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A B S T R A C T

Cancer treatments in veterinary medicine continue to evolve beyond the established standard thera-
pies of surgery, chemotherapy and radiation therapy. New technologies in cancer therapy include a targeted
mechanism to open the cell membrane based on electroporation, driving therapeutic agents, such as che-
motherapy (electro-chemotherapy), for local control of cancer, or delivery of gene-based products (electro-
gene therapy), directly into the cancer cell to achieve systemic control. This review examines
electrochemotherapy and electro-gene therapy in veterinary medicine and considers future directions
and applications.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

The therapeutic armamentarium available for the control of solid
neoplasms relies on the well-established applications of surgery,
radiotherapy and chemotherapy to control both local and system-
ic disease. Our understanding of the role of the immune response
against cancer is expanding and opening new horizons for inter-
vention into the malignant process (Galon et al., 2006; O’Brien et al.,
2014).

Local application of electroporation to tumours enhances the ab-
sorption of specific chemotherapeutic drugs, the most commonly
used of which are cisplatin and bleomycin. This ‘reversible’
electroporation procedure, where the cell membrane recovers,
induces a strong tumour immune response (Gothelf et al., 2003;
Fridman et al., 2013; Gerlini et al., 2013). The chemotherapeutic agent
is delivered at a single low dose on the day of treatment, greatly
reducing the side effects associated with standard intravenous che-
motherapy, where dose frequency and dose intensity are maximised
for cell death. In contrast, the surrounding healthy tissue struc-
tures are preserved after electroporation. Electroporation can be
conducted in seconds to minutes and, together with a preparation
and observation period of several hours, the overall process can be
completed as an outpatient procedure in most cases (Marty et al.,
2006; Mir et al., 2006; Whelan et al., 2006).

In ‘irreversible’ electroporation, no chemotherapy is applied, but
more energy is delivered, rendering the tumour cell membrane
unable to recover, inducing localised cell death (Bower et al., 2011;

Charpentier, 2012; Cannon et al., 2013). Electroporation also can be
used to introduce genetic material into cells; in this process, the
innate charge on the DNA molecule brings it into contact with
the cell membrane and the electrophoretic pulse induces entry into
the cell (Mir et al., 1999; Gothelf and Gehl, 2012). These applica-
tions of electroporation have been studied over the last 20 years
in human and, more recently, veterinary clinical trials. Promising
data have been published on this technology, which is the subject
of this review.

Electroporation to enable targeted drug absorption

Mechanism of electroporation

The cell membrane acts as a physical barrier to prevent the influx
of hydrophilic drugs, macromolecules and peptides. The applica-
tion of an electric field has been used to overcome this barrier by
allowing the cells to become ‘permeable’ to these molecules, which
normally would not be able to cross the plasma membrane. This
phenomenon is referred to as electroporation (Fig. 1).

One of themost commonly accepted theories to explain this phe-
nomenon is that electroporation results in the formation of
hydrophilic pores due to the rearrangement of lipidmolecules, which
have hydrophilic tails embedded within the cell membrane (Mir
et al., 1991, 2003; Mir and Orlowski, 1999; Mir, 2001). These pores
are responsible for the transport of molecules across the cell
membrane.

Electroporation is achieved once the applied voltage is greater
than the threshold voltage for the cell, which ranges from 0.2 V to
1 V. Square wave pulses offer the advantage of independently con-
trolling the pulse amplitude and pulse length; the optimised pulse
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parameters for electroporation consist of eight square waves of
100 μs duration at a frequency of 1 Hz (Pucihar et al., 2002; Mir et al.,
2006).

Pulses are usually delivered using plate or needle electrodes. Plate
electrodes are non-invasive and their use is usually limited to the
treatment of cutaneous lesions. Needle electrodes have the advan-
tage of penetrating the lesion, thereby decrseasing the impedance
caused by the skin. The electric field facilitates the delivery of drugs
into cells without the intention to kill the cells directly (Soden et al.,
2004; Miklavcic et al., 2012).

