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Abstract— Additive or overlapping clustering is a technique 
that is used to analyze overlapping cluster structure in data.  In 
this paper, we motivate the overlapping clustering problem 
using an example of categorizing movies.  We describe the 
ADCLUS and INDCLUS overlapping clustering models as 
discrete versions of the CANDECOMP/PARAFAC models.  
We describe the scalability problems inherent in current 
overlapping clustering approaches.  We give a framework and 
algorithm for scaling up unsupervised overlapping clustering 
using a combination of a cluster-wise optimization technique 
and techniques from multi-label learning.  Our framework 
uses a subset of data to find a training solution and then uses 
multi-label techniques to find labels for the remaining data.  

Keywords- Additive, clustering, multi-label, unsupervised, 
supervised 

I.  INTRODUCTION 
In this paper, we describe a methodology for large scale 

overlapping cluster analysis.  In overlapping clustering, each 
item clustered can be a member of multiple clusters or 
classes.  This is opposed to partitioning clustering, where 
each item is assigned to exactly one cluster and fuzzy 
clustering, where each item has a fuzzy membership 
probability for each cluster.  The overlapping clustering 
techniques described in this paper utilize an additive 
decomposition of similarity [43].  Thus in the psychology 
literature, overlapping clustering is often called “additive 
clustering”. 

A. Motivation 
Consider the problem of classifying N movies into M 

categories.  Each movie can belong to multiple categories.  
For movie i and category j the category assignment is pij = 1 
if the movie i is assigned to category j and pij = 0 if movie i 
is not assigned to category j.  The cluster assignments can 
be stored in an N × M matrix P.  For an exploratory cluster 
analysis problem (unsupervised learning), the categories are 
assigned using some measure of proximity between the 
movies.  The measure of proximity can be derived from 
behavioral data (e.g., movie attendance), preference data 
(e.g., movie reviews), or shared features (actors/actresses 

etc.).  The number of categories can be selected arbitrarily 
or can be decided using some measure of cluster solution fit.   

In a supervised problem, the data is split into training and 
test instances.  Each movie has set of features describing the 
movie.  For example, the cinema attendance of a single user 
could be a feature.  The value of this feature for a movie is 1 
if the user had seen the movie and 0 if the user has not seen 
the movie.  Given a training set of N1 movies with M1 
features (N1 × M1 matrix F1) classified into M2 categories 
(N1 × M2 matrix P1) and a test set of N2 movies (N2 × M1 
matrix F2), the supervised learning problem is to predict the 
N2 × M2 matrix of categories P2.  The problem is 
summarized in (1).  In data mining terminology this 
problem is known as the multi-label learning/classification 
problem [41].  
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In this paper we concentrate on the unsupervised learning 
problem, but utilize supervised learning techniques to help 
scale-up the unsupervised problem.  The rationale behind 
the unsupervised problem is to help discover, explore, and 
visualize categories using patterns in the underlying 
perceptual or behavioral data.  There is no one correct 
categorization/clustering of set of data.  Categories can be 
based on subjective knowledge and can be determined by 
individuals, institutions, or by cultural norms [22].  
Returning to the movie example, a user may categorize 
movies based upon viewing preferences and an online 
retailer such as Amazon or Netflix may categorize movies to 
help consumers navigate their website and find movies.  An 
unsupervised learning technique, such as overlapping 
clustering, can be used to help explore possible 
categorization schemes and also to test how subjective 
categorization schemes correspond to variance in the 
underlying data. 
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II. TECHNICAL DETAILS 

