
Derivatives and Differentials

1 Derivatives

1.1 Ordinary Derivatives

In Calculus 1 we introduced the derivative. If y = f (x) then we defined the derivative as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

. (1)

The process can be long but we also introduced rules which enabled us to calculate these

derivative much faster. So, for example, if

y =
x

x2 + 1
(2)

then by the quotient rule we have

y′ =
1 · (x2 + 1)− x · 2x

(x2 + 1)2 =
1 − x2

(x2 + 1)2 (3)

The process of going from the derivative (3) back to the original function (2) we use inte-

gration.

Example 2 Consider the following implicit function

x2 + 3xy − y4 = 3x + 2y − 2. (4)

By implicit differentiation we have

2x + 3(1 · y + x · y′)− 4y3y′ = 3 + 2y′

and solving for y′ gives

y′ = − 2x + 3y − 3
3x − 4y3 − 2

. (5)

Note: Equation (5) is a first order ODE. Equation (4) is a solution of this ODE. Could we

solve (5) giving (4)?

1.2 Partial Derivatives

In Calculus 3 we consider functions of more than one variable and, in particular, functions

like z = f (x, y). We ask, can we take derivatives of these. We introduced two derivatives,

an x derivative and a y derivative defined by

∂z
∂x

= lim
h→0

f (x + h, y)− f (x, y)
h

,

∂z
∂y

= lim
k→0

f (x, y + k)− f (x, y)
k

.
(6)
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In each, we only vary one variable holding the other fixed (treated as a constant) so we

can use the rules from calculus 1. The following examples illustrate.

Example 3 Consider

z = x3y2 (7)

For the x derivative, we hold y fixed (we will replace y with a c for now), so

z = x3c2 (8)

so

zx = 3x2c2 = 3x2y2 (9)

Similar for the y derivative, we hold x fixed (we will replace x with a c for now), so

z = c3y2 (10)

so

zy = c33y = 3x3y. (11)

The subscripts of x and y are notation for the x and y derivatives.

Example 4 Consider

x3 + y3 + z3 + 6xyz = 1. (12)

Here, z is defined implicitly and we need to use implicit differentiation. so

3x2 + 3z2zx + 6yz + 6xyzx = 0 (13)

and

3y2 + 3z2zy + 6xz + 6xyzy = 0 (14)

and solving for zx and zy gives

zx = −x2 + 2yz
z2 + 2xy

, zy = −y2 + 2xz
z2 + 2xy

. (15)

2 Differentials

If we consider approximating the change in y by moving a small amount in x, we can use

the equation of the tangent. At the point (a, b), the equation of the tangent is

y − b = f ′(a)(x − a). (16)
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Now if we let x = a + dx and y = b + dy, we see from (16) that

b + dy − b = f ′(a)(a + dx − a),

or

dy = f ′(a)dx,

a relation between the differential dx and dy. We go further and define this relationship

for general x as

dy = f ′(x)dx

which applies for all x. So, for example, if y = x2 then

dy = 2x dx

If y = xex then

dy = (xex + ex) dx

Does this extend to 3 − D? Yes. We now follow the tangent plane. The tangent plane

is given by

z − c = fx(a, b)(x − a) + fy(a, b)(y − b). (17)

Now if we let x = a + dx, y = b + dy and z = c + dz then from (17) we see that

c + dz − c = fx(a, b)(a + dx − a) + fy(a, b)(b + dy − b).

or

dz = fx(a, b) dx + fy(a, b) dy,

a relation between the differential dx, dy and dz. We go further and define this relationship

for general x and y as

dz = fx dx + fy dy,

or

dz =
∂z
∂x

dx +
∂z
∂y

dy.

Example 7

If z = x2y5, find dz. Calculating the partial derivatives, we find that

∂z
∂x

= 2xy5 ∂z
∂y

= 5x2y4

so the differential dz is

dz = 2xy5 dx + 5x2y4 dy.
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Example 8

If z = exy + x sin y, find dz. Calculating the partial derivatives, we find that

∂z
∂x

= yexy + sin y
∂z
∂y

= xexy + x cos y

so the differential dz is

dz = (yexy + sin y) dx + (xexy + x cos y) dy.

3 Exact ODEs

Consider the following. Suppose we have

x2 − y − xy3 = c (18)

where c is some constant. If we set

z = x2 − y − xy3 (19)

then the differential dz is

dz = (2x − y3)dx + (−1 − 3xy2)dy. (20)

Suppose we where told that

(2x − y3)dx + (−1 − 3xy2)dy = 0. (21)

Then from (20) dz = 0 giving that z = c and since z = x2 − y − xy3 from (19) then we

recover (18)

This is the basic idea on how to solve exact ODEs.
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