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1 Introduction

Society is replete with contexts in which (1) a person’s outcome depends on both individual

and group-level inputs, and (2) the group is endogenously chosen either by the individuals them-

selves or by administrators, partly based on the individual’s own inputs. Examples include health

outcomes and hospitals, earnings and workplace characteristics, and test scores and teacher value-

added.1 Generations of social scientists have studied whether group outcomes differ because the

groups in fluence individual outcomes or because the groups have succeeded or failed in attracting

the individuals who would have thrived regardless of the group chosen. In some cases, sources

of exogenous variation are available that may be used to assess the consequences of a particular

group treatment. However, assessment of the overall distribution of group treatments is much more

difficult, and researchers and governments frequently rely on non-experimental estimators of group

treatment effects (e.g. school report cards and teacher value-added).

In this paper we show that in certain circumstances the tactic of controlling for group averages of

observed individual-level characteristics, generally thought to control for “sorting on observables”

only, will absorb all of the between-group variation in both observable and unobservable individual

inputs. We then show how this insight can be used to estimate a lower bound on the variance in

the contributions of group-level treatments to individual outcomes. We also examine the conditions

under which causal effects of particular observed group characteristics can be estimated.

We apply our methodological insight and demonstrate its empirical value by addressing a classic

question in social science: How much does the school and surrounding community that we choose

for our children matter for their long run educational and labor market outcomes?2

To illustrate the sorting problem consider the following simplified production function relating

education outcomes to individuals’ characteristics and the inputs of the schools/neighborhoods they

choose. Let Ysi denote the outcome (e.g. attendance at a four-year college) of student i who attends

and lives near school s.3 Suppose that Ysi is determined according to4

Ysi = [Xiβ + xU
i ]+ [ZsΓ+ zU

s ] . (1)

1Ash et al. (2012) provide an overview of the issues involved in assessing hospitals. Doyle Jr et al. (2012) also discuss
the issues and provide a short literature survey. They are among a small set of studies that use a quasi-experimental
design to assess effects of particular hospital characteristics on outcomes. See Chetty et al. (2014) and Rothstein (2014)
for discussions and references related to the estimation of teacher value-added.

2See Duncan and Murnane (2011) for recent papers on school and neighborhood effects, with references to the lit-
erature, which we discuss in brief below. Meghir et al. (2011) discuss alternative approaches to estimating school fixed
effects and the effects of particular school inputs, and highlight the problem of endogenous selection of schools and
neighborhoods, among other econometric issues.

3Despite the growing popularity of open enrollment systems, most school choice is still mediated through choice
of community in which to live, and most students still choose schools close to home even when given the opportunity
to attend more distant schools. Thus, we aim instead to measure the importance of the combined school/neighborhood
choice.

4Later we will introduce additional components to the outcome model.
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The vector Xi is a set of student and family characteristics observed by the econometrician (with

corresponding productivities β ), while xU
i ≡ XU

i βU is a scalar index that combines the outcome

contributions of unobserved student and family characteristics XU
i . Together, [Xi,XU

i ] represent the

complete set of student and family characteristics that have a causal impact on student i’s educational

attainment. Analogously, the row vector Zs is a set of school and neighborhood characteristics

observed by the econometrician (with corresponding productivities Γ), while zU
s ≡ ZU

s ΓU is a scalar

index that combines the effects of unobserved school and neighborhood characteristics. Together,

[Zs,ZU
s ] capture the complete set of school and neighborhood level influences common to students

who live in s, so that the school/neighborhood treatment effect is given by [ZsΓ+ zU
s ].

Sorting leads the school average of XU
i , denoted XU

s , to vary across s. This contaminates esti-

mates of Γ and fixed effect estimates of the school treatment effect ZsΓ+ zU
s . While various studies

have included controls for group-level averages of individual observables (denoted Xs), the role

played by such controls in mitigating sorting bias has generally been underappreciated.

Our key insight follows directly from the parent’s school/neighborhood choice decision—average

values of student characteristics differ across schools only because students/families with different

characteristics value school or neighborhood amenities differently. This means that school-averages

of individual characteristics such as parental education, family income, and athletic ability will be

functions of the vector of amenity factors (denoted As) that parents consider when making their

school choices. Thus, the school averages Xs and XU
s will be different vector-valued functions of

the same common set of amenities: Xs = f (As) and XU
s = f U(As). The functions f and f U are

determined by the sorting equilibrium and reflect the equilibrium prices of the amenities. If the

dimension of the amenity space is smaller than the number of observed characteristics, then un-

der certain conditions one can invert this vector-valued function to express the amenities in terms of

school-averages of observed characteristics: As = f−1(Xs). But this implies that the vector of school

averages of unobserved characteristics can also be written as a function of observed characteristics:

XU
s = f U( f−1(Xs)). This function of Xs can serve as a control function for XU

s when estimating

group effects.

We formalize this intuition by introducing a multidimensional spatial equilibrium model of

neighborhod/school choice and providing conditions under which the mapping from Xs to XU
s is

exact. We provide further conditions (most notably an additively separable specification of utility)

under which this mapping from Xs to XU
s is linear. When these conditions are satisfied, including

Xs in a linear regression of the outcome Ysi fully controls for sorting on XU
s .

As we make precise in Proposition 1 below, Xi and XU
i need not affect preferences for all of the

amenities As. Partition XU
i into a subset XU

1i that is correlated Xi and a subset XU
2i that is not correlated

with Xs. Roughly speaking, the key requirement is that (1) Xi and/or XU
1i affect preferences for all

amenities that any elements of XU
2i shifts preferences for, and (2) that Xi has enough elements to

span this amenity space. The theoretical analysis assumes that group sizes are sufficiently large so

that random variation in group choice does not affect the group averages. It also assumes that the

number of groups is considerably larger than the number of amenity factors agents consider when
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evaluating each group.

To take a simple example, suppose that school/neighborhood combinations differ in only one

dimension that people observe and systematically care about—perceived school quality—plus a

random idiosyncratic component specific to each family/location combination.5 Suppose further

that two uncorrelated characteristics, parental education (observed) and student athleticism (un-

observed), both increase families’ willingness-to-pay for school quality, and that both affect the

outcome Yit (e.g. graduation from high school). In equilibrium the expected values of both par-

ent’s education and student athleticism will be increasing in perceived school quality, so that the

neighborhood average of parents’ education will be a perfect proxy for the neighborhood average

of student athleticism. Now suppose that the quality of athletic facilities also varies across neigh-

borhoods and that student athleticism influences willingness to pay for better athletic facilities but

parental education does not. Then variation in the quality of athletic facilities leads to between-

neighborhood variation in average athleticism that average parental education could not predict. In

this case we would need to control for the neighborhood average of another observable characteris-

tic (e.g. parental income) that either directly affects willingness to pay for athletic facility quality or

is correlated with student athleticism.

While the control function approach based on the group averages Xs potentially solves the

sorting-on-unobservables problem, Xs controls for too much. These observed group averages will

absorb peer effects that depend on Xs and XU
s . They will also absorb a part of the unobserved

school/neighborhood quality component that is both orthogonal to the observed school characteris-

tics and is correlated with the amenities that families consider when choosing where to live. As a

result, without further assumptions, our estimator will only place a lower bound on the variance of

the overall contribution of schools/neighborhoods to student outcomes.