A. Overlapping Clustering 
Overlapping clustering techniques have long been used to 

analyze similarity of data in psychological experiments, but 
have been generally implemented on small (n < 100) 
datasets.  In this section, we describe the basic overlapping 
clustering models and methods for fitting these models.  A 
measure of similarity sij between two items i and j can be 
modeled as a weighted sum of overlapping cluster 
assignments.  The basic model [36] is referred to as the 
ADCLUS model and is given in (2). 
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, where îjs  is the reconstructed proximity between item i 
and item j, M is the number of clusters in the solution, c is a 
fitting constant, and pim and pjm are binary cluster 
membership indicators, i.e., if item i is in cluster m then pim 
is 1, otherwise pim is 0.  The variance accounted for (VAF) 
by the model is given in (3). 
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, where s  is the average value of sij.  An individual 
differences version of the model called INDCLUS [6] is 
given in (4).  INDCLUS can model multiple similarity 
matrices, each representing an item or group of items.  
There is a single cluster structure, but each individual or 
group of individuals has a separate set of cluster weights.  
Groups of individuals can be defined by splitting the dataset 
using categorical variables [10].  Multi-way INDCLUS [8] 
can be thought of a categorical version of the 
CANDECOMP/PARAFAC model [7,24].  A further 
generation of INDCLUS that allows for additional 
weighting schemes is given in [15]. 
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, where k denotes the subject, wkm denotes the weight for 
subject k on cluster m, and ck denotes the fitting constant for 
subject k.  The VAF for the INDCLUS model is the average 
VAF across all k. 

The model can be fit by minimizing a least squares 
optimization criterion.  The optimization model given is 
NP-Hard [19] and the special case where k = 1 (ADCLUS) 
is also NP-Hard.  Heuristic algorithms to fit the INDCLUS 
model include the original INDCLUS algorithm [6], 
MAPCLUS [4], SINDCLUS [9], SYMPRES [26], and a 
tabu search like technique [33].  Maximum-likelihood 
techniques have been used to fit the k = 1 ADCLUS model 
[31,39].  A maximum likelihood approach with applications 

to supervised multi-label learning problems is given in [5].  
The number of clusters M is usually fixed, but alternatively, 
a minimum number of clusters and minimum VAF can be 
specified [29]. 

The scalability of SINDCLUS, SYMPRES, and heuristic 
extensions for these algorithms is tested in [19].  The 
algorithms were run for fixed periods of time on multiple 
datasets and for 125 < N < 500.  Overall, SYMPRES is the 
most scalable algorithm for 250 < N < 500, outperforming 
both SINDCLUS and tabu search variants of 
SINDCLUS/SYMPRES.  Both SINDCLUS and SYMPRES 
are cluster-wise (optimize each cluster separately) 
algorithms.  SINDCLUS allows relaxed solutions, with 

im imp p  transformed to im imp q , with the possibility that 

im imp q≠ .  This relaxes the algorithm solution space and 
allows SINDCLUS to obtain better solutions for small n, but 
as n increases the proportion of solutions where im imp q≠  
increases.  For N > 2000, the run time for the SYMPRES 
algorithm becomes unmanageable and thus the algorithm is 
not suited to large scale data mining applications.  In the 
next section we detail a methodology for improving the 
scalability of overlapping clustering.  We give a brief 
description of the SYMPRES algorithm and then describe 
how supervised multi-label classification techniques can be 
used to improve scalability.   

B. The SYMPRES algorithm 
The INDCLUS model (6) can be expressed in matrix 

form for all i and j.  
   1.. ,k k kc error k k′ ′ + ∀ =S = PW P + 11  (6) 

, where Sk contains similarities for subject k, P is an N × M 
matrix of cluster memberships, Wk is a diagonal cluster 
weight matrix, and ck is an additive constant.  The 
INDCLUS equation can be written as (7).   
At each iteration of the SYMPRES algorithm, M – 1 
clusters are taken to be fixed and the values of pm and wmk 
(∀k = 1..K) for a single cluster m are optimized. 
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This function can be optimized as (9). 
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Here Mk is a weighting matrix for kS .  The full update 
algorithm is given in [26]. 

C. Boosting Algorithm 
The algorithm or framework described in this section can 
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be used to help scale-up small scale overlapping clustering 
solutions.  The algorithm can be thought of as a “connective 
algorithm” and it utilizes both existing overlapping 
clustering optimization algorithms and multi-label learning 
techniques.  The algorithm is independent of the 
overlapping clustering optimization technique used.  In the 
experimentation section we utilize SYMPRES to find the 
initial small scale overlapping clustering solution, but any of 
the algorithms described in section II part C could be used.   

