IX. Loop Quantum Gravity

The “new variables” are Yang-Mills (for an SU(2) or SO(3) gauge group).

Invented by Ashtekar in the early 1980’s.

Very technical (see Rovelli’s book, “Quantum Gravity”, for a relatively easy
introduction).

The Hamiltonian formalism is dominant (“ADM”).
It is largely a theory of constraint equations:
W ==

Gauss-law: V& =

Momentum: F4B” a O

Hamiltonian: H = 0O




The form of the Hamiltonian is NOT Maxwell-like:
L "
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The electric field is an “area operator”.
Quantization is somewhat unconventiohal (“Bohr quantization”).
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Spectrum of area operator is discrete (by construction).

The Hilbert-space basis states are not particle-like (Fock space), but rather based
on holonomies (Wilson lines).
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Spin networks




» Some obstacles to comprehension:
Hamiltonian-constraint mathematics.
(Almost) hosimple examples.
Emphasis on the Planck scale and quantization.

Classical limit often is obscure and implicit (but need not be, in
my opinion).

Practitioners are strong mathematical physicists, but not as
conversant with phenomenology per se. (It is a bit like string theory,
but with a distinctly different cultural tradition:)

- Dynamics (“spin-foam” theory) not as well developed.




Bojowald Cosmology
Loop gravity applied to FRW cosmology.

It is pretty simple:
Isotropy and homogeneity removes indices.

Spin connection is trivial (space is flat)

Only the global coordinates are retained (universe-in a box
again).

Discreteness of the area operator leads to difference equations.

Big bang singularity at t = 0 can be finessed; “bounce” solutions
exist.

Classical limit can be described.




* Qur goals:

Describe LQG cosmology in the classical limit.

Generalize the comoving box description to black
hole geometries via the Swiss cheese construction.

Identify LQG variables for the black hole geometry.

* Simplifying features for the LQG cosmology:
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e All indices disappear.




Some nuances:
E is smeared overanarea ¢ = ft”o@’
A is smeared along an arc: - g fA (1/[

The commutator of the smeared operators is [, f P“”‘IL""Q
e@A(t]:{ -
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The covariant derivative usually is written
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The definition of A contains an extra term
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K is “extrinsic curvature”, part of the ADM Hamiltonian-formalism.
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Summary

For PG metrics the extrinsic curvature is proportional to the gauge
potential A and plays a central role.

For the Schwarzschild black hole, E is huge, A is order unity near the
horizon, and B is small except near the singularity.

fads ~ VK (g
(gdr - YK (@)
fEJ-f i M}i x(ﬂrea)
For FRW cosmology, A, B, and E are isotropic. A andK are identified with
the Hubble parameter H(t).
The Hamiltonian has the structure (schematically)
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- Also—

e A-E,B/E, and A-B = A A A are interesting.
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B K
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e The determinant of K (or A) vanlshes when ‘the deceleration parameter
vanishes.
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X. First-Order Gravity: Cosmology

* Preliminaries: “stupid Lagrangians”

e Introduction to the first-order formalism:

Cartan Sciama
Palatini Kibble
Ashtekar Heyl
Holst Shapiro
Macdowell and Mansouri

Plebanski

Freidel and Starodubtsev
e Reuvisits of FRW, LQG, PG
e Spinors and their role in the story

Immirzi parameter
Torsion




Stupid Lagrangians

e Definition: so simple that they are hard
e Supposel=-U(q)
Solution g = constant, at point where U is minimized or maximized.
* Suppose U(q) =q
Equation of motionis0=-1
e Whattodo?
1) abandon action principle
2) add a small perturbation
3) compactify the coordinate

None are especially satisfying choices.

e Suppose o
L= ¢-%

Equation of motionis still 0 =-1




A semistupid Lagrangian

This one is closer to what we encounter:

L= Qg«UC@)g)

Equations of motion:

= -
Identify Q with p and U with H. Then the structure is the same as Hamilton’s
equations.

Upon quantization, we would expect g and Q to commute. Should they?

The answer is NO. Just follow the identification as above.
The reasoning is lengthy, however.

One needs the Dirac theory of quantization in presence of first and second
class constraints.

