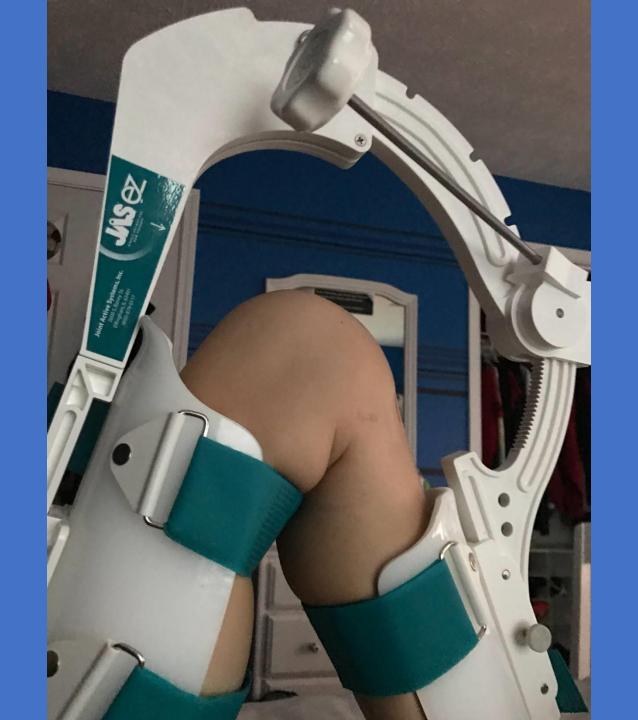
Interactive Outcomes- Pre-functional Phase

- Pain report and reduction of swelling
- Mobility ROM goals met
- Leg control muscle recruitment
- Progressive ambulation (ADL Report)

Functional Progression – ACL

Pre-functional – phase one

- Mobility
 - Full normal extension
 - Flexion as tolerated but not pushed
 - CPM is for extension not flexion
 - Patella mobility all direction
 - Hip mobility to assist with core stabilization
 - Hamstrings re-lengthening
 - Heel cord re-lengthening
 - Manual over pressure mobility toward extension
- Phase one exercises focus on patella femoral protection?


Reference: Galvenor AG, Crosrley KM JOSPT 2016

Clinical Practice Guidelines. (Multiple Authors). JOSPT 2018 48(9) A1-A42.

Top Three Rehab Concerns of Early Interventions

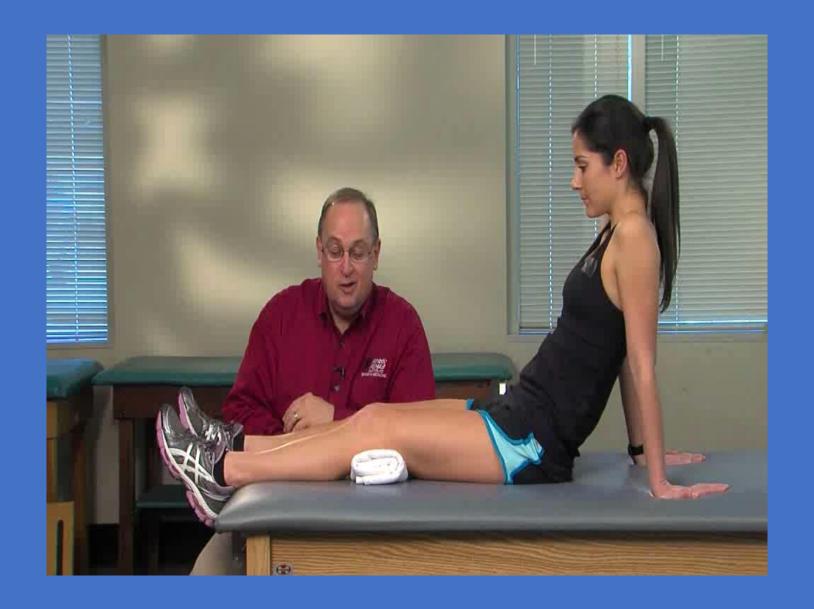
- 1. Loss of Motion: loose flexion not extension
 - Reasons:
 - Notchplasty
 - Adhesions
 - Surgery performed too early
 - Graft position
 - Pain
 - Treatment:
 - Mobility load with prolonged time
 - Extension stretch re-lengthening
 - Prone hangs
 - CKC STE
 - Splinting JAS, Dynasplint extension board
 - Patella femoral joint mobilization