Cell recovery

Electroporation is a transient process that allows the cell mem-
brane to become ‘electroporous’ and then return to a normal state.
Membrane resealing in vitro usually occurs in minutes and depends
on the electrical parameters used; 63% of membrane resealing in
mouse muscle in vivo occurred within 9 min of application of the
electrophoretic pulse (Mir and Orlowski, 1999; Mir, 2001).

Electrochemotherapy

Electrochemotherapy (ECT) is the local potentiation, by means
of permeabilising electric pulses, of the anti-tumour activity of a
non-permeant (or a low permeant) anticancer drug possessing a
high intrinsic cytotoxicity. It is essentially a therapeutic approach
that increases the internalisation of non-permeant or poorly
permeant molecules into the cytosols of the target cells. When
the principle of electroporation is combined with certain chemo-
therapeutic drugs, the cytotoxicity of these drugs is increased by

several-fold, leading to improved and dramatic responses in the
treated tumours.

‘Vascular lock’ phenomenon

Electroporation induces vascular changes in the region
being treated, with a transient decrease in blood flow. The most
accepted theory explaining these vascular changes is reflex vaso-
constriction of afferent arterioles mediated by the sympathetic
nervous system. This hypoperfusion state can be transient in normal
tissues, but can last from 12 h when using electroporation only to
5 days when ECT is used (Gothelf et al., 2003; Gehl and Geertsen,
2006).

The vascular changes can be advantageous; if the drug is already
present at the time of electroporation, the induced vasoconstric-
tion ‘traps’ the drug in the treated area, creating a so-called ‘vascular
lock’ and maintaining a high local concentration, since there is a
delay in the dispersal of the drug by the local vasculature. The ‘vas-
cular lock’ also has another practical advantage in that it decreases
and interrupts local bleeding at the treatment site.

Drugs and mechanism of action

Drugs suitable for electrochemotherapy

Ideal molecules for ECT use are those which are lipophilic, non-
permeant or poorly permeant and have a high intrinsic toxicity (Mir
and Orlowski, 2000). To date, the two most effective candidates are
bleomycin and cisplatin. Bleomycin is a non-permeant molecule,
which cannot diffuse across the cell membrane because of its size

Fig. 1. Electroporation sequence. In the resting state (A) the therapeutic agent (drug or DNA) is present around the interstitial spaces between the cells, but has poor access
across the cell membrane. The application of a square wave electrical pulse (B) delivered directly to the tissue causes the cell membrane to become porous allowing for the
influx by passive diffusion of larger macromolecules (C and D). DNA enters via an endocytotic type mechanism where the charged DNA comes into contact with the cell
wall after the electric pulse.
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and physical and chemical properties. Under normal circum-
stances, internalisation of bleomycin requires binding to a
transmembrane protein; this ‘mechanism of entry’ is limited by
the number of proteins involved and by the speed at which
these proteins can withdraw from the cell membrane. Following
electroporation, there is almost free diffusion of bleomycin into the
cells for as long as the cells remain permeable (up to 60 min). The
cytotoxic effect of bleomycin can be increased by up to 700-foldwhen
used in ECT (Mir and Orlowski, 1999; Mir, 2001).

Cisplatin and other platinum based agents are important che-
motherapeutic agents (Dasari and Tchounwou, 2014). These platinum
complexes react in vivo, binding to and causing cross-linking of DNA,
which leads to apoptosis. Cisplatin complexes appear to be poorly
permeant, but the mechanisms of internalisation are not yet fully
understood. In vitro, electroporation can increase the toxicity of
cisplatin up to eight-fold. This increase in cytotoxicity results di-
rectly from increased cisplatin uptake. While this increase in toxicity
of cisplatin seems modest compared to the 700-fold increase seen
with bleomycin, it is important to note that cisplatin delivered as
a single agent is active against several types of tumours, while
bleomycin, without electroporation, is an inefficient drug (Mir et al.,
2003; Moller et al., 2009).

Human clinical applications

Substantial amounts of clinical data have published on the
application of electroporation in human beings. The European
Standard Operating Procedures for Electro-Chemotherapy (ESOPE),
a prospective, non-randomised, multi-institutional study, set the
benchmark for protocols governing clinical electroporation; it dem-
onstrated a successful treatment response regardless of (1) tumour
histology; (2) drug utilised (cisplatin or bleomycin); (3) route of ad-
ministration (intratumoral versus intravenous administration); or
(4) type of electrode employed (needle or plate) (Belehradek et al.,
1993;Marty et al., 2006;Miklavcic et al., 2006;Mir et al., 2006; Sersa,
2006; Snoj et al., 2006).