The empirical part of the paper applies the control function approach in the school choice con-

text. Implementation requires rich data on student characteristics for large samples of students

from a large sample of schools, as well as longer-run outcomes for these students. We use four

different datasets that generally satisfy these conditions: three cohort-specific panel surveys (the

National Longitudinal Study of 1972 (NLS72), the National Educational Longitudinal Survey of

1988 (NELS88), and the Educational Longitudinal Survey of 2002 (ELS2002)), along with admin-

istrative data from North Carolina.

For each dataset, we provide lower bound estimates of the overall contribution of differences

between school systems and associated neighborhoods to the variance in student outcomes: high

school graduation, enrollment in a four-year college, and adult wages (NLS72 only). In addition,

we also convert each lower-bound variance estimate into a lower bound estimate of the impact on

the chosen outcome of starting at a school system and associated neighborhood at the 10th quantile

in the distribution of school contributions instead of a 50th or 90th quantile system (a more intuitive

scale).

5The weights families place on the amenities may also depend on other unobserved characteristics that do not have a
direct effect on the outcomes of interest. These additional characteristics are the Wi variables in the analysis below.
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Even our most conservative North Carolina results suggest that, averaging across the student

population, choosing a 90th quantile school and surrounding community instead of a 10th quantile

school increases the probability of graduation by at least 8.4 percentage points. In the NELS88

and ELS2002 the corresponding estimates are 4.7 and 6.8 percentage points, respectively, although

these may be less reliable due to sampling error in school average characteristics. We estimate

large average impacts despite the fact that our lower bound estimate only attributes between 1 and

4 percent of the total variance in the latent index determining graduation to schools/neighborhoods.

However, the average impact of moving to a superior school on binary outcomes such as high school

graduation or college enrollment can be quite large even if differences in school quality are small,

as long as a large pool of students are near the decision margin.

Estimates of the impact of a shift in school environment on the probability of enrolling in a four-

year college are similarly large: choosing a 90th instead of a 10th quantile school and surrounding

community increases the probability of four-year college enrollment by at least 11-13 percentage

points across all three survey datasets. It would increase the permanent component of adult wages

by 19 percent (in NLS72). A one-standard deviation shift in school/neighborhood quality would

raise wages by about 7 percent. Note that our estimates are derived from a static model of what

is in fact a dynamic process. ??The most conservative interpretation is that our estimates represent

lower bounds the cumulative effects of growing up in different school systems/neighborhoods.

The methodological part of the paper draws on and contributes to a number of literatures. First,

the basic idea that observed choices reveal information about choice-relevant factors unobserved

by the econometrician has been utilized in a number of settings, including the estimation of firm

production functions (e.g., Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg

et al. (2006), among others.), labor supply functions (e.g., Metcalf (1974) and Altonji (1982)), dis-

tinguishing between uncertainty and heterogeneity in earnings (e.g., Cunha et al. (2005)), and even

estimating neighborhood effects (Bayer and Ross (2009)).6 Our application is unusual in that the

control function involves group aggregates that reflect individual choices rather than relationships

among different choices by the same agent.

Second, we draw on the rich theoretical and empirical literature on equilibrium sorting and

matching models across several fields. Browning et al. (2014) and Chiappori and Salanie (forth-

coming) provide recent surveys of the extensive literature on marriage and matching more generally.

A central concern of this literature is who marries who–the sorting of marriage partners with het-

erogenous characteristics. A number of recent papers analyse labor market sorting based on firm and

worker quality, including Lise et al. (2013) and Melo (2015). Lindenlaub (2013) presents a closed

form solution to the sorting equilibrium of a labor market in which jobs differ on a continuum in

6Our econometric approach is only loosely related to the large literature on the use of control functions to estimate
triangular systems with continuous or discrete treatment variables. In that literature, model assumptions relating to
how the endogenous treatment variable and outcome of interest are determined imply that a function of the endogenous
variable and an instrument or set of instruments can control for the source of endogeneity in the equation for Y . See
Imbens (2007) for a survey in the context of nonadditive models, and Kasy (2011) for necessary and sufficient conditions
for the existence of a control function. In our case, there is no instrument, but the sorting model implies a relationship
between observable and unobservable group averages.
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the skill vectors they require and workers differ on a continuum in the skill vectors they supply. The

match between consumers and products (which could be locations with various characteristics) is

a central concern of the hedonic demand literature, including the important contributions of Rosen

(1974), Ekeland et al. (2004), and Heckman et al. (2010) among others.

Most directly relevant is the large literature on sorting across neighborhoods and schools that

grew out of Tiebout (1956), particularly Epple and Platt (1998) and Epple and Sieg (1999). Epple

and Platt’s model features one dimension of neighborhood quality and two dimensions of hetero-

geneity across households–income and tastes for the public good. They show that in equilibrium

the distributions of income and tastes both shift with the level of the public good in a location. This

implies a mapping between income in a location and tastes in a location—the same type of map-

ping that we exploit. They also show that house prices are monotonic in location quality.7 Bayer

and Ross (2009) consider the implications of Epple and Platt’s analysis for dealing with sorting

on unobservables when estimating the effects of school and neighborhood characteristics on out-

comes. They assume neighborhood quality depends on a vector of observed characteristics (Zs in

our notation) and a one dimensional unobservable. They use housing prices to construct a control

function for the unobservable. They recognize that both the control function and Zs are endoge-

nous in the outcome equation because of sorting on XU
i .8 Unfortunately, the estimation scheme that

they propose to address the issue is invalid in the presence of unobserved heterogeneity in location

preferences and multiple unobserved location amenities.9

Third, the multinomial choice formulation that we use to characterize the school/location choice

problem is standard in the consumer choice literature. It assumes that preferences for observed

and unobserved location characteristics depend on both observed and unobserved student/parent at-

tributes, as in McFadden et al. (1978), McFadden (1984) and Berry (1994) and many subsequent

papers. Bayer et al. (2007) use a similar specification to estimate models of housing demand in

which the estimation of preferences for observed and unobserved characteristics of schools and

neighborhoods is a central objective. We do not estimate preferences. Our contribution is to show

that the sorting on observables and unobservables implied by multinomial choice models and he-

donic demand models implies that group averages of observables can serve as a control for group

7See Bayer and Timmins (2005) for an analysis of the equilibrium properties of a model similar to that of Epple and
Platt (1998).

8The idea that the choice of a location, an occupation, a firm, or a school may reveal information about individuals
provides motivation for the use of “fixed effects” estimation in a variety of contexts. For example, Fu and Ross (2013) use
neighborhood fixed effects to control for worker heterogeneity when estimating the effect on wage rates of agglomeration
at workplace locations.

9 Our estimation strategy is closely related to the correlated random effects approach (Mundlak (1978), Chamberlain
(1980), Chamberlain et al. (1984)). In that literature a function of the vector of observations on Xi from members of
group s is used to control for correlation between Xi and the group error term. In many applications the mean Xs(i) is
used. However, in that literature, much of the focus is on estimating the effects of person specific variables, such as β

in our application, while accounting for correlation with a common group error. In our application, the focus is on the
group effect, a model of sorting provides the justification for the use of Xs as a control, and β is not identified. Despite
the similarity in titles, our analysis is also completely distinct from that of Altonji et al. (2005) and Altonji et al. (2013).
These papers examine the econometric implications of how observed variables are drawn from the full set of variables
that determine the outcome and the treatment variable of interest.
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averages of unobservables in the estimation of group treatment effects.