2. Patella-femoral protection

- Keeping the patella in the sulcus
- Short-arc quadriceps of 90-40 degrees
- Partial squats CKC Activities
- Leg press

3. Effusion

- Modalities, infrared electrical stimulation
- Back off too much quadriceps activities
- Emphasize co-activation, H/Q



Functional Progression – ACL

Pre-functional – phase one

- Recruitment
 - Core stabilization swiss/plyo-ball exercises
 - Co-contraction hamstrings over the quadriceps
 - Leg control standing SLR Hip strengthening
 - Quadriceps isometrics
 - Quadriceps Activation Failure (QAF)
 - Sub-max eccentric quads manual application
 - Eccentric hamstrings control 30° → 90°

Reference: Lepley LK, Palmieri Smith RM, JOSPT 2015

Hamstrings - Revisited

- Hamstrings create a posterior directed force on the tibia when the flexion angle is 30° or greater
- Are the hamstrings the true core muscle group of the lower extremity?
- Is the best brace for the knee to develop eccentric powerful hamstrings and core strength?

Reference: Bourne MN, Williams MD et al. Br J Sports Med 2017

Functional Progression – ACL

Pre-functional – phase one

- Tri-plane stabilization neuromuscular training
 - Mini squats double leg trunk tilted forward BW only
 - Standing terminal extension (STE)
 - Balance weight shift exercises balance board/BOSU
 - Leg press sub-max double leg
 - Co-contraction vs Closed Kinetic Chain
 - Terminal extension 0°-45° loading
 - Single leg balance

References: Distasi, Myers, Hewett 2013 Wilk et. al. 2012

Shultz R et. al. 2015

What is True Closed Kinetic Chain?

- Distal segment meets considerable external resistance that restrains free motion
- Original engineering definition involved fixtures of both the proximal and distal ends of the kinetic link system (Steindler, 1955)
- True closed kinetic chain movement patterns do not technically exist in the human body. Except in isometric exercises where no movement of the proximal or distal segments occurs.
- Clinical Definition: Exercise Remains Fixed distally

Historical Reference: Ellenbecker TS, Davies ES (2001)

Principles of Using Closed Kinetic Chain Loading

- Co-activation recruitment
- Tri-plane movement patterns
- Increased proprioception and joint stability
- Contributes to reduced shear-forces

Reference: Begalle, etal. JAT 2012

Functional Progression — ACL Return to Function — Phase Two

- Mobility
 - Full ROM extension & flexion
 - Hamstrings functional re-lengthening
- Recruitment Strength
 - PRE hamstrings $30^{\circ} \rightarrow 90^{\circ}$
 - PRE quadriceps $45^{\circ} \rightarrow 90^{\circ}$
 - PRE hip strengthening all planes
 - Advanced core exercises hamstrings bridge row
 - High speed isokinetics
 - Quad Set Plus test/exercise
- Suggested Strength Goals based on body weight:
 - Males 55%-60%
 - Females 45%-50%

Open- or Closed-Kinetic Chain Exercises After Anterior Cruciate Ligament Reconstruction?

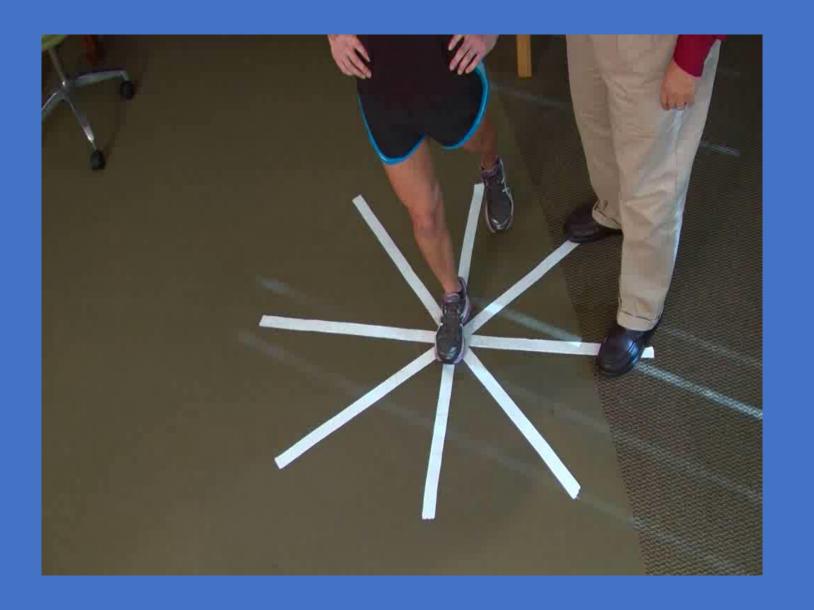
- OKC and CKC Exercises both produce strains on the ACL in terminal extension
- OKC with increase of resistance does increase ACL strainsuggested arc of motion 90-40°
- CKC does not increase the ACL strain with increase load
 - Short flexion angle quadriceps exercise to protect the patella femoral joint and ACL strain