The ESOPE and other subsequent studies (Whelan et al., 2006;
Larkin et al., 2007; Matthiessen et al., 2012; Campana et al., 2013;
Caraco et al., 2013; Solari et al., 2014) achieved an objective re-
sponse rate of ~85% with a single treatment in tumours (melanoma,
head and neck cancer, squamous cell carcinoma, breast cancer skin
metastases, cutaneous Kaposi’s sarcoma) of 3 cm in diameter or
smaller. Larger tumours have less favourable outcomes, but the tech-
nology has compared favourably with other options for late stage

disease management (Marty et al., 2006; Whelan et al., 2006). Clin-
ically, the application of ECT has been focussed on the treatment
of cutaneous or semi-cutaneous tumours with palliative intent
(melanoma, head and neck cancer, squamous cell carcinoma, basal
cell carcinoma, breast cancer skin metastases, cutaneous Kaposi’s
sarcoma). Tumours from a variety of histological origins and ana-
tomical locations, including perineal sites, have responded
successfully to ECT, including tumour masses previously resistant
to chemotherapy or radiotherapy.

Minimally invasive procedures: Endoscopic electroporation

The technology available for delivery of ECT has to date been
reliant on macroelectrodes, limiting its application to surface
tumours. The ability to safely and efficiently deliver electroporation
minimally invasively to intra-abdominal, intra-thoracic or genito-
urinary tumours presents an exciting opportunity for the treatment
of surgical inoperable cases. ECT could also be applied to cancers
that are recalcitrant to radiation therapy, thus allowing a more tar-
geted tumoricidal therapy, with less collateral tissue injury.

The endoscopic vacuum electrode (EndoVe) device and ePORE
generator (Mirai Medical) were developed for endoscopic delivery
of electroporation and have the advantage of attaching to the end
of a conventional endoscope, thereby allowing both direct tumour
visualisation and targeting. The device has been used for endoluminal
delivery of electroporation to gastrointestinal cancers (Figs. 2,3). The
creation of a vacuum effect draws tissue into a chamber within
the EndoVe, thus bringing the tumour into contact with plate
electrodes contained with this chamber. The design and size of the
chamber can be altered according to the tumour size and location
to allow for optimum tumour accessibility and tumour/electrode
contact (Miklavcic et al., 2012). The EndoVE is currently undergo-
ing human clinical evaluation in a multicentre phase II study for
patients with inoperable colorectal and oesophageal cancer.

Veterinary experience with electrochemotherapy

Experience to date in veterinary species has taken place pri-
marily in Europe (Table 1). The paucity of generators available outside
Europe has, until recently, limited case accrual in North America.
Several studies support the veterinary use of ECT with tumour types
traditionally known to have limited or no treatment options, or re-
sponses with standard therapy of less than 10% (Spugnini et al.,
2007b, 2007c, 2008a, 2008b; Tozon et al., 2014) (Fig. 4). In our

Fig. 2. Delivery of electroporation with the EndoVE device and ePORE generator (Mirai Medical). A standard endoscope is used to bring the device into contact with the
tumour. The use of vacuum brings tumour tissue into direct contact with the electrodes and facilitates chemotherapy drug perfusion around the cellular interstitial spaces.
The electrical field extends to tissue within the device chamber and underneath.
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experience, unresectable tumours or those in areas of anatomical
limitations are amenable to this treatment.

Canine studies

Mast cell tumours (MCTs) of the skin in dogs have been treated
successfully with ECT (Spugnini et al., 2011). A long term study (>2
years) with this modality by two of the authors support its use for
treatment of MCTs (Lowe et al., 2016). ECT has been beneficial against
MCTs in one study when combined with surgery (Spugnini et al.,
2011); even with recurrence and retreatment with ECT, survival
ranged from 6 to >28 months. Using a combination of surgery
and ECT, we have had success in the treatment of a canine peri-
anal gland adenoma, achieving a complete response after treatment
for >18months (Fig. 5; Spugnini et al., 2008a), and a canine sarcoma
(Spugnini et al., 2008b). Tumours with behaviour limited to local
recurrence are well suited to ECT and it is hoped that the use of
ECT in combination with immunotherapy may be a successful
approach to treatment. Experience has also been gained with en-
doscopic application of electroporation for the treatment of canine
colorectal tumours using the EndoVE device (Figs. 2,3; Forde et al.,
2016).