See Wikipedia entry “Dirac Bracket” for a good exposition, including an
example.
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A generalization

If the number of q’s equals the number of Q’s, the previous example generalizes.

L@, 4)= & @ % — U@, %)

If there are more Qs than q’s, thmgs are still manageable:

VoV 2N | oY
L ‘"g g — U(@b % Q)
Note: this is pretty general; canonical transformations can be invoked to get many
candidate Lagrangians into this form.

Again identify momenta and Hamiltonian before:
e'L":: ’QV{ U = H
Equations of motion:

But some constraint equations might be stupid.
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The Palatini / Holst Action

The tetrad
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The connection
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The Riemann Curvature Tensor

E;j i Druj;a—’ng:e* @l)wD]AB Q, - O(u) + L()/\w

The internal-symmetry group is SO(3,1)
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The Palatini Action

2 5.5 2 o
S- g (£ &l Hee]”

- e[ e
- fR (s ey [ Reg -Wey 8:—} I e

* Vary with respect to e and w:
Se - 2 & H”@Ag) = O Eindan ﬂ«s'v\S
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e Solutions (the path back to the metric formalism):

il ‘
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° {H = constant = de Sitter Hubble expansion rate: I

1= ,L\-
H >




The Holst Term

S=-M

9
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e (We also added the cosmological term)
* The parametery is the Barbero-Immirzi parameter. It is a coupling constant!!
* The Holst term violates CP (one less Levi-Civita symbol than the Palatini term.)

e Effective field theory suggests that the Holst term should be present, if only via
radiative-correction effects.

e We will find that the Holst term does not affect the metric-gravity equations of
motion.

e References: gr-qc/9511026; hep-th/0507253




FRW Cosmology

e The tetrad and connection, assumi
iIsotropy, are:

ng homogeneity and
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* Nisthe “lapse” variable in ADM formalism.
e C(t)is a form of torsion, called “contorsion”.




The Curvature Tensor

e Computation of R involves some index hell, not exhibited here:
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e A warm-up: Omit the Holst term andset C = 0.

e The Palatini Lagrangian is (after more index hell):
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c2p - B o U= Bk~ L = 20 1a]

Equations of motion:

|dentify canonical momentum and pass to Hamiltonian (call it U):

Note that the Hamiltonian constraint U = O is satisfied, via varying
N, the lapse.

Vary N: a K — a3 HL = O - RW Emergg
Vary K: 2NaK — zad = O Covne it Yo
Vary a: NK*+ 24K — 3H'N@ =0  FRW Presure




FRW Including the Holst Term

The Lagrangian (after more index hell):

E%; = Na(k=c)+ Ak -H'Nad + $ [2Nake + gy
Onlyp‘one combination of K and C carries a time derivative:

A<K+ &

A and E (same as before) are conjugate variables. Eliminate K in the
action:

v T D, 2
Tr - NaA + aA-HN& —~ T35~ NaC
33U Y

Only one new equation of motion:

Vary C: Z(J:i-’-») Sal = ()
Y*

Ifx =t i, special things happen. But we assume y is real.




XIl. The MacDowell-Mansouri
Extension

Purpose:

Synthesize Palatini/ Holst / cosmological terms in the
action into a single structure.

Synthesize the connection w and the tetrad e into a grand
SO(4,1) connection A (Sorry, this is NOT the same as the A’s
in previous chapters).

The theory becomes even more like Yang-Mills—a theory
of the connection A only. (MacDowell-Mansouri; Freidel-
Starodubtsev)




The grand connection A:

Schematically,
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Dirac gamma-matrices Y5 and ’);4 peacefully coexist with O(4,1):

Nte: Ye=-1 =41 ¥ =%=-|

Contract the connection into gamma matrices:

A= 3t
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Field strengths in this notation:
O(lé/) F/w ’—"9/4»“}/4 : [A AW
0G0 Ry =0y -9ty + [6,0]

The MacDowell- Mansourl actlon
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Generalization to include CP violation is simple:

Then

e & -o¥F :@séa—?/y%,a}F

g = cgd&ﬂ?@,\&




e When one expands out this action, one finds six terms.