Reference: Luque-Seron, Medina-Purqueres, Sports Health 2016

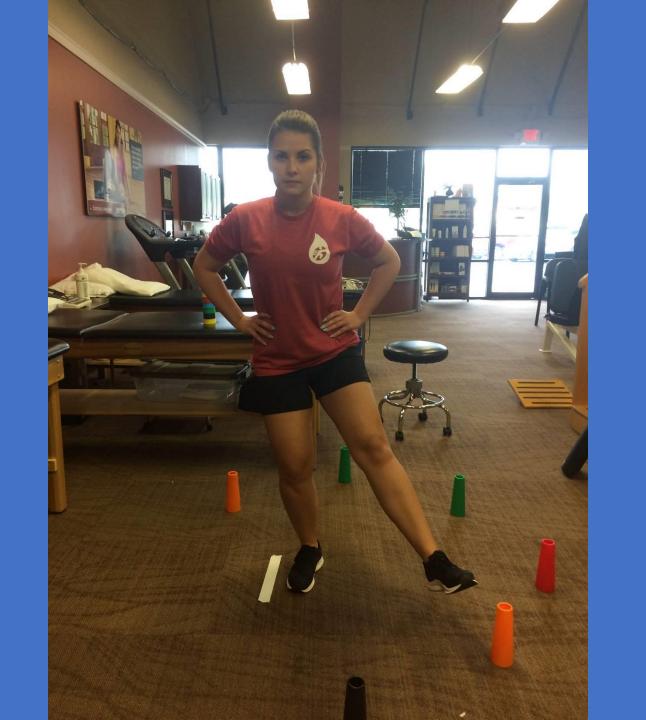
Historical References:

Henning 1985 Beynnon 1997

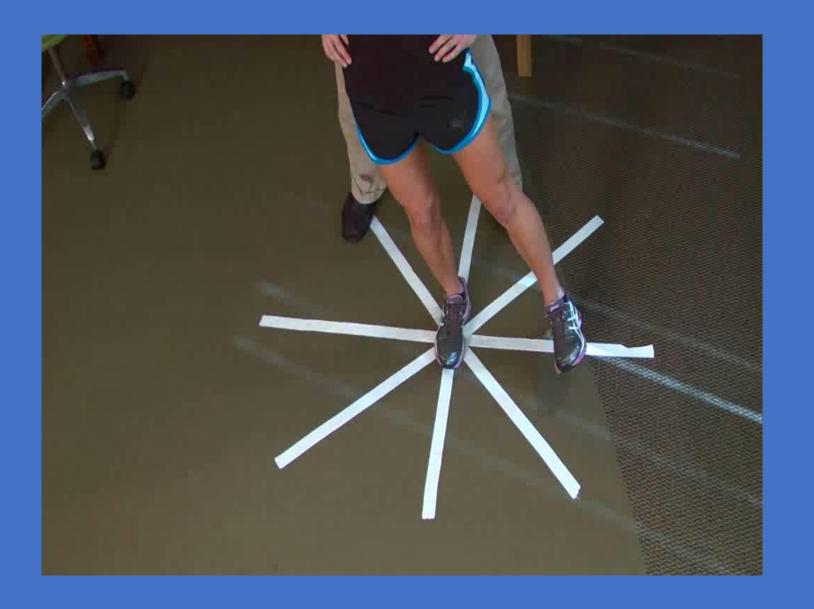
Functional Progression — ACL Return to Function — Phase Two