Feline studies

ECT has elicited favourable responses against cutaneous squa-
mous cell carcinoma in cats treated with bleomycin administrated
intravenously at least 8 min prior to the needle delivery of
electroporation pulses directly to the tumour tissue (Tozon et al.,
2014). One author (JAI) has personal experience with partial re-
sponses from feline oral and sublingual squamous cell carcinomas,
which are notoriously difficult to treat using conventional therapies.

Spugini et al. (2015) conducted a non-randomised prospective
study to evaluate the efficacy of bleomycin with electroporation
compared to bleomycin alone in the treatment of 21 feline cases
of periocular carcinoma, comprising 17 squamous cell carcinomas
(SCCs) and four anaplastic carcinomas, as well as to 26 cases with
advanced SCC of the head. In the periocular cohort, 12 were treated
with bleomycin and electroporation (ECT), with nine receiving
bleomycin alone. In the advanced SCC group, 14 received ECT, while
12 had bleomycin only. Of the 26 ECT treated cases, there were 21
complete responses and two partial responses, with the treat-
ment being well tolerated and having minimal reported toxicity. In
contrast, the bleomycin only group (21 cases) had four complete
responders and three partial responses.

Fig. 3. Canine colorectal adenocarcinoma pre- and post-treatment with EndoVE electroporation in combination with intravenous bleomycin. Complete resolution of disease
was achieved over 1 month using two treatments 15 days apart. No recurrent disease was detected in the 3 year follow up.

Table 1
Overview of veterinary studies using electrochemotherapy.

Species Drug Route a Cases (n) Type of tumour Stage Response Reference

Feline Bleomycin IT 58 Soft tissue sarcoma T2-4 Median time to recurrence 12–19 months Spugnini et al., 2007a
Canine Bleomycin IT 28 Mast cell tumour T1-3 82% complete response Spugnini et al., 2006
Canine Bleomycin IT 10 Mucosal melanoma T2-3 70% complete response Spugnini et al., 2006
Canine Bleomycin/Cisplatin IT 12 Perianal adenoma T1-2 65% complete response Tozon et al., 2014
Equine Cisplatin IT 83 Sarcoid T1-4 100% complete response Tamzali et al, 2012
Feline Bleomycin IV 12 Soft tissue sarcoma T1-2 Stable disease Mir et al., 1997
Feline Bleomycin IT 17 Squamous cell carcinoma T1-4 87% complete response Tozon et al., 2014

a Route of administration: IT, Intratumoral; IV, Intravenous.
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DNA vaccines

Tumour immunotherapy using DNA vaccines is achieved by the
intramuscular or intradermal injection of plasmid DNA encoding
a protein antigen of interest. DNA vaccines present a number of ad-
vantages: (1) goodmanufacturing practice (GMP) grade DNA is stable

and easy to produce; (2) absence of viral elements; and (3) DNA
vaccines can be administered repeatedly because they do not en-
gender specific anti-vector immunity and there are no pre-existing
antibodies against DNA (Aurisicchio et al., 2007; Peruzzi et al., 2010b).
However, there are limitations to efficient immunisation follow-
ing injection of plasmid DNA: (1) there is a low efficiency of entry

Fig. 4. Application of electroporation via needle electrode directly to a cutaneous tumour mass. First image is the treatment of a peritonsillar squamous cell carcinoma
with a finger electrode. This electrode provides excellent dexterity and is suited for access inside narrow cavities. The second image is of a feline sarcoma undergoing treat-
ment with the larger needle electrodes.