The algorithm is designed for situations where the 
number of items N to be clustered is larger than the number 
of items that can be handled by existing algorithms.  For 
example, if overlapping clustering technique A can be 
guaranteed to cluster 1000 items in a reasonable time (say 
less than 10 minutes) then the boosting algorithm would not 
be required for a 500 item data set.  For a 10,000 item data 
set, one could run the boosting algorithm with a training 
size of N1 < 1000. 

The algorithm is analogous to several methods for scaling 
up continuous dimensionality reduction solutions.  Nyström 
methods [32], such as Landmark MDS [16], use a subset of 
the source data to estimate a transition matrix and then use 
this matrix to transform the entire dataset.  In [1], a variant 
of large scale MDS is described.  A standard MDS 
algorithm is used to find a lower dimensional solution for a 
subset of the data and this solution is used to train a neural 
network.  The neural network is used to find a lower 
dimensional mapping for the remaining points. 

The boosting algorithm/framework is given below. 
 

Algorithm 1 
Input: T – Maximum training time, K – Number of data 
matrices, Fk – Input data matrices (N item × M features) ∀k 
= 1..K, N1 – Number of training items. 
Output: P (Wk and ck for all k), VAF 
Steps 
1. Set time T = 0, set VAF1 to be 0, and start the training 

clock. 
2. Randomly select N1 training items (select the same items 

for each k) and denote the N1× M matrices as Fk (∀k = 
1..k). 

3. Calculate similarity matrices kS  from the initial data 

using an appropriate similarity transformation kS  = 
ƒs(F1k) ∀k = 1..k.  Here ƒs can be any valid similarity 
function (e.g., cosine similarity, correlation, Euclidean 
similarity etc.). 

4. Run the SYMPRES algorithm returning VAF, P, Wk (∀k 
= 1..K), and ck (∀k = 1..K). If (VAF > VAF1) then set 
VAF1=VAF, P1 = P, F1k = Fk, W1k = Wk (∀k = 1..K) and 
c1k = ck (∀k = 1..K) as the best solution. 

5. If elapsed training time > T then go to 6 otherwise return 
to 2. 

6. Select the N2 remaining items not in F1k as F2k (for k = 
1…K). 

7. Find P2 by solving the supervised multi-label learning 
problem given in (1). 

8. Combine P1 and P2 to find the overall clustering solution 
(10). 
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9. Run a partial version of SYMPRES (or SINDCLUS).  For 
each cluster m and data matrix k, solve 

( ) 2
min m k mk m mf w ′= −p S p p , but only alter the weights 

wik.  Keep pm fixed. The additive constant can be modeled 
as the weight for an additional universal cluster with all 
cluster memberships equal to 1.  

10. Calculate the total VAF from (10) and denote this 
value as VAFT.  The success of the scaling-up procedure 
(SS) is calculated as the percentage of VAF retained by 
the new solution (11). 
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III. EXPERIMENTATION 

A. Experimental Design 
We tested the algorithm on a set of real world data sets.  

The data sets tested are summarized in Table 1.  

 

TABLE I 

Name DESCRIPTION Rows COLS Ref 

Adult Person level data 
from the 2000 

census. 

48842 14 [28] 

IUsage Demographics of 
internet users. 

10104 72 [13] 

Magic Data on high 
energy gamma 

particles  

19020 11 [3] 

Mushroom Physical 
characteristics of 

mushrooms. 

8124 22 [35] 

Parkinson Parkinson’s disease 
telemonitoring 

data. 

5875 26 [40] 

Pen Digits Pixel information 
on hand written 

digits. 

10992 16 [2] 

Spambase Email spam 
characteristics 

4601 57 [25] 

Wine 
Quality 

A range of quality 
indicators for both 

red and white wine. 