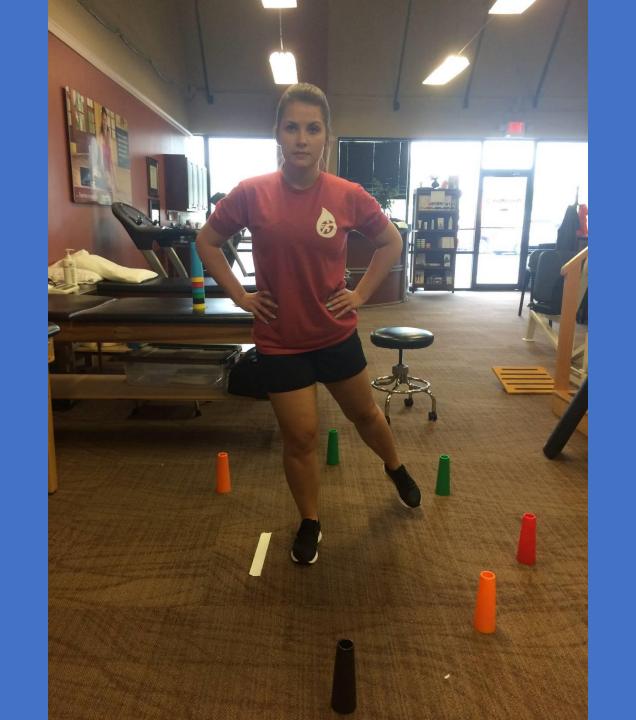

- Tri-plane stabilization
 - Balance activities balance board BOSU
 - Progress to single leg squat on uneven surfaces
 - Balance vector 3 planes
 - Leg press total gym single leg increase flexion angle
 - Lateral step-up, retro step-ups and front step downs
 - Slide board FITTER
 - Plyo-toss with squat progress to single leg
 - Sports cord exercises
 - Lateral and forward lunges
- Suggested Goals
 - Leg press test 90% BW
 - Isokinetic testing 85% work symmetry

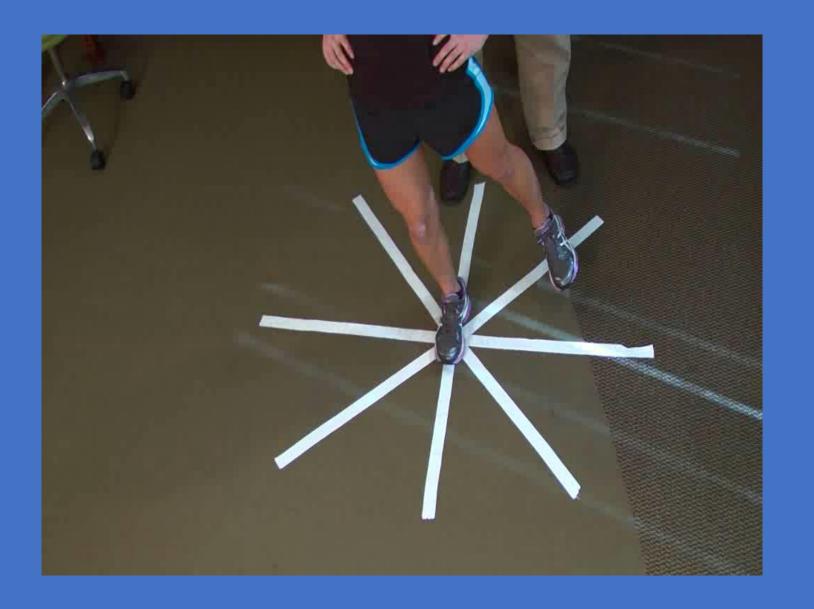
Reference: Sugimoto D, Myer GD, Barber Foss KD, Hewett TE Br J Sports Med 2015

