Derivatives and Differentials

1 Derivatives

1.1 Ordinary Derivatives

In Calculus 1 we introduced the derivative. If y = f(x) then we defined the derivative as
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The process can be long but we also introduced rules which enabled us to calculate these
derivative much faster. So, for example, if

X
x2+1

y= ()

then by the quotient rule we have
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The process of going from the derivative (3) back to the original function (2) we use inte-
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gration.

Example 2 Consider the following implicit function
x? +3xy — y* = 3x +2y — 2. 4)
By implicit differentiation we have
2x+3(1-y+x-y) -4’y =3+2y
and solving for v’ gives
) 2x+3y-3 5)
o Bx -4 -2
Note: Equation (5) is a first order ODE. Equation (4) is a solution of this ODE. Could we
solve (5) giving (4)?

1.2 Partial Derivatives

In Calculus 3 we consider functions of more than one variable and, in particular, functions
like z = f(x,y). We ask, can we take derivatives of these. We introduced two derivatives,

an x derivative and a y derivative defined by
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In each, we only vary one variable holding the other fixed (treated as a constant) so we
can use the rules from calculus 1. The following examples illustrate.
Example 3 Consider
z =y (7)

For the x derivative, we hold y fixed (we will replace y with a c for now), so
z = x3c? (8)
SO
zy = 3x2c% = 3x%y? )
Similar for the y derivative, we hold x fixed (we will replace x with a c for now), so
z =y (10)

SO
zy = 3y = 3x3y. (11)

The subscripts of x and y are notation for the x and y derivatives.
Example 4 Consider
By 224 6ayz =1 (12)

Here, z is defined implicitly and we need to use implicit differentiation. so
3x% + 322y + 6yz + 6xyzy = 0 (13)

and

3y + 3222y + 6xz + 6xyzy =0 (14)

and solving for z, and z, gives

Zy =

x% + 2yz Y2 + 2xz
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24 2xy Y z2 + 2xy (15)
2 Differentials

If we consider approximating the change in y by moving a small amount in x, we can use

the equation of the tangent. At the point (g, b), the equation of the tangent is

y—b=f(a)(x—a). (16)



Now if we let x = a + dx and y = b 4 dy, we see from (16) that
b+dy—b=f'(a)(a+dx—a),

or

dy = f'(a)dx,
a relation between the differential dx and dy. We go further and define this relationship
for general x as

dy = f'(x)dx

which applies for all x. So, for example, if y = x? then
dy = 2xdx

If y = xe* then
dy = (xe* +¢e*)dx
Does this extend to 3 — D? Yes. We now follow the tangent plane. The tangent plane
is given by
z—c= fx(a,b)(x —a)+ fy(a,b)(y = b). (17)

Now if we let x = a +dx, y = b+ dy and z = ¢ + dz then from (17) we see that
c+dz—c= fx(ab)(a+dx —a)+ f,(a,b)(b+dy —b).

or

dz = fx(a,b)dx + fy(a,b)dy,

arelation between the differential dx, dy and dz. We go further and define this relationship
for general x and y as
dz = frdx + f,dy,

or

0z 0z
dz = I dx + 3y dy.
Example 7

If z = x?y°, find dz. Calculating the partial derivatives, we find that

0z 5 0Z  _ 54
ax—2xy ay—5xy

so the differential dz is

dz = 2xy° dx + 5x%y* dy.



Example 8

If z = e 4 xsiny, find dz. Calculating the partial derivatives, we find that

0z N , 0z

—— = Y —— = xeYV

I ye'’ 4+ sy 3y xe’’ 4+ xcosy
so the differential dz is

dz = (ye'¥ +siny) dx + (xe'V + xcosy) dy.

3 Exact ODEs

Consider the following. Suppose we have

X —y—xy=c (18)
where c is some constant. If we set
z=x*—y—xy’ (19)
then the differential dz is
dz = (2x — y°)dx + (—1 — 3xy?)dy. (20)
Suppose we where told that
(2x —y*)dx + (=1 — 3xy?)dy = 0. (21)

Then from (20) dz = 0 giving that z = ¢ and since z = x> — y — xy° from (19) then we
recover (18)

This is the basic idea on how to solve exact ODEs.