6497 12 [14] 
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We tested the algorithm using training random samples of 
sizes N1 = 500, 1000, and 2000.  For each dataset F, we 
created 5 samples F1 for each sample size.  Each sample F1 
gave an N1 × M1 matrix. The remaining N – N1 items were 
placed in F2.  We then created a similarity matrix S1 for 
each F1.  For discrete data, we calculated distances using the 
Hamming metric.  For continuous data we used the cosine 
distance metric.  The cosine metric is robust and gives good 
results on a range of data [18,37].  For mixed data, we used 
a weighted combination of the cosine and Hamming 
metrics.  The weights were assigned to equalize variance 
between dimensions.  The similarity matrix S1 was 
calculated using { }1 1 1max= −S D D , where D1 is the 
distance matrix.  We then ran the basic SYMPRES 
algorithm to gain a clustering P1 and weights W1 for each S 
and thus each F1.  We used SYMPRES rather than 
SINDCLUS to guarantee symmetric solutions, but in real 
life applications any suitable overlapping clustering 
algorithm could be used.  We then learned the remaining 
clusters P2 using the algorithm described in section II part C 
and each of the multi-label learning techniques summarized 
in Table 2.   

 
As the problem is unsupervised, we report the quality of 

the solution with respect to the solution criterion by 
calculating S2 for F2 and then calculating the VAF from the 
ADCLUS model using (2) and (3).  We give both the VAF 
for the training data and the VAF for the overall solution.  
We also report the difference between these values.  For 
example, consider the Magic data set and a sample size of 

1000.  Let VAF1 be the VAF calculated using P1, S1, W1, F1, 
and c for the 1000 item SINDCLUS training solution.  Let 
VAF2 be the overall VAF for the 19020 item overall 
solution calculated using P, S, W, F, and c.  Let VAFdiff = 
VAF1 − VAF2.  A good solution is one in which the boosted 
solution has a similar VAF to the original training solution, 
but with many more items.  To put the value of VAF into 
context, for each data set we created 100 random 
clusterings.  For each clustering we performed step 9 of the 
algorithm to optimize the weights (and thus VAF) for the 
model with respect to the random clustering.  We then 
calculated the VAF of the model.  We denote the average of 
these values as the dataset’s “base” VAF. 

We ran five replications for each combination of 
parameters.  The parameters used are summarized in Table 
3. 

 
In total, there are 8 × 3 × 3 × 5 = 240 experimental 

conditions, with 5 replications for each experimental 
condition.  We ran the experiments using Matlab on Dell 
Poweredge T100, with Windows 7 64 bit, 8 GB of memory 
and a single Zeon 2.0Ghz CPU.  We adapted code from [27] 
for the SYMPRES algorithm and we used code taken from 
the associated papers referenced in Table 2 for 
implementing multi-label learning.  Initial parameter testing 
was run for each of the five multi-label learning algorithms. 

B. Results 
The results are summarized in Fig. 1−3.  In Fig. 1, we 

give the average VAF for the complete solutions split by 
sample size and the number of clusters. We also give the 
average value of VAF for the training solution on the 
sample data and the “base VAF”.  We split the experimental 
runs by sample size and number of clusters.  One can see 
that there is very little difference in VAF between the 
training solutions and the boosted solutions relative to the 
base VAF.  The ML-kNN and ML-RBF techniques seem to 
give the best values of VAF, though some runs of the ML-
RBF technique failed for the Census data set, so this may 
bias results slightly. 

TABLE 3 
EXPERIMENTAL PARAMETER SUMMARY 

Parameter DESCRIPTION No of 
values 

Data set The data sets described in Table 
1. 

8 

Sample 
size 

The size of the training sample 
taken from the data: 500, 1000, 

or 2000. 

3 

No. 
Clusters 

The number of clusters to be 
taken: 4, 8, or 16. 

3 

ML-
Method 

The multi-label techniques to 
be tested. 

5 

 

TABLE 2 
MULTI-LABEL LEARNING TECHNIQUES 

Name DESCRIPTION Ref 

KNN Utilizes a k-nearest neighbors 
approach and Bayesian prior to 
estimate the posterior using the 
maximum a posteriori principle. 

[48] 

ML-BP Uses a backpropogation neural 
network to predict labels. The neural 
network trained using a set of labeled 

training data. 