Fig. 5. Treatment images of a perianal adenoma pre- and post-electrochemotherapy. The initial volume was 6.5 cm × 4.5 cm, with a reduction in size to 1.8 cm × 1.5 cm 8
weeks post-procedure. Biopsy of the remaining mass confirmed fibrotic tissue.
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and nuclear localisation of plasmid DNA into living cells; and (2)
naked DNA injection does not result in a level of local inflamma-
tion that is sufficient for recruitment and activation of professional
antigen presenting cells and therefore this does not create the nec-
essary conditions for efficient priming of immune responses.
Although positive results can be obtained in laboratory animals, in
which proportionally high doses of DNA can be injected at high pres-
sures into small muscles, the limitations of this technology were
particularly evident when naked DNA vaccines were scaled up to
non-human primates and human beings, in which clinical trials failed
to show strong vaccine immunogenicity (Kennedy et al., 2008;
Trimble et al., 2009). The reason why DNA vaccines were unable to
induce potent and effective immune responses when scaled up has
not yet been fully clarified. (Wolff and Budker, 2005;Wooddell et al.,
2011). However, it is reasonable to speculate that the combina-
tion of inefficient cellular delivery of DNA plasmids, low levels of
antigen production and lack of stimulation of the innate immune
system are together accountable for the low potency of naked DNA
vaccines. Further optimisation is required, particularly for cancer
vaccines, in view of local and systemic impairment of immunity in
animals with cancer.

DNA electro-gene transfer: Mechanisms of action

In addition to the increased permeability of target cells, EGT may
enhance immune responses through increased protein expres-
sion, secretion of inflammatory chemokines and cytokines, and
recruitment of antigen presenting cells at the site of electroporation.
Antigen expression in muscle is usually enhanced 100–1000-fold
upon gene electroporation in comparison with naked DNA vac-
cines, mainly because of increased cellular uptake (Mathiesen, 1999;
Mir et al., 1999; Rizzuto et al., 2000). Furthermore, in vivo
electroporation causes transient and reversible cell damage, result-
ing in local inflammation and release of cytokines, which further
facilitate the induction of immune responses (Babiuk et al., 2004;
Liu et al., 2008). As a result, antigen-specific humoral and cellular
immune responses are increased by electroporation mediated de-
livery of plasmid DNA in comparison with levels achieved by
intramuscular injection of DNA alone (Aurisicchio and Ciliberto,
2012).

In vivo electro-gene transfer of plasmid DNA (DNA-EGT) has been
shown to be a safemethodology, resulting in greater DNA cell uptake,
enhanced protein expression and concomitant increases in longer
term immune responses against the target antigen compared to
naked DNA injection in a variety of species, including large animals
such as dogs, pigs cattle and non-human primates (Cappelletti et al.,
2003; Capone et al., 2006; Luckay et al., 2007; Reed and Li, 2009;
Fowler et al., 2012). The other organ used for electro gene transfer
is the skin; due to the presence of antigen presenting cells, the skin
is an immunocompetent site and an excellent target for vaccina-
tions. Another advantage of the skin is its easy accessibility and the
possibility to develop devices where the electrodes are minimally
invasive, do not penetrate skin and can operate at low voltage (Hirao
et al., 2008; Ansaldi et al., 2011).

Current veterinary cancer vaccines (Oncept)

An important breakthrough in the field of tumour vaccination
and in the treatment of canine melanoma was achieved with a DNA
vaccine encoding the human tyrosinase (TYR) gene (Oncept, Merial).
Currently, this is the only veterinary therapeutic tumour vaccine li-
censed by the United States Department of Agriculture (USDA) for
the treatment of oral melanoma. The licensing followed a success-
ful study that demonstrated prolonged survival compared to
historical control dogs (Bergman et al., 2006). Vaccination with a
plasmid encoding murine TYR generated similar results within

off-label use for canine digital melanoma (Manley et al., 2011). The
plasmid encoding the xenogenic TYR is administered by a trans-
dermal device and the protocol consists of four biweekly injections,
followed by booster doses every 6months (Grosenbaugh et al., 2011).
An antibody response against human TYR was present in 3/9 tested
dogs, two of which were also positive for antibodies against canine
TYR (Liao et al., 2006). A correlation between antibody response and
clinical response was observed. Recently, the efficacy of Oncept has
been questioned and therefore further prospective studies are nec-
essary (Ottnod et al., 2013).

