Derivatives and Differentials

1 Derivatives

1.1 Ordinary Derivatives

In Calculus 1 we introduced the derivative. If $y=f(x)$ then we defined the derivative as

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{1}
\end{equation*}
$$

The process can be long but we also introduced rules which enabled us to calculate these derivative much faster. So, for example, if

$$
\begin{equation*}
y=\frac{x}{x^{2}+1} \tag{2}
\end{equation*}
$$

then by the quotient rule we have

$$
\begin{equation*}
y^{\prime}=\frac{1 \cdot\left(x^{2}+1\right)-x \cdot 2 x}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \tag{3}
\end{equation*}
$$

The process of going from the derivative (3) back to the original function (2) we use integration.

Example 2 Consider the following implicit function

$$
\begin{equation*}
x^{2}+3 x y-y^{4}=3 x+2 y-2 \tag{4}
\end{equation*}
$$

By implicit differentiation we have

$$
2 x+3\left(1 \cdot y+x \cdot y^{\prime}\right)-4 y^{3} y^{\prime}=3+2 y^{\prime}
$$

and solving for y^{\prime} gives

$$
\begin{equation*}
y^{\prime}=-\frac{2 x+3 y-3}{3 x-4 y^{3}-2} \tag{5}
\end{equation*}
$$

Note: Equation (5) is a first order ODE. Equation (4) is a solution of this ODE. Could we solve (5) giving (4)?

1.2 Partial Derivatives

In Calculus 3 we consider functions of more than one variable and, in particular, functions like $z=f(x, y)$. We ask, can we take derivatives of these. We introduced two derivatives, an x derivative and a y derivative defined by

$$
\begin{align*}
& \frac{\partial z}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& \frac{\partial z}{\partial y}=\lim _{k \rightarrow 0} \frac{f(x, y+k)-f(x, y)}{k} \tag{6}
\end{align*}
$$

In each, we only vary one variable holding the other fixed (treated as a constant) so we can use the rules from calculus 1. The following examples illustrate.

Example 3 Consider

$$
\begin{equation*}
z=x^{3} y^{2} \tag{7}
\end{equation*}
$$

For the x derivative, we hold y fixed (we will replace y with a c for now), so

$$
\begin{equation*}
z=x^{3} c^{2} \tag{8}
\end{equation*}
$$

so

$$
\begin{equation*}
z_{x}=3 x^{2} c^{2}=3 x^{2} y^{2} \tag{9}
\end{equation*}
$$

Similar for the y derivative, we hold x fixed (we will replace x with a c for now), so

$$
\begin{equation*}
z=c^{3} y^{2} \tag{10}
\end{equation*}
$$

so

$$
\begin{equation*}
z_{y}=c^{3} 3 y=3 x^{3} y . \tag{11}
\end{equation*}
$$

The subscripts of x and y are notation for the x and y derivatives.
Example 4 Consider

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}+6 x y z=1 \tag{12}
\end{equation*}
$$

Here, z is defined implicitly and we need to use implicit differentiation. so

$$
\begin{equation*}
3 x^{2}+3 z^{2} z_{x}+6 y z+6 x y z_{x}=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
3 y^{2}+3 z^{2} z_{y}+6 x z+6 x y z_{y}=0 \tag{14}
\end{equation*}
$$

and solving for z_{x} and z_{y} gives

$$
\begin{equation*}
z_{x}=-\frac{x^{2}+2 y z}{z^{2}+2 x y}, \quad z_{y}=-\frac{y^{2}+2 x z}{z^{2}+2 x y} \tag{15}
\end{equation*}
$$

2 Differentials

If we consider approximating the change in y by moving a small amount in x, we can use the equation of the tangent. At the point (a, b), the equation of the tangent is

$$
\begin{equation*}
y-b=f^{\prime}(a)(x-a) \tag{16}
\end{equation*}
$$

Now if we let $x=a+d x$ and $y=b+d y$, we see from (16) that

$$
b+d y-b=f^{\prime}(a)(a+d x-a)
$$

or

$$
d y=f^{\prime}(a) d x
$$

a relation between the differential $d x$ and $d y$. We go further and define this relationship for general x as

$$
d y=f^{\prime}(x) d x
$$

which applies for all x. So, for example, if $y=x^{2}$ then

$$
d y=2 x d x
$$

If $y=x e^{x}$ then

$$
d y=\left(x e^{x}+e^{x}\right) d x
$$

Does this extend to $3-D$? Yes. We now follow the tangent plane. The tangent plane is given by

$$
\begin{equation*}
z-c=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \tag{17}
\end{equation*}
$$

Now if we let $x=a+d x, y=b+d y$ and $z=c+d z$ then from (17) we see that

$$
c+d z-c=f_{x}(a, b)(a+d x-a)+f_{y}(a, b)(b+d y-b) .
$$

or

$$
d z=f_{x}(a, b) d x+f_{y}(a, b) d y
$$

a relation between the differential $d x, d y$ and $d z$. We go further and define this relationship for general x and y as

$$
d z=f_{x} d x+f_{y} d y
$$

or

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

Example 7

If $z=x^{2} y^{5}$, find $d z$. Calculating the partial derivatives, we find that

$$
\frac{\partial z}{\partial x}=2 x y^{5} \quad \frac{\partial z}{\partial y}=5 x^{2} y^{4}
$$

so the differential $d z$ is

$$
d z=2 x y^{5} d x+5 x^{2} y^{4} d y
$$

Example 8

If $z=e^{x y}+x \sin y$, find $d z$. Calculating the partial derivatives, we find that

$$
\frac{\partial z}{\partial x}=y e^{x y}+\sin y \quad \frac{\partial z}{\partial y}=x e^{x y}+x \cos y
$$

so the differential $d z$ is

$$
d z=\left(y e^{x y}+\sin y\right) d x+\left(x e^{x y}+x \cos y\right) d y
$$

3 Exact ODEs

Consider the following. Suppose we have

$$
\begin{equation*}
x^{2}-y-x y^{3}=c \tag{18}
\end{equation*}
$$

where c is some constant. If we set

$$
\begin{equation*}
z=x^{2}-y-x y^{3} \tag{19}
\end{equation*}
$$

then the differential $d z$ is

$$
\begin{equation*}
d z=\left(2 x-y^{3}\right) d x+\left(-1-3 x y^{2}\right) d y \tag{20}
\end{equation*}
$$

Suppose we where told that

$$
\begin{equation*}
\left(2 x-y^{3}\right) d x+\left(-1-3 x y^{2}\right) d y=0 \tag{21}
\end{equation*}
$$

Then from (20) $d z=0$ giving that $z=c$ and since $z=x^{2}-y-x y^{3}$ from (19) then we recover (18)

This is the basic idea on how to solve exact ODEs.