The empirical part of the paper adds to a vast literature on school and neighborhood effects that

we cannot do justice to here.10 Our analysis of sorting is directly relevant to the large number that

use regression models of the form of (1). A few recent papers in this literature have employed

experimental or quasi-experimental strategies to isolate the contribution of either schools or neigh-

borhoods to longer run student outcomes. Oreopoulos (2003) and Jacob (2004) use quasi-random

assignment of neighborhood in the wake of housing project closings to estimate the magnitude of

neighborhood effects on student outcomes. Similarly, the Moving To Opportunity (MTO) exper-

iment, evaluated in Kling et al. (2007), randomly assigned housing vouchers that required move-

ment to a lower income neighborhood to estimate neighborhood effects. None of these studies find

much evidence that moving to a low-poverty neighborhood improves economic outcomes. How-

ever, Chetty et al. (2015) revisit the MTO experiment using Internal Revenue Service data on later

outcomes, including earnings, college attendance, and single parenthood. Their treatment-on-the-

treated estimates indicate that children who move to a lower poverty neighborhood when they are

under age 13 experience large gains in annual income in their mid-twenties, while those who move

after age 13 experience no gain or a loss. Their estimates of treatment effects on adult earnings also

increase with the number of years of exposure to a lower poverty neighborhood.11 Using a sibling

differences approach that also exploits high quality data from tax records, Chetty and Hendren (In

Progress) identify county level neighborhood effects on earnings that are larger than but qualita-

tively consistent with our results. Aaronson (1998) finds substantial effects of the census track level

poverty rate and high school dropout rate on dropout rates and years of education using a sibling

differences design and PSID data.12

Deming et al. (2014), in contrast, exploit randomized lottery outcomes from the school choice

plan in the Charlotte-Mecklenburg district to estimate the impact of winning a lottery to attend a

chosen public school on high school graduation, college enrollment, and college completion. They

find large effects. Specifically, for students from low quality urban schools, the treatment effects

10Jencks and Mayer (1990) provide a comprehensive review of earlier studies from in economics and sociology. They
conclude that there is no strong evidence for neighborhood effects. However, some of the studies they summarize do
find effects. More recent reviews include Sampson et al. (2002), Durlauf (2004), and Harding et al. (2011). Duncan
and Murnane (2011) contains several recent papers on school and neighborhood effects, with references to the literature.
Meghir et al. (2011) discuss alternative approaches to estimating school fixed effects and the effects of particular school
inputs, and highlight the problem of endogenous selection of schools and neighborhoods, among other econometric
issues.The papers we discuss in the text provide references to many other recent contributions to the literature on school
and neighborhood effects.

11Aliprantis (2011) stresses the limitations of the MTO study for uncovering the full distribution of school system and
neighborhood effects on children. Aliprantis and Richter (2013) focus on the adults in MTO. They combine experimental
variation in the costs of moving to neighborhoods of different poverty levels with an ordered discrete choice model of
the decision to move. They find that neighborhood quality has a substantial effect on the outcomes of adults. They
also conclude that the overall effect of the experiment on adult economic outcomes was small because the induced
improvements in neighborhood quality were small for most.

12In contrast to Aaronson (1998), Plotnick and Hoffman (1995) do not find neighborhood effects on postsecondary
education using a sibling difference design with PSID data on sister pairs. Aaronson provides evidence that Plotnick and
Hoffman’s choice of sample and neighborhood quality measures leads to weaker results. He also finds that neighborhood
effects are smaller for postsecondary education than for high school graduation.
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from winning the lottery are large enough to close 75 percent of the black-white gap in graduation

and 25 percent of the gap in bachelor’s degree completion. On the other hand, Cullen et al. (2006)

use a similar identification strategy with lotteries in Chicago Public Schools and find little effect on

the high school graduation probability.

In contrast to these papers, we do not exploit any natural experiments. Instead, we show that

rich observational data of the type collected by either panel surveys or administrative databases can

nonetheless yield meaningful insights about the importance of school and neighborhood choices for

children’s later educational and labor market performance.

The rest of the paper proceeds as follows. Section 2 presents our model of school choice,

while Section 3 formally derives our key control function result. Section 4 describes and presents

results from a monte carlo analysis of the finite sample properties of our control function approach.

Section 5 presents a simple production function for long-run student outcomes. Section 6 describes

our empirical methodology for placing lower bounds on school and neighborhood contributions

to long run student outcomes. Section 7 describes the four datasets we use to estimate the model

of outcomes. Section 8 presents our results. Section 9 briefly discusses other applications of our

methodology, including the assessment of teacher value added. Section 10 closes the paper with a

brief summary of our empirical results and a discussion of potential theoretical extensions.

2 A Multinomial Model of School Choice and Sorting

In this section we present a model of how parents/students choose school systems and associated

neighborhoods.

Each location s ∈ {1, ...,S} can be characterized by a vector of K underlying latent amenities

As ≡ [A1s, . . . ,AKs]
′.13

We adopt a money-metric representation of the expected utility the parents of student i receive

from choosing school/neighborhood s, so that the utility function Ui(s) can be interpreted as the

family’s consumer surplus from their choice. We assume Ui(s) takes the following linear form:

Ui(s) = ϒiAs + εsi−Ps. (2)

In the above equation ϒi ≡ [ϒ1i, . . . ,ϒKi] is a 1×K vector of weights that captures the increases

in family i’s willingness to pay for a school per unit increase in each of its K amenity factors

A1s, . . . ,AKs, respectively. Ps is the price of living in the neighborhood surrounding school s, and εsi

is an idiosyncratic taste of the parent/student i for the particular location s.

Consider projecting the willingness to pay (hereafter denoted WTP) for particular amenities

across parent/student combinations onto these families’ observable (Xi) and unobservable (XU
i )

characteristics. In particular, suppose that Xi has L elements, while XU
i has LU elements. Then

13The “prime” symbol denotes matrix or vector transposes throughout the paper.
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we obtain:

ϒi = XiΘ+XU
i Θ

U +Wi , (3)

where Θ (ΘU ) is an L×K (LU ×K) matrix whose `k-th entry captures the extent to which the

willingness to pay for the k-th element of the amenity vector As varies with the `-th element of Xi

(XU
i ). We sometimes refer to the elements of Θ and ΘU as WTP slopes or WTP coefficients. The

1×K vector Wi captures the components of i’s taste for the K amenities in As that are uncorrelated

with [Xi,XU
i ]. Since [Xi,XU

i ] is the complete set of student attributes that determine Ysi, the elements

of Wi influence school choice but have no direct effect on student outcomes.

Substituting equation (3) into equation (2), we obtain:

Ui(s) = (XiΘ+XU
i Θ

U +Wi)As + εsi−Ps (4)

In the absence of restrictions on the elements of Θ and ΘU , this formulation of utility allows for a

very general pattern of relationships between different student characteristics (observable or unob-

servable) and tastes for different school/neighborhood amenities, subject to the additive separability

assumed in (2).

