Math 3331
 Ordinary Differential Equations Sample Test 3

1. A spring is stretched 20 cm by a $4-\mathrm{kg}$ mass. The weight is pulled down an additional 1 m and released with an upward velocity of $4 \mathrm{~m} / \mathrm{s}$. Find the position of the mass at and time t.
2. A spring with a mass of 2 kg has damping constant 14 , and a force of 6 N is required to keep the spring stretched 0.5 m beyond its natural length. The spring is stretched 1 m beyond its natural length and then released with zero velocity. Find the position of the mass at any time t.
3. Solve the following systems
(i) $\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right) \bar{x}$
(ii) $\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right) \bar{x}$,
(iii) $\frac{d \bar{x}}{d t}=\left(\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right) \bar{x}$,
(iv) $\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}5 & -4 \\ 1 & 1\end{array}\right) \bar{x}$,
(v) $\frac{d \bar{x}}{d t}=\left(\begin{array}{cc}6 & -1 \\ 5 & 4\end{array}\right) \bar{x}$,
(vi) $\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}7 & -5 \\ 10 & -3\end{array}\right) \bar{x}$.