Targeting dTERT: Demonstration of clinical efficacy in dogs by DNA
electro-gene therapy

We have recently focussed our studies on the sequential admin-
istration of plasmid DNA and an adenoviral vector in different
combinations, and have shown synergistic immune activation and
a higher degree of protection from tumour development. In pre-
clinical murine and primate models, we have shown that this
heterologous prime-boost regimen induces 10 to 100-fold higher
frequencies of T cells than naked DNA or recombinant viral vectors
alone (Aurisicchio and Ciliberto, 2012). A further advantage of het-
erologous prime/boost protocols comprising the sequential use of
adenoviral vector and plasmid DNA is that one can exploit the strong
immunogenicity of adenovirus as the best priming agent to break
tolerance, while DNA can be used for repeated boosting because of
the lack of anamnestic responses against the vector (Nasir et al.,
2001; Argyle and Nasir, 2003).

Telomerase reverse transcriptase (TERT) is an ideal target for
cancer immunotherapy and its activity has been reported in the ma-
jority (>90%) of canine tumours (Argyle and Nasir, 2003; Nasir, 2008).
We have shown that a genetic vaccine targeting dog telomerase
(dTERT) and based on adenoviral/DNA-EGT heterologous prime/
boost (two adenoviral vector injections and repeated DNA-EGT
boosts) can induce strong immune response and increase overall
survival of dogs with B cell malignant lymphoma when combined
with a cyclophosphamide, vincristine and prednisone (COP) che-
motherapy regimen (Peruzzi et al., 2010a, 2010b). dTERT-specific
cell mediated immune (CMI) responses were detected by ELISPOT
assay in almost all treated animals.

Other DNA electro-gene therapy based cancer vaccines

A new DNA vaccine expressing the TAA chondroitin sulphate
proteoglycan 4 (CSPG4) has been proposed for the treatment of dogs
with oral malignant melanoma (Riccardo et al., 2014). CSPG4 is an
early cell surface progression marker involved in tumour cell pro-
liferation, migration and invasion (Price et al., 2011). It is expressed
in ~80% of human melanomas (Campoli et al., 2010) and ~60% of
canine melanomas (Mayayo et al., 2011). The vaccine is a DNA
plasmid encoding the human CSPG4 sequence, administeredmonthly
through EGT. When tested in dogs with surgically resected stages
II–III CSPG4-positive oral melanomas, it extended the overall and
disease free survival times of vaccinated dogs compared to control
dogs. All vaccinated dogs developed antibodies against both human
and canine CSPG4, showing that xenogeneic vaccination was able
to overcome host unresponsiveness to the self-antigen (Riccardo
et al., 2014).

Conclusions

As with any new technology, it is important to understand both
its capability and limitations. Delivering a voltage for a millionth
of a second directly into tissue induces previously impervious cancer
cells to accept whichever ‘Trojan horse’ has been selected as the ther-
apeutic agent of choice. Local application of electroporation, in
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combination with certain chemotherapeutic agents, is an effective
tool for the control of some types of primary andmetastatic disease.
The treatment can be provided with curative intent or as an adju-
vant treatment to surgery. Although no comparative prospective
studies have been documented, the low toxicity andminimal damage
to surrounding healthy tissues due to the non-thermal nature of the
treatment is a significant advantage, along with the efficient de-
livery and reasonable cost of treatment.

The delivery of electroporation to veterinary patients requires
sedation and/or general anaesthesia, which removes the simplici-
ty and speed of treatment. The electrodes available are largely limited
to cutaneous tumours, with improved devices for intraluminal and
laparoscopic approaches under development. The next generation
of electroporation generators promise to overcome some of these
issues through the employment of more complex pulse waveforms.

The expansion of immunotherapy as the fourth arm of veteri-
nary therapeutics is an exciting approach. The most appropriate
endpoints in veterinary oncology are overall survival (OS), but also
a better quality of life. As observed in human clinical trials, the ‘build
up’ of an immune response leading to disease stabilisation and im-
proved survival requires evaluation of cell-mediated and antibody
responses, since target therapies are not expected to shrink tumours,
but inhibit metastasis and have an impact on the quality of life and
survival.
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