Expected utility is taken with respect to the information available when s is chosen. The in-

formation set includes the price and the amenity vector in each school/neighborhood as well as

student/parent characteristics [Xi,XU
i ,Wi] and the values of εsi, s = 1, ...,S. The information set ex-

cludes any local shocks that are determined after the start of secondary school. It also excludes

components of neighborhood and school quality that are not observable to families when a loca-

tion is chosen. The set of amenities may include school/neighborhood characteristics that influence

educational attainment and labor market outcomes. The amenities may also include aspects of the

demographic composition of the school/neighborhood. Some (such as spending per pupil) may be

influenced by demographic composition. Thus, some of the amenities are outcomes of the sorting

equilibrium.

The parents of student i choose the school s if net utility Ui(s) is the highest among the S options.

That is,

s(i) = arg max
s=1,..,S

Ui(s)

Parents behave competitively in the sense that prices and As are taken as given, and choice is unre-

stricted. In equilibrium the values of some elements of As may in fact depend on the averages of Xi

and XU
i for the parents who choose s, but parents ignore the externalities that they are imposing on

others.

3 The Link Between Group Observables and Group Unobservables

In Section 3.1 we state and prove Proposition 1, which concerns the relationship between XU
s

and Xs implied by the above choice model. In Section 3.2 we discuss the proposition and the
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assumptions that underlie it.

3.1 Proposition 1: XU
s Is a Linear Function of Xs

Before stating Proposition 1, we need to define more notation. Decompose XU
i into its projection

on Xi and the orthogonal component X̃U
i :14

XU
i = XiΠXU X + X̃U

i (5)

Use (5) to rewrite (3) as ϒi = XiΘ̃+ X̃U
i ΘU +Wi, where Θ̃ = [Θ+ΠXU X ΘU ]. In the rewritten form,

all three components of ϒi are mutually orthogonal. We are now prepared to present the main

proposition of the paper.

Proposition 1: Assume the following assumptions hold:

A1: Preferences are given by (4).

A2: Parents take P(As) and As as given when choosing location, and face a common choice set.

A3: The idiosyncratic preference components εsi have a mean of 0 and are independent of Xi,

XU
i , Wi , and As for all s.

A4: E(Xi|ϒi) and E(XU
i |ϒi) are linear in ϒi.

A5: (Spanning Assumption) The row space of the WTP coefficient matrix Θ̃ spans the row space

of the WTP coefficient matrix ΘU relating tastes for A to XU
i . That is,

Θ
U = RΘ̃ (6)

for some LU ×L matrix R.

Then the expectation XU
s is linearly dependent on the expectation Xs. Specifically,

XU
s = Xs[ΠXU X +Var(Xi)

−1R
′
Var(X̃U

i )] (7)

3.1.1 Proof of Proposition 1:

Equation (2) states that the utility of each location s depends on Xi, XU
i , Wi only through ϒi. This

fact and independence of εsi from Xi, XU
i , and Wi, imply that

Pr(s(i) = s|Xi,XU
i ,Wi,ϒi) = Pr(s(i) = s|ϒi) (8)

14We use the symbol ΠDQ to denote the vector or matrix of the partial regression coefficients relating a dependent
variable or vector of dependent variables D to a vector of explanatory variables Q, holding the other variables that appear
in the regression constant. In the case of ΠXU X , D = XU

i and Q = Xi.
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where Pr(.) is the probability function. The above fact and Bayes rule imply that15

f (Xi|ϒi,s(i) = s) = f (Xi|ϒi) (9)

f (XU
i |ϒi,s(i) = s) = f (XU

i |ϒi) . (10)

These equations then imply that E[Xi|ϒi,s(i) = s] = E[Xi|ϒi] and E[XU
i |ϒi,s(i) = s] = E[XU

i |ϒi].

Consequently, using the Law of Iterated Expectations, we have:

XU
s ≡ E[XU

i |s(i) = s] = E[E(XU
i |ϒi,s(i) = s)|s(i) = s] = E[E(XU

i |ϒi)|s(i) = s] (11)

Xs ≡ E[Xi|s(i) = s] = E[E(Xi|ϒi,s(i) = s)|s(i) = s] = E[E(Xi|ϒi)|s(i) = s]. (12)

Next we find expressions for E[XU
i |ϒi] and E[Xi|ϒi], which appear in the above equations. Since

by construction X̃U
i is uncorrelated with Xi, and Wi is uncorrelated with both Xi and X̃U

i ,

Cov(ϒ′i, X̃
U
i ) =Cov(ΘU

′
X̃U

i , X̃U
i ) = Θ

U
′
Var(X̃U

i ) (13)

Cov(ϒ′i,Xi) =Cov(Θ̃′Xi,Xi) = Θ̃
′Var(Xi) (14)

Since from assumption A4 E[Xi|ϒi] and E[XU
i |ϒi] are linear in ϒi, E[X̃U

i |ϒi] is also linear in ϒi.

Consequently, assumption A4, equations (13)-(14), and basic regression theory imply that

E[X̃U
i |ϒi] = ϒiVar(ϒi)

−1Cov(ϒ′i, X̃
U
i ) = ϒiVar(ϒi)

−1
Θ

U ′Var(X̃U
i ) (15)

E[Xi|ϒi] = ϒiVar(ϒi)
−1Cov(ϒ′i,Xi) = ϒiVar(ϒi)

−1
Θ̃
′
Var(Xi). (16)

Next, if we use the spanning assumption A5 to replace ΘU ′ with Θ̃′R′ in (15), and then use the

expression for E[Xi|ϒi] from 48, we obtain:

E[X̃U
i |ϒi] = ϒiVar(ϒi)

−1
Θ̃
′R′Var(X̃U

i ))

= ϒiVar(ϒi)
−1

Θ̃
′Var(Xi)Var(Xi)

−1R′Var(X̃U
i ))

= E[Xi|ϒi]Var(Xi)
−1R′Var(X̃U

i ). (17)

To find E[XU
i |ϒi] first take expectations of both sides of (5) conditional on ϒi:

E[XU
i |ϒi] = E[Xi|ϒi]ΠXU X +E[X̃U

i |ϒi]. (18)

15One can write the conditional density f (Xi|ϒi,si = s) as

f (Xi|ϒi,si = s) =
Pr(s(i) = s|Xi,ϒi) f (ϒi|Xi)

Pr(s(i) = s|ϒi) f (ϒi)
f (Xi)

=
Pr(s(i) = s|ϒi) f (ϒi|Xi)

Pr(s(i) = s|ϒi) f (ϒi)
f (Xi)

= f (Xi|ϒi)

where the first equality is Bayes rule, the second equality uses (8), and the third follows from cancellation of terms and
Bayes rule. The same line of argument establishes that f (XU

i |ϒi,s(i) = s) = f (XU
i |ϒi).
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Substitution for E[X̃U
i |ϒi] using (17) leads to

E[XU
i |ϒi] = E[Xi|ϒi](ΠXU X +Var(Xi)

−1R′Var(X̃U
i )). (19)

The final step is to take expectations of both sides of the above equation conditional on s(i) = s

and employ equations (11) and (12). Doing so leads to

XU
s = Xs[ΠXU X +Var(Xi)

−1R′Var(X̃U
i )].