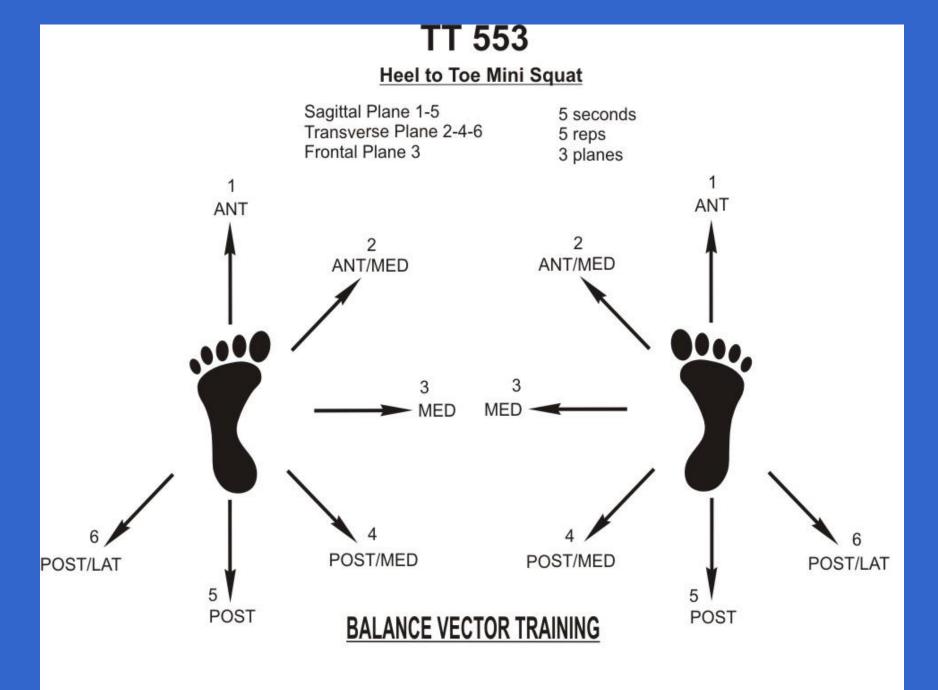

Cobian DG, Robbins D, Yack HS, Williams GN JOSPT (CSM) 2017

Reinking SF, Schmitt LC, Thomas S, Paterno MV JOSPT (CSM) 2017









Vital Five Program – CKC Function

- Mini squats single plane → Co-contraction
- Balance vectors tri-plane → proprioception
- Leg press double to single leg → recruitment
- Lateral step-ups → quadriceps dominant
- Squats on uneven surface

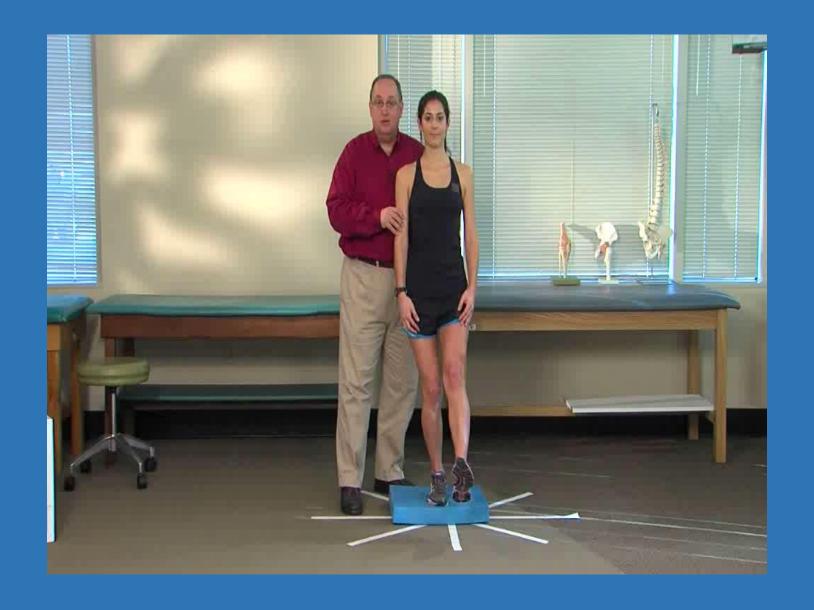

Functional Progression — ACL Return to Activity Phase three

- Mobility
 - Any incomplete motion concerns mobilization as needed
 - Advanced functional LE re-lengthening
- Recruitment
 - Advanced quadriceps strengthening
 - Wall squats with ball single leg
 - Open kinetic chain progression
 - Isokinetic testing- total work
- Suggested goals
 - Quadriceps and hamstrings isotonic strength goals are 100% symmetry