[47] 

ML-
RBF 

Uses cluster analysis to find centroids 
of each class.  Then uses these base 
‘centroid’ vectors and a radial basis 
function methods to train a radial 

basis function (RBF) neural network. 

[45] 

NBayes Uses PCA and feature selection to 
preprocess the data and then uses 

Naïve Bayes to predict class labels. 

[46] 

SVM Decomposes multi-label learning 
problem into multiple two-class 

problems and using an optimization 
function for minimizing Hamming 

loss to find an overall labeling. 

[17] 
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In Fig. 2, the results are summarized by the data set used.  

All results are complete, except for the Census data set, 
where some ML-RBF runs failed due to memory 
constraints.  For the Census and IUsage data sets the base 
VAF is less than 0 as the average sum of squared error 
(SSE) is greater than the total sum of squares (SST) for S.  
Again, there is good performance from the ML-kNN 
technique.  The technique worked well for all data sets and 
for one dataset (PenDigits) the ML-kNN technique resulted 
in an average VAF greater than the training VAF.  

 
A box-plot for VAFdiff is given in fig. 3.  Results are split 

by the multi-label learning technique and by the size of the 
training sample.  The boxes denote the middle two data 
quartiles.  Observations that lie outside the interquartile 
range are plotted individually.  One can see from the 
scatterplot that the ML-kNN and ML-RBF techniques give 
the tightest and most consistent solutions.  As the size of the 
sample training data increases, the number of poor solutions 
(high value of VAFdiff) decreases.  

 
We analyzed the data using a full-factorial ANOVA 

model with the sample size, no. clusters, data set (name), 
and (mult-label learning) method taken as factors.  The 
ANOVA table is given in fig. 4.  The size, ML-method, and 
data set name are significant at the p < 0.05 level.  The no. 
clusters factor is not significant.  All two factor interactions 
except for no. clusters × dataset are significant. 

 
We performed post-hoc tests using the Scheffé test [34], 

which was chosen as it is known to give conservative 
confidence interval bounds.  The results are given in Fig. 5.  
By performance, the multi-label learning techniques can be 
split into three groups.  ML-kNN and ML-RBF have the 
best performance with an average value of VAFdiff 
approximately 2.5.  ML-BP and Naïve Bayes are in a single 
group and SVM overlaps with Naïve Bayes.  Overall ML-
RBF and ML-kNN have the best performance, but for ML-
RBF, this performance may be biased by scalability 
problems on the larger census data set. 

Fig. 4.  ANOVA Table: Between subject effects 
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Fig. 2.  Results by data set 

Fig. 1.  Results by sample size and clusters 
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IV. EXAMPLE AND VISUALIZATION 

Thus far, we have described a framework and an 
algorithm for scaling up additive clustering and we have run 
some experimental tests to prove the effectiveness of our 
approach.  But how can additive clustering be used for large 
scale visualization and exploratory data analysis?  For 
traditional psychological applications on small data sets, for 
example [36], one can visualize items using principal 
component analysis (PCA) or multidimensional scaling 
(MDS) and then hand draw overlapping solutions.  Hand 
drawing solutions is not feasible for larger scale data sets.  
We present a short, ad-hoc algorithm for drawing 
overlapping clustering solutions.   

 
Algorithm 2 
Input: F– Input data matrix (N × M1), P clustering matrix 
(N × M2), 
Output: (N × 3) vector of RGB values. 
Steps 
1. Calculate the Hamming difference between each pair of 

clusters.  For N items and clusters pa and pb, the 
Hamming distance between the clusters is given in (12). 

( )1 2
1

,
N

H ia ib
i

d p p
=

= −�p p     (12) 

2. Split the clusters into three groups.  The clusters should 
be assigned to minimize the total within group Hamming 
distance. 

3. Each of the three groups should be assigned to one of the 
three primary colors, red, green, or blue.  If there is only 
one cluster in the group then it is assigned full saturation 
(255).  If there are V > 1 clusters in the group, then cluster 
j (relative to only the clusters in the group) is given 
saturation ( )255 j V× .  Denote the color for cluster j as 

an element of the color row vector [ ]j R G B=RGB .  
For example, if the color is red and the saturation is 
255 2  then the cluster vector [ ]255 2 0 0j =RGB . 