This completes the proof.

3.2 Discussion of Proposition 1

Proposition 1 lays out the conditions under which XU
s , the between group component of the vec-

tor of individual-level unobservables, will be an exact linear function of its observable counterpart

Xs.16 Remarkably, the dependence between the group averages XU
s and Xs arises even when the

vector XU
i is uncorrelated with the vector Xi at the individual level. Note also that if unobservable

characteristics do not affect amenity preferences (i.e. individuals do not sort based on unobserv-

ables), so that ΘU = 0, then R = 0. When R = 0, (7) states that XU
s = XsΠXU X and X̃U

s = 0. As we

discuss in Section 8.5, this fact means that if sorting is driven by Xi but not XU
i , one can estimate

the variance in group treatment effects Var(ZsΓ+ zU
s ).

Note that Proposition 1 is a statement about the expectations Xs and XU
s . Thus, it concerns the

averages of Xsi and XU
si when the number of individuals is large relative to the number of choices.

With a finite number of individuals per group, random variation associated with Wi and εsi will cause

group averages at a point in time to deviate from their expectations. This could weaken the link

between group averages of observable and unobservable characteristics. Monte Carlo simulations

in Section 4 indicate that the procedure works fairly well with samples of 20-40 individuals per

group. Note also that implementation of Xs as a control function for XU
s requires that the number of

groups in the sample must be larger than the number of elements in Xs (and implicitly the number

of factors in As). Otherwise, one cannot estimate the coefficient vector on Xs.

The next two subsections discuss the assumptions underlying Proposition 1.

3.2.1 Discussion of Assumptions A1-A4

Assumption A1 about preferences is fairly general given that both Xi and XU
i can include non-

linear terms.

Assumption A2 simply says that households take characteristics of neighborhoods as given. As

16In Altonji and Mansfield (2014), we consider a version of the school choice model in which (a) we ignore the
idiosyncratic school-family taste match by setting εsi = 0 ∀ (s, i), and (b) we assume that S is sufficiently large so that
it can be well approximated by a continuum of neighborhoods that create a continuous joint distribution of amenities A.
Perhaps surprisingly, equation (7) in Proposition 1 holds for the continuous case.
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we mentioned above, this is fully consistent with the possibility that As depends on who chooses

s in equilibrium. If some of the neighborhood amenities are functions of resident characteristics,

the distribution of amenities will be endogenous. There might be multiple equilibria. However,

Proposition 1 follows entirely from utility maximization. The linear dependence between Xs and

XU
s will hold in any equilibrium of the model.

Assumption A2 also imposes that households face a common set of choices. In the next section

we discuss monte carlo simulations that demonstrate that our control function also works well when

different households face choice sets that are overlapping subsets of the full set of schools.

Furthermore, it is a statement about the expectations Xs and XU
s . Thus, it concerns the averages

of Xsi and XU
si when the number of households is large relative to the number of choices. With a

finite number of students per school, random variation associated with Wi and εsi will cause school

averages at a point in time to deviate from their expectations. This could weaken the link between

school averages of observable and unobservable characteristics.

The independence assumption A3 seems minor given that εsi can be defined to be uncorrelated

with Xi,XU
i and Wi without loss of generality. A sufficient condition for the linearity in expecta-

tions assumption A4 to hold is that the joint distribution belongs to the continuous elliptical class.

Examples include the multivariate normal, the multivariate t, the Laplace, and the multivariate ex-

ponential power family.17 However, in our application Xi contains a number of discrete variables,

so this sufficient condition will not be satisfied.

Proposition 2 in online Appendix A3 establishes that if A4 fails, then an approximation error

term appears in equation (7) for XU
s . The approximation error consists of the average for s of a linear

function of the difference between E(Xi|ϒi) and E(XU
i |ϒi) (respectively) and the best least square

linear predictions of Xi and XU
i given ϒi. As we discuss in Section 6.1, this could lead to upward bias

in the less conservative of our two estimators of the variance of school/neighborhood effects. Note,

though, that because XU
s appears in the outcome equation through the index XU

s βU , any upward

bias depends on a weighted index of the approximation error terms for each element of XU
s , with

the elements of βU as the weights. This may lead to some cancellation of the approximation errors.

We now turn to the spanning assumption A5.

3.2.2 When Will the Spanning Assumption A5 Hold?

The key restriction on preferences in Proposition 1 is the spanning assumption (A5). It requires

the coefficient vectors ΘU relating tastes for amenities to the elements of XU
i to be linear combina-

tions of the coefficient vectors Θ̃ relating tastes for amenities to the observables Xi and/or elements

of XU
i that are correlated with Xi. Given the importance and subtlety of this spanning condition, we

further develop the intuition underlying the condition and highlight cases in which it fails to hold.

Reconsider the more general function formulation used in the introduction. Let AX ⊆A represent

17Elliptical continuous distributions have density functions that are constant over ellipsoids. Gómez et al. (2003) survey
some of the properties of these distributions.
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the subset of amenities that affect the distribution of observable school averages Xs. An amenity will

be included in AX if WTP for the amenity is affected by either Xi or elements of XU
i correlated with

Xi. Likewise, AXU ⊆ A represents the subset of amenities that affect the distribution of unobservable

school averages XU
s . The between-school variation in Xs will only be driven by AX , so that Xs =

f (AX) for some vector-valued function f . Similarly, XU
s = f U(AXU

). We can write XU
s = g(Xs) if

we can write XU
s = f U( f−1(Xs)), where g(Xs) = f U( f−1(Xs)). Thus, jointly sufficient conditions

are

Assumption A5.1: f is invertible, so that we can write AX = f−1(Xs)

Assumption A5.2: AXU ⊆ AX , so that the amenity space that Xs spans is the relevant amenity

space that drives the variation in XU
s (i.e. the range of f−1 must encompass the domain of f U ).

While these conditions are not necessary, they suggest two fundamental ways that the spanning

condition ΘU = RΘ̃ can fail.18 The first way, which leads A5.1 to fail, is that the vector Xi may

affect tastes for more amenities than its own number of elements. That is dim(AX) > L where

dim(AX) is the number of elements in AX . In this case, the function f (∗) is not invertible.19 In

the case of the additively separable utility function from (4), dim(AX) is equal to the row rank of

Θ̃. In the context of the simple example from the introduction, this condition might fail if the only

observable characteristic were parental income, and the amenity space consisted of two imperfectly

correlated factors: schools’ quality of teachers and quality of athletic facilities. Even if parental

income affected WTP for both amenities, one would not be able to disentangle the quality of athletic

facilities from the quality of teachers based on only neighborhood averages of parental income. We

would need to observe a second individual characteristic, such as parental education, in order to

satisfy the spanning condition.

The validity of A5.1 depends on the number and breadth of coverage of variables in Xi. It is

testable. The model implies a factor structure for the vector Xs, where the number of factors is

determined by the row rank of Θ̃. A finding that the number of factors that determine Xs is smaller

than the dimension of Xi is consistent with the assumption that dim(AX) ≤ L. A finding that the

number of factors is at least as large as the dimension of X is also technically consistent with the

assumption, but would strongly suggest that dim(AX) > L. The evidence presented in Section 8.6

and online Appendix A2 is fully consistent with dim(AX)< L in our application.