Reference: Lepley LK Sports Health 2015

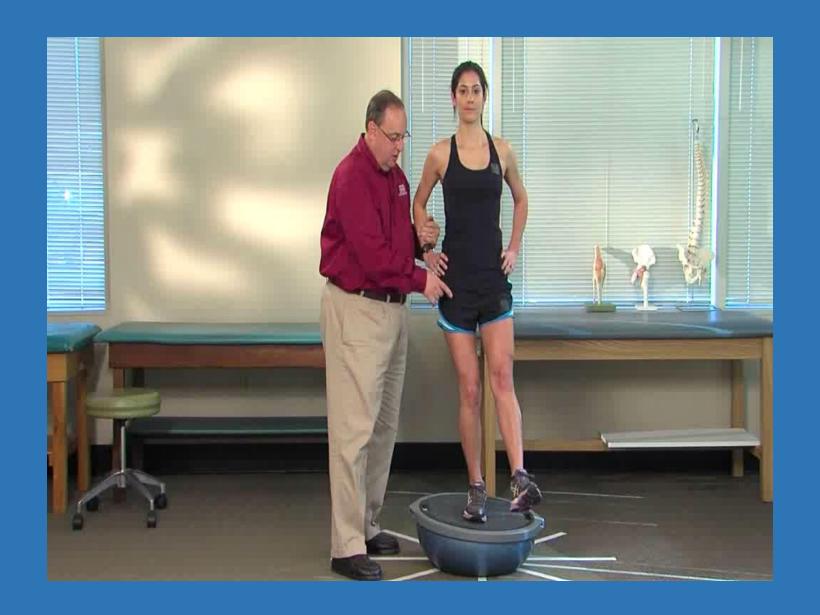
Isokinetic Evalutaion

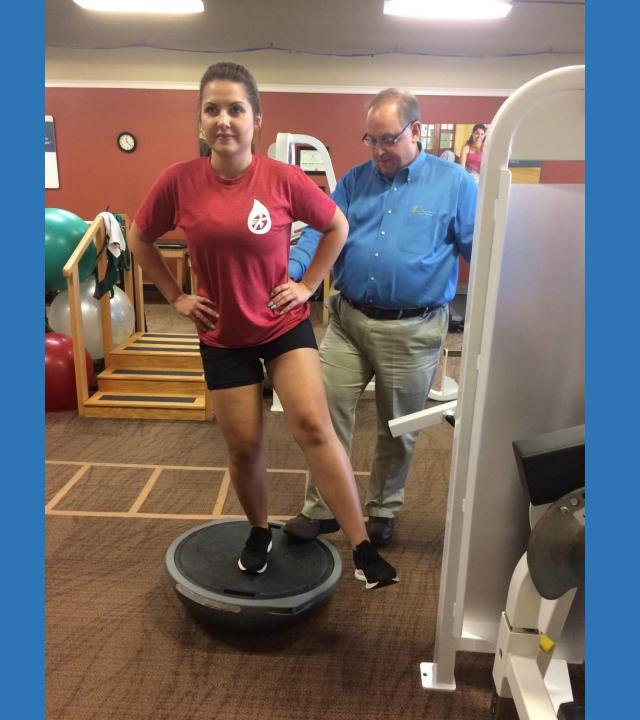
DOB:	7/2/1998		Joint:	i nt: Knee										
Hi: 65 in.		Protocol:	Isokinetic Bilatteral											
Wt: 145.0 lbs		Pattern:	ern: Extension/Flexion											
Gender:	nder: Female		Mode:	Node: Isokinetic										
Diagnosis:	: ACL Reconstruction		Contraction:	CON/CON										
	Quad. Tendon (Left)		Extension			Flexion			Extension			Flexion		
				60 deg/sec		60 deg/sec			180 deg/sec			180 deg/sec		
# of Reps (60/60): 5			Uninvol	Involved	Deficit	Uninvol	Involved	Deficit	Uninvol	Involved	Deficit	Uninvol	Involved	Deficit
# of Reps (60/60): 10			Right	Left		Right	Left		Right	Left		Right	Left	
Peak T	ourqe	ft-lbs	108.5	93.8	13.6	78.7	77.7	1.2	54.9	60.7	-10.5	49.4	39.7	19.6
peak T	Q/BW	%	74.8	64.7		54.2	53.6		37.9	41.9		34.1	27.4	
Max Rep Tot. Work		ft-lbs	113.3	118.3	-4.4	81.2	83.7	-3	67.4	80.8	-19.9	61.1	46.2	24.4
Coeff. Of Var.		%	11.2	8.7		3.7	4.1		25.0	15.8		16.5	11.5	
AVG. Power		Watts	89.8	92.4	-2.8	74	67.8	8.5	114.0	143.9	-26.3	107.8	80.1	25.7
Total '	Work	ft-lbs	469.6	563.8	-14.3	390.9	405.3	-3.7	553.0	692.9	-25.3	542.3	405.6	25.2
Aceelerat	ion Time	msec	20.0	30.0		40	50.0		60.0	50.0		90	100	
Decelerat	ion Time	msec	80.0	70.0		40	80.0		150.0	140.0		120	120	
RO	M	deg	87.8	96.3		87.8	96.3		95.1	96.8		95.1	96.8	
AVG. Pe	eak TQ	ft-lbs	93.4	89.3		75.7	73.3		44.3	52.4		43.7	34.7	
Agon/Ava	ntag ratio	%	72.5	82.9	G: 62.0				90.0	65.4	G: 76.0			