oL = C[lc@g;we {f et Wleyt w"‘xcc +{(a&‘é ‘SEM’LGXXP* ;J.k,’”)&mlﬁh’a XH}_I

e Three are familiar:

Einstein-Hilbert SQH oL T‘»YSQAQAQ

Holst jH £ Ty eAeAﬁ
Cosmological constant Kc e TY?g_Q,\e,\zQAQ

e Three are topological (total derivatives):
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e Note: topological terms do not affect equations of motion:'“ T 4
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Look at simple FRW form and display A and F in matrix
form:

Except for N, each nonvanishing entry is a multiple of a
3 X 3 unit matrix.

In Dirac-matrix form,
Bt = M(a -3, +(K-m )Y + C XY,
Fp <(amaC )iy, + QKO + Gl —K g

The remaining algebra is now rather straightforward:
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e Therremaining terms are CP odd:
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e The Pontryagin term is similar to the GB term:

. (L
Zp =2kkc+Kc -CC=5 c+c1<z>

e The Holst term is
% = 2Nack +&¢

e The Nieh-Yan term is a total time derivative:

Ky =& ¢ ~24C = - %t (dt)




Determining the coefficients

{=C sint L g + m”‘oZ”Eﬂ + m“afcc] +2Cim’sin B,

+l\\

* The ratio of the CC to the EH term determines m. It is
precisely H, the deSitter Hubble-expansion rate:

C iy 26 W™~ Mpt ; Ll A ’
Csinapm? ~mpy N =M & |
e The ratio of the Holst term to the Einstein-Hilbert term

determines @ as a function of the Barbero-Immirzi
parameter)’:
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e The overallnormalization is now determined
by the absolute normalization of the EH term:
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Comments

We reach the same conclusion regarding the overall normalization,
even if CP violating terms are excised from the beginning.

There are nontrivial solutions of the equation F = 0. They
correspond to pure deSitter space.

When applied to FRW cosmology, this implies that the wave
function of an expanding, dark-energy-driven comoving box has no
semiclassical phase.

The above statement is in conflict with the calculations done in

Chapter IV, which give a phase which is plﬁ)ortuonal to volume in-
QCD units. - -

The resolution of this conflict lies in the presence of the GB term in
the action, which generates a compensating phase.




Review of the metric gravity situation (Chapter V):

For a deSitter box, the phase accumulation is proportional to the
exponentially increasing volume:

S ot (HMVE) ~ Mgy V)

What to do? Include the Gauss-Bonnet term. in
metric gravity language, it is

| - i
K % f 443 ij R é“/*“ 2

For FRW cosmology, evaluation is easy:
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The Gauss-Bonnet action is again proportional to the exponentially
increasing volume:

3
Xeg ~ H V&)
But the natural size of the term as we have defined it is too small.

A cancellation can be arranged provided the coefficient in front of the
Gauss-Bonnet term is of order 107120.

The Gauss-Bonnet factor is what is called in LQG “the Kodama wave
function.”

In this interpretation, this is not the wave function of the universe, as
sometimes stated in LQG. But there has to be a connection somehow.

Is there an “inaction principle” that states that deSitter space does not
evolve quantum-mechanically?




One Final Comment

e The MacDowell-Mansouri extension suggests in a very
natural way further extensions:

1) Expand the internal gauge group beyond O(4,1) in
order to incorporate standard-model internal
symmetries.

2) Increase the number of spacetime dimensions,
keeping a similar structure for the action, again with an
eye to incorporating standard model internal
symmetries.

Relatively little has been done so far in these directions.




XIll. Conclusions
The real conclusion is no conclusion.
The dark energy problem is out there to be solved.

| look for a synthesis of some of the ideas scattered
through these notes.

The topological terms in the action perhaps should be
not ignored—it does not take much to put some
dynamics in them.




Regrettable Omissions

Phenomenology of inflation.
Bounce cosmologies.

Effects of space curvature.
Rotating black holes.
Gravitational optics.

More on spinors




Thanks for looking at all this!!

Comments and criticisms are most welcome.

Contact me at

bjorken@slac.stanford.edu
bjorken@silverstar.com

Thanks again!