What about Assumption 5.2? Partition XU
i into a subset XU

1i that is correlated with Xi and a

subset XU
2i that is not correlated with Xi. Assumption 5.2 will fail if XU

2i affects preferences for an

18Invertibility of f (AX ) is not a necessary condition. It is possible that Xs = f (AX ) is one-to-many, meaning that
the same value of AX leads to multiple values of Xs. In this case the key is that one can still write AX = h(Xs), where
h(.) = f−1(.) in the one-to-one case. The mapping from AXU

to XU
s need not be one-to-one either. However, there must

be a mapping XU
s = f (AXU

,Xs) = f (h(Xs),Xs) = g(Xs) that is one-to-one or one-to-many.
19More specifically, what is relevant for invertibility is not the number of elements of Xi (denoted L) per se but the

number of independent taste factors that these L observables represent. Suppose for example, that mother’s education and
father’s education were both observed, but affected willingness to pay for each amenity in the same relative proportions.
Then adding father’s education to Xi would not make f (∗) invertible if it were not already when only mother’s education
was included in Xi.
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amenity that neither Xi nor XU
1i affect preferences for.20

Revisiting one of the examples from the introduction helps illustrate how the assumption can

fail. In that example parental education is the only observable and student athleticism is the only

unobservable. Parental education and student athleticism are assumed to be uncorrelated, so student

athleticism is an XU
2i variable rather than an XU

1i . Furthermore, parental education does not affect

WTP for athletic facilities in the neighborhood, while student athleticism does. Athletic facility

quality is an element of AXU
but not AX , so that AXU 6⊂ AX . Assumption 5.2 would fail. Conse-

quently, variation in athletic facility quality would drive between-neighborhood variation in average

student athleticism that average parental education would not capture. Online Appendix A1 goes

through further examples that illustrate when the spanning condition will and will not be satisfied.

Assumption A5.2 is a statement about unobservables and thus is not testable without more struc-

ture than we impose. But one can assess the assumption through the following thought process.

First, draw on the literature to identify the factors, both observed and unobserved, that are most

important for the outcome. Next consider each unobserved variable and ask whether it is likely to

be uncorrelated with all of the observed variables. Also ask whether it is likely to be the only deter-

minant of WTP for some amenity that influences location choice. If the answer to both questions is

“no” for all of the elements of XU
i , then Assumption A5.2 is plausible.

This line of reasoning leads us to believe that A5.2 is plausible in an application such as ours in

which Xi contains a rich and diverse set of variables that are likely to matter for student outcomes.

Consider, for example, the priority that a child’s parents and broader family places on academic

learning and educational attainment. One would expect this unobservable to boost willingess to pay

for peer groups and community and school characteristics that foster achievement, such as enrich-

ment programs. However, parents’ education (observed in all 4 data sets), parents’ desired years

of education, parental school involvement (observed in ELS2002 and NELS:88), and grandparents’

education (observed in ELS:2002) are likely to be correlated with the priority parents place on edu-

cation. They are also likely to directly affect willingness to pay for a similar set of education-related

school and neighborhood characteristics. To take another example, taste for/proficiency in music

may affect academic performance and influence willingness to pay for schools and communities

with good music programs and music venues. But parental education and parental income are likely

to be correlated with a child’s proficiency in music (through home investments). They also may

influence WTP for opportunities in music. One can make similar arguments about other unobserv-

ables (e.g. wealth (unobserved) vs. income (observed).21

20More mathematically, the unobservable vector XU
i affects WTP for certain amenities that no element in Xi predicts

WTP for, so that AXU 6⊂ AX . In the case of the additively separable utility function from equation (4), AXU ⊆ AX if and
only if the row space of ΘU is a linear subspace of the row space of Θ̃. Note, though, that a given element of Xi, say
Xil , can help predict WTP for a particular amenity Ak either directly by affecting taste for the amenity (so that Θlk 6= 0),
or indirectly by merely being correlated with an element of XU

i that predicts taste for the amenity (so that the (l,k)-th
element of ΠXU X ΘU 6= 0). Either will yield a non-zero value of Θ̃lk.

21One could in principle observe school averages Ws of the individual variables Wi that influence location preferences
but do not influence outcomes. The control function variables should include not only Xs but also Ws if Xs alone is
inadequate for the spanning condition to hold. Proposition 1 can easily be modified to account for the presence of Ws. We
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Online Appendix A4 derives an analytical formula for the component of XU
s that cannot be

predicted by Xs when the spanning assumption is violated (and thus may be a source of bias in

our lower bound estimates of the variance in school/neighborhood treatment effects). The variance

in this component depends on the following five factors: a) the joint distribution of amenities;

b) the joint distribution of the WTP index ϒi; c) the matrix ΘU mapping unobserved individual

characteristics into willingness to pay for particular amenities; d) the joint distribution of the residual

component of unobserved outcome-relevant student characteristics X̃U
i and e) the joint distribution

of the unobserved outcome-irrelevant (but school choice-relevant) student characteristics Wi.

Given the complicated manner in which each of these five factors enters the expression for the

unexplained component of XU
s , there does not appear to be any straightforward way to place a bound

on the variance in this error component.

4 Monte Carlo Evidence on the Performance of Xs as a Control Func-
tion

In this section we present monte carlo simulation results that examine the properties of our

control function approach across a number of key dimensions. We start by examining how well Xs

controls for XU
s with finite samples of students per school and when choice sets of parents differ. In

the initial designs the spanning condition (A5) is satisfied. We then turn to simulations in which the

spanning condition fails. A full description of our simulation methodology and results is contained

in online Appendix A5 and online Appendix Tables A8 and A9. Here we provide a brief summary.

We do not attempt to fully characterize the performance of our estimator.22 Instead, our simula-

tions center around a stylized test case that is calibrated to represent a plausible description of the

school/neighborhood choice context.

The first key result is that the control function can work extremely well even in settings where

1) there is only a moderate number of groups to join, and 2) only a subset of these are considered

by any given individual. In all of our simulations in such settings at least 99.5% of the variance in

group-average values of the unobservable index xU
s is absorbed by controlling for Xs (R2 = .995).

In all cases the residual variance in xU
s not accounted for by Xs is negligible – less than .08% of the

individual-level outcome variance Var(Yi). This is true even though the designs we consider feature

very strong sorting on unobservables: xU
s accounts for between 10% and 14% of Var(Yi) in all but

one case.

The second key result is that the control function also works well even when group-averages of

do not use Ws variables in our empirical analysis. Note also that if one observed an element of AXU
that drives sorting on

XU
2i , one could also include this observed amenity as part of the control function.
22A full characterization is a daunting task given the large number of parameters that determine the full spatial equi-

librium sorting of students to schools. The parameters include those characterizing the joint distribution of the individual
characteristics affecting choice [Xi,XU

i ,Wi], the joint distribution of the amenities As, and the distribution of the id-
iosyncratic tastes εsi. The parameters also include the Θ and ΘU matrices that capture how observed and unobserved
characteristics affect WTP.
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the observables Xs are constructed using small samples of group members rather than the full school

population. The R2 exceeds 0.93 in all but one case. And despite the large fraction of the variance

in outcomes that is due to sorting in all the designs we consider, the unexplained sorting variance is

between 0.4% and 0.8% of the outcome variance even when samples of 20 are used to construct Xs.