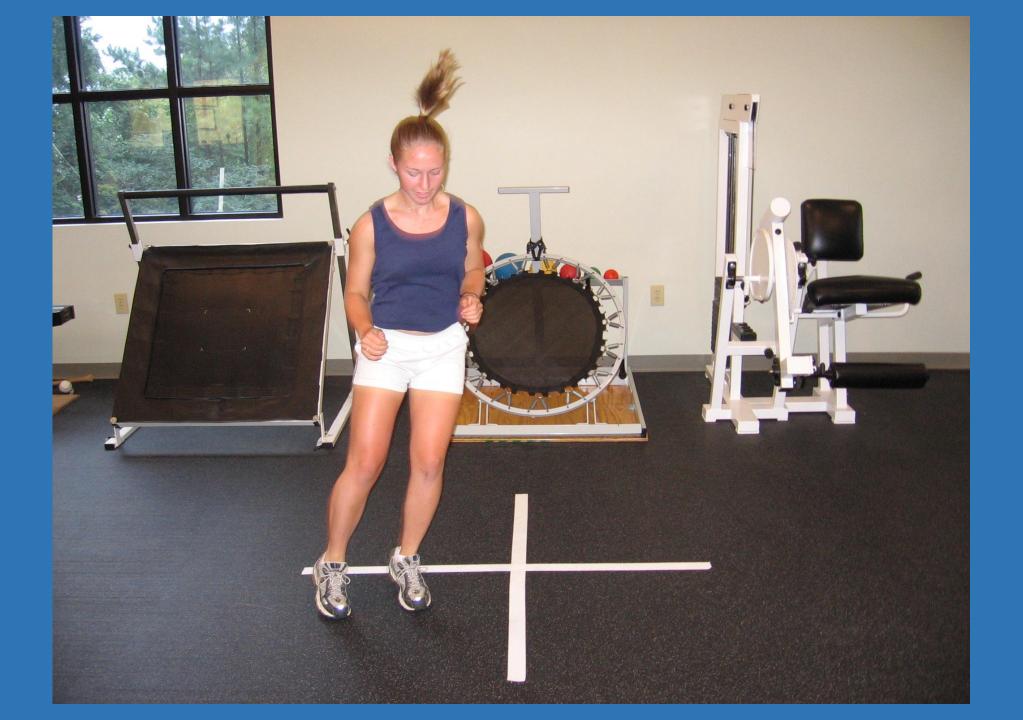


Functional Progression — ACL Return to Activity Phase three

- Tri-plane stabilization
 - Advanced plyo-toss on uneven surfaces BOSU
 - Neuro-reaction training
 - Advanced balance vector training eyes closed
 - Step-jump balance hold on balance pad
 - Plyometric jumps double to single leg
 - Lunges with weights lateral lunges with bands/tubing
 - Sports Specific Training
 - Box Runs, Lateral Running, Retro sprinting, Vertical Jumps, Figure 8 run/cuts, running program.
 - Are we allowing patients to go back to sports too soon?
 - Some studies state that it may take 2-2.5 years of neuromuscular training for dynamic stability (JAT 2010)


Reference: Elias ARC, Hammill CD, Mizner RL JOSPT 2015 Chaaban C, Thigpen SA et al. JOSPT (CSM) 2017 Grooms DR, Onate JA Sports Health 2015





Plyometric Training

Progressive in nature

- Increase repetitions and sets/decrease rest period
- Decrease rest periods
 - Straight jumps -> Sagittal
 - Lateral jumps -> Frontal
 - Combination -> Transverse
- Frequency three times a week
- Intensity double leg jumps to single leg jumps
- Low intensity 200 fast contacts
- Moderate intensity 200 400 fast contacts
- High intensity 400 600 fast contacts
- Sports specific training
 - Progressive running
 - Agility drills
 - Sudden starts and stops
 - 45° cutting then 90° cutting

Reference: Pratt KA, Sigward SM JOSPT 2017

Objective Criteria for Discharge and Return to Sports

- Functional return-to-sport battery:
 - Early return to pivoting sports
 - The re-injury rate drops for each additional month after post-op month 9
 - 38% of those who failed a functional test battery sustained re-injury
 - Only 6% who passed sustained re-injury
- Testing may include but not limited to:
 - 90% strength comparison
 - Hop test symmetry
 - Outcome data survey based on ADL's (LEFS)
 - Functional movement screening
- Limb symmetry test may overestimate knee function
 - What is the future in return to sports function?