4. The items are visualized by using PCA or any other 

dimensionality reduction technique to transform F into 2 
or 3 dimensions. 

5. Each item has a cluster membership row vector 

21i ij iM	 
⋅ ⋅⋅ ⋅ ⋅ ⋅
 �p p p  and each cluster has an RGB 

component RGBj.  Set the initial color vector for each 
item to be [ ]0 0 0i =RGB .  For each element pij of 

21i i ij iMp p p	 
= ⋅⋅ ⋅ ⋅ ⋅ ⋅
 �p � , if 1ijp =  then 

i i j= +RGB RGB RGB . 
The rationale behind the algorithm is to distribute colors 

across the RGB spectrum and give similar clusters similar 
colors.  A simple 3 cluster PCA visualization for the wine 
data is given in fig. 6.  Here each cluster is assigned to a 
color and each color has full saturation.  Large pixels are 
used so that one can fully see the overlap. 

 
The overlapping clustering solution corresponds strongly 

to the PCA solution.  There are three distinct clusters.  There 
are small yellow, cyan, and purple regions, which indicate 
items that belong to 2 clusters.  There is a region of black in 
the center of the visualization that indicates items belonging 
to all three clusters.  Relating the PCA dimensions to the 
original data, the green cluster and red cluster indicate 
mostly white wines and the green cluster indicates higher 
quality wines.  There is some overlap for “mid quality” 
wines.  The blue cluster indicates mostly red wines.  

V. CONCLUSIONS AND FUTURE WORK 
Overlapping or additive clustering is an unsupervised 

data analysis technique that has been used extensively to 
examine data structure in the psychometric/psychological 
fields.  However, to fit an additive clustering model requires 
the solution of an NP Hard optimization problem.  Memory 
and processing requirements for existing algorithms 
increase rapidly with problem size.  Thus, additive 

 
Fig. 5.  Results of Scheffe test 
  

 
Fig. 6.  3 cluster wine data solution visualization 
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clustering has found limited applications for large scale data 
analysis.  In this paper we have described a framework and 
algorithm for scaling up additive clustering by using 
supervised multi-learning techniques to help “boost” 
solutions gained from unsupervised solutions calculated on 
subsets of the data.  We devise a set of experiments on a 
range of data sets taken from the data mining literature.  We 
show that our algorithm gives good solutions, with very 
little loss in VAF.  In particular, using the ML-kNN 
algorithm for multi-label learning [48] gives particularly 
good and consistent results. 

There is much scope for future work.  Additional multi-
label techniques could be tested, such as those summarized 
in [41,42].  The ML-kNN algorithm provides a flexible 
approach to multi-label learning.  Work could be done with 
the ML-kNN algorithm to optimize the algorithm for the 
task at hand.  Variants of weighted k-nearest neighbors 
algorithm could be used. 

Further work could be done on the evaluation and 
analysis of overlapping clustering solutions.  A measure of 
clustering reliability could be used to evaluate the stability 
of clustering solutions.  The Omega index [12] is an 
overlapping clustering formulation of the Rand index for 
measuring clustering solution reliability and could be used 
in this context.  The VAF measure does not account for the 
number of clusters. A pseudo-F test could be used to give a 
measure of fit adjusted for the number of clusters. Given 
certain parametric assumptions, the Bayesian information 
criterion could be used, as described in [30]. 

At a broader level, the use of additive clustering as an 
exploratory technique could be investigated with a wide 
range of data sets.  For example, additive clustering could 
be explored in conjunction with other unsupervised 
techniques, such as dimensionality reduction and canonical 
analysis.  Additive clustering could be used to help evaluate 
categorizations/labelings.  As discussed in [22], 
classifications and labeling can be built up over time by a 
range of actors.  For example, a set of multi-label movie 
categorizations may be based on stereotypes and on ad-hoc 
decisions.  The categorizations may not reflect patterns in 
movie watching and review data.  Additive clustering could 
be used to help explore labelings and evaluate labelings with 
respect to the underlying variance in the data. 
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