Given our reliance on such small samples in the three panel survey datasets used in the empirical

analysis below, we revisit the issue in Section 7 and online Appendix A8. There we use the North

Carolina administrative data to directly assess the effect of using smaller samples of students to

construct Xs for some of the outcomes and characteristics we actually consider Our main results

are relatively insensitive to restricting school sample sizes to match the distribution of sample sizes

observed in the NLS72, NELS88, and ELS2002 datasets.

The third result is that the control function approach is quite robust to violations of the spanning

condition in which just a few outcome-relevant unobservables affect WTP for just a few additional

amenities that are not weighted by any elements of Xi. This is arguably the most plausible case

when rich data on students and parents are available.

5 The Econometric Model of Educational Attainment and Wage Rates

We start by elaborating on the underlying model of student outcomes presented in the introduc-

tion. In Section 5.2, we show how sorting and omitted school neighborhood characteristics affects

estimates of neighborhood/school effects based on OLS estimation of that model. In Section 5.3,

we show that the OLS estimates in combination with Proposition 1 are sufficient to place a lower

bound on the variance of school and neighborhood effects given the production function (20) below.

5.1 The Model of Outcomes

In our application the outcomes are high school graduation, attendance at a four-year college,

a measure of years of postsecondary education, and the permanent wage rate. The outcome Ysi

of student i whose family has chosen the school and surrounding neighborhood s is determined

according to

Ysi = Xiβ + xU
i +ZsΓ+ zU

s +ηsi +ξsi . (20)

For binary outcomes such as college attendance, Ysi is the latent variable that determines attendance.

As discussed above, the student’s outcome contribution can be summarized by the index (Xiβ +

xU
i ), where xU

i ≡ XU
i βU is a scalar index summarizing the contributions of unobserved student

characteristics XU
i , and the row vector [Xi,XU

i ] is an exhaustive set of child and family characteristics

that have a causal impact on student i’s outcome. Since Xi and XU
i may include non-linear functions,

the linear in parameters specification for Yis is without much loss of generality.

Analogously, the average school/neighborhood outcome contribution is captured by the index

ZsΓ + zU
s where zU

s ≡ ZU
s ΓU is a scalar index summarizing the contributions of unobserved school
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and neighborhood characteristics. The vector Zs captures the influence of observed school/neighborhood-

level characteristics (which in our empirical work do not vary among students within a school),

while ZU
s represents the remaining unobserved school/neighborhood influences which will vary be-

tween school attendance areas (e.g. quality of the school principal or the local crime rate). Note

that Zs and ZU
s may include averages of Xi and XU

i , respectively, which capture peer effects.

The unobserved scalar index ηsi captures variation in school/neighborhood contributions across

students within a school attendance area and within a school itself (e.g. trustworthiness of immediate

neighbors or distinct course tracks at the school). Indeed, some of the factors that determine ηsi may

represent the within-school components of Zs.

The component ξsi captures other influences on student i’s outcome that are determined after

secondary school but are not predictable given Xi, xU
i , Zs, zU

s and ηsi. These might include the

opening of a local college or local labor market shocks that occur after high school is completed.

It will prove useful to write ξsi as ξs + ξi, where ξs is common to all students at school s and ξi is

idiosyncratic. ξs is 0 for high school graduation. More generally, the productivity parameters β and

Γ and the indices xU
i , zU

s , ηsi and ξsi depend implicitly upon the specific outcome under consideration

as well as the time period in the case of wages.

In practice we only have data on observed student and school inputs Xi and Zs at a single point

in time. Thus, some components of Xi associated with student inputs (for example, student apti-

tude) will have been determined in part by parental inputs from earlier periods (for example, parent

income).23. Such links make it difficult to interpret the coefficient associated with a given com-

ponent of Xi, since once we have conditioned on the other components, we have removed many

of the avenues through which the component determines Y . Consequently, we do not make any

attempt to estimate the productivity parameters β or βU , and thus do not attempt to tease apart

the distinct influences of child characteristics, family characteristics, and early childhood schooling

inputs, respectively. Similarly, we do not attempt to remove bias in estimates of Γ stemming from

correlations between Zs and the omitted school/neighborhood factors zU
s . We aim instead to separate

the effects of schools and associated community influences on outcomes from student, family, and

prior school/community factors.

To be more specific about what we mean by school/neighborhood effects, note that if a randomly

selected student attended school s1 rather than s0, the expected difference in his/her outcome would

be (Zs1Γ+ zU
s1)− (Zs0Γ+ zU

s0). We wish to quantify differences across schools/neighborhoods in

ZsΓ+ zU
s . In the case of college attendance and permanent wage rates, the difference in expected

outcomes will also reflect the difference between ξs1 and ξs0 , which are common to those who attend

s1 or s0 but are determined after high school is completed.24

One could generalize the above model for Ysi to allow the effects of school characteristics to

depend on individual attributes by adding interactions of Zs and/or zU
s with individual attributes

23See Todd and Wolpin (2003) and Cunha et al. (2006)
24The outcomes of a specific student i will also differ across schools/neighborhoods because the values of the idiosyn-

cratic terms ηsi will differ.
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Xi and/or XU
i . Indeed, the preference weights on amenities that represent school characteristics

depend on Xi and XU
i in the choice model, as would be the case if parents choose locations with

the match to their child’s needs in mind. Allowing for non-separability in outcome model does not

break the linear relationship between Xs and XU
s . However, it would imply that the distribution of

school treatment effects varies with Xi and XU
i . We discuss the issues involved in footnote 32 while

describing our empirical methodology, but focus on the homogenous effects case in this paper.

5.2 The Bias in OLS Estimates of School Effects

In this section we discuss the slope parameters and error components that OLS recovers when

outcomes are regressed on only the observed student-level and school-level variables, Xi and Zs.

To facilitate the analysis, first partition Zs into [Xs,Z2s], where Xs consists of school-averages of

observable student characteristics, while Z2s is a vector of other observed school level characteristics

not mechanically related to student composition (e.g. teacher turnover rate or student-teacher ratio).

Partition the coefficient vector Γ≡ [Γ1,Γ2] analogously. Section 7.3 provides a discussion of which

variables should be included in Xs and Z2s, respectively.

Next, project the index of unobserved school inputs zU
s onto Xs and Z2s:

zU
s = XsΠzU

s ,Xs
+Z2sΠzU

s ,Z2s
+ z̃U

s . (21)

Similarly, project ηsi on the student level variables:

ηsi = XiΠηsi,Xi + η̃si. (22)

Next, in order to more clearly demonstrate the impact of student sorting as separate from simple

omitted variables bias, we project xU
i ≡ XU

i βU onto the space of observable variables in two steps.