Reference: Br J Sports Med 2016
Wellsandt E, Failla MS, Synder-Mackler L JOSPT (2017)

Level One Sports Involving: Jumping, pivoting and hard cutting

- Patients who return to level one sports have a 4.32x higher re-injury ratio
- Re-injury rate was reduced by delaying RTS until 9 months
- 38% of patients who failed RTS criteria suffered re-injury versus 5.6% of those who passed
- Symmetrical quadriceps strengthening reduced re-injury

References: Grindem H, Synder-Mackler, Moksnes H, et al. BR J. Sports Med 2016.

FUNCTIONAL LOWER EXTREMITY TESTING

- Balance vector testing
- Leg press test 100% body weight
- Isolated strength assessment (Isotonic vs. Isokinetic)
- Return to Sports Functional Testing
 - Hop test Time and distance Single leg
 - Lower limb symmetry index-triple/crossover/distance hops
 - Functional movement screen
 - Agility (T Test)

Reference: Culverner AG et. al. JOSPT 2016

Hegedus EJ et. al. BR J Sports Med 2015

Lepley LK, Palmieri-Smith RM JOSPT 2015

Reinking, Schmitt, Thomas, Paterno CSM Presentation 2017

Objective Criteria for Discharge and Return to Sports

- Functional return-to-sport battery:
 - Early return to pivoting sports
 - The re-injury rate drops for each additional month after post-op month 9
 - 38% of those who failed a functional test battery sustained re-injury
 - Only 6% who passed sustained re-injury
- Testing may include but not limited to:
 - 90% strength comparison
 - Hop test symmetry
 - Outcome data survey based on ADL's (LEFS)
 - Functional movement screening
- Limb symmetry test may overestimate knee function
 - What is the future in return to sports function?

Reference: Br J Sports Med 2016
Wellsandt E, Failla MS, Synder-Mackler L JOSPT (2017)

ACL Surgery: 10 Years Later

- American Journal for Sports Medicine Washington University – St. Louis
- 100 soccer players (55 male, 45 female, age 11-53)
 - 1. 72 of the athletes returned to play within one year and are still playing after 7 years
 - 2. Male players are more likely to return to play if they had surgery when they were young
 - 3. Male players didn't cite ACL injury as a reason to discontinue playing
 - 4. More female players did cite ACL injury as the reason to stop playing
 - 5. 12 out of 100 (9 female, 3 male) underwent a second ACL surgery within 10 years

What have we heard from recent publications?

- Less than 60% return to sport (Br J Sports Med 2014)
- More than 50% develop OA by middle-age (Am J Sports Med 2016)
- Young Athletes with ACL Injuries
 - 30% of younger/active patients suffer 2nd ACL rupture in the first few years (Clin J Sport Med 2012)
- 50% of patients may undergo meniscus surgery within 5 years
- Increase post-traumatic knee OA of 21-48% (Am J Sports Med 2009)
- Incidence of ACL tears are higher in girls through age 16 (Medscape, Feb 23, 2017)
- Return to sports before 7 months post-operative is associated with decreased likelihood of completing the next scholastic season (CSM Presentation 2017)
- Passing RTS criteria did not show a statistically significant association with risk of a second ACL injujry

Reference: Ardern CL Sports Health 2015

Losciale JM et al. JOSPT 2019

What to Consider Going Forward

- If 63% of post-operative ACL patients return to sports of their choice, what needs to be done to increase this percentage?
 - Early focus on quadriceps control without emphasizing over-training
- Will blood flow restriction training (BFR) be a recommended training application in the early months of rehabilitation?
- Will return to sports functional testing need to be reconsidered?
- What role will neuroplasticity changes play in the recovery?
- Future of Orthobiologics in ACL surgery
- Will there be renewed interest in prehabilitation which promotes neuromuscular control? Are you willing to see patients for free?

References: Grooms DR, Page SJ, et al. – JOSPT 2017

Webinar: JBJS - April 4, 2017

Scott BR. Loenneke JP et al – J Sci Med Sports 2016 and Sports Med 2015

Wellsandt E. Failla MJ, Snyder0Mackler L – JOSPT 2017

Hewett TE - JOSPT 2017

Mandelbaum BR. Medscape. 2019

Questions