First, we regress xU
i on the student-level observable vector Xi only:

xU
i = XiΠxU

i Xi
+ x̃U

i . (23)

The coefficient matrix ΠxU
i Xi

captures the relationship in the full population between the unobserved

student-level contribution to Yi and observed student-level characteristics. It contributes to standard

omitted variables bias in estimation of the coefficient vector on Xi even in the absence of non-random

student sorting to schools. In the second step, we project the residual from the first-step, x̃U
i , onto

both the student-level and school-level vectors of observables (Xi and Zs):

x̃U
i = XiΠx̃U

i Xi
+XsΠx̃U

i Xs
+Z2sΠx̃U

i Z2s
+ ε

x̃U

si , (24)

where ε x̃U

si is an error component. If students with greater unobservable contributions to their long

run outcomes are more likely to sort into schools with particular observed characteristics Zs, then

18



the matrices Πx̃U
i Xs

and Πx̃U
i Z2s

need not equal 0. Furthermore, even though each component of

the vector x̃U
i is uncorrelated with Xi given the regression equation (23) from step 1, Πx̃U

i Xi
need

not equal zero once school characteristics have been conditioned on. For example, parents with

low income (included in Xi) who nonetheless choose an expensive school/neighborhood may be

revealing high residual taste for education. This unobserved characteristic might also improve their

kids’ outcomes regardless of school, thus belonging in XU
i and contributing to x̃U

i .

Substituting the projections (21), (22), (23), and (24) for ZU
si , xU

i , and ηsi into (20), we obtain:

Ysi = XiB+XsG1 +Z2sG2 + vs +(vsi− vs), where (25)

B≡ [β +Π
ηU

si Xi
+(ΠxU

i Xi
+Πx̃U

i Xi
)] (26)

G1 ≡ [Γ1 +ΠzU
s Xs

+Πx̃U
i Xs

] (27)

G2 ≡ [Γ2 +ΠzU
s Z2s

+Πx̃U
i Z2s

] (28)

vs ≡ z̃U
s + ε

x̃U

s +ξs (29)

vsi− vs ≡ ξi +(ε
x̃U

i
si − ε

x̃U
i

s )+ η̃si (30)

The expressions for G1,G2 and vs in (27), (28) and (29) reveal that the observable school com-

ponents XsG1 and Z2sG2 and the unobservable residual component vs all reflect a mixture of school

effects and student composition biases. Specifically, the components XsG1 and Z2sG2 will reflect

XsΠx̃U
i Xs

and Z2sΠx̃U
i Z2s

, respectively, which capture differences in average unobservable student

characteristics that are predictable by Zs after conditioning on average observable student character-

istics Xs. The unpredicted between-school component vs will reflect ε
x̃U

i
s , which captures the part of

the average unobservable student contribution that is not related to observed school-level character-

istics or average student-level characteristics. The terms XsΠx̃U
i Xs

, Z2sΠx̃U
i Z2s

and ε
x̃U

i
s capture sorting.

They are not school/neighborhood effects, since a child who was reallocated to a school with a

higher value of these components could not expect an increase in test scores25. Without further as-

sumptions about how students sort into schools, regression and variance decomposition techniques

cannot be used to identify or even bound the contribution of schools/neighborhoods to student out-

comes. In the next section, we show that the assumptions laid out in Proposition 1 are sufficient

to place a lower bound on the variance of school and neighborhood effects given the production

function (20) above.

5.3 Using Proposition 1 to Bound the Importance of School/Neighborhood Effects

Section 3 provides conditions under which the school-average values of student observables Xs

and unobservables XU
s are linearly dependent, as summarized in Proposition 1. We now show that

the relationship between Xs and XU
s implies restrictions on G2 and vs that allow the recovery of

25Note that peer effects stemming from concentration of particular types of students at a school are captured by either
ZsΓ or zU

s .
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a lower bound estimate of the contribution of schools (and groups more generally) to individual

outcomes. We also present the more demanding conditions under which unbiased estimates of

the causal effects of particular group-level characteristics can be recovered. Equations (5) and (7)

from Proposition 1 and (24) together reveal that Πx̃U
i Xs

=Var(Xi)
−1R

′
Var(X̃U

i )βU , Πx̃U
i Z2s

= 0, and

ε X̃
s = 0.26

Thus,

G2 ≡ Γ2 +ΠzU
s Z2s

(31)

vs ≡ z̃U
s +ξs . (32)

We see that when the conditions of Proposition 1 are satisfied, the inclusion of Xs in Zs purges

both G2 and vs of biases from student sorting, so that Var(Z2sG2) and Var(vs) only reflect true

school/neighborhood contributions and, in the case of vs, later common shocks. However, the com-

ponents Var(Z2sG2) and Var(vs) only permit a lower bound estimate of the importance of school and

neighborhood effects, for three reasons. The first and obvious one is that the causal effect of Xs on

outcomes, XsΓ1, will be excluded from estimates of school/neighborhood effects. If peer effects are

important, this could lead to a substantial underestimation of the importance of school/neighborhood

effects.

Second, if the school mean XU
s has external effects, it is part of zU

s and therefore enters the

outcome equation separately from the individual level variable xU
i . Since this component will be

absorbed by XsĜ1, school/neighborhood peer effects associated with XU
s also will be excluded from

the estimate of school/neighborhood effects.

Third, (27) reveals that Xs will also absorb part of the unobserved school contribution zU
s via

ΠzU
s Xs

. To see why, note that Xs spans the space of XU
s because the amenity vector, As, is the source

of variation in both Xs and XU
s . Given that parents are likely to value the contributions of schools

to student outcomes, many of the characteristics contributing to zU
s that affect school quality are

likely to be reflected in As. Hence, while the inclusion of Xs in the estimated specification removes

sorting bias, it also absorbs some of the variation in the underlying amenity factors for which Xs

affects taste. Furthermore, if some elements of the school-level observables Z2s also serve directly

as amenities in As, then these elements will be collinear with Xs, undermining our ability to estimate

the vector G2.27

On the other hand, components of Z2sΓ2 + zU
s that are either not valued or not fully known (or

26Post multiplying both sides of (5) by βU and taking expectations conditional on s(i) = s establishes that

xU
s = XsΠXU X β

U + x̃U
s .

This fact and (7) from Proposition 1 (after multiplying both sides by βU ) implies that x̃U
s = XsVar(Xi)

−1R
′
Var(X̃U

i )βU .
Comparing this result with the equation for X̃U

s implied by taking expectations of both sides of (24) conditional on s(i) = s
establishes the claims in the text.

27Nor can we estimate the effect of a school level variable in the unlikely event that it is perfectly determined by Xs
through the political process.
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knowable) by parents at the time the school/neighborhood is chosen will not be elements of As,

although they may be correlated with As. Such components will still produce variation in average

outcomes across schools, and will break the collinearity between Xs and Z2s. Similarly, if the out-

come is measured after high school is completed, any common shocks that affect the outcomes of

all those who attended a particular high school will also not be absorbed by Xs, yet will produce

between-school variation in outcomes.

5.3.1 Identification of Γ2

The existence of ΠzU
s Z2s

in the expression for G2 in (31) reveals that even when the conditions of

Proposition 1 are satisfied, G2 still reflects omitted variables bias driven by correlations between Z2s

and the unobserved school characteristics index zU
s . Thus, estimating the vector of causal effects Γ2

associated with the school characteristics Z2s will in general still require a vector of instruments.

However, the sorting model in Section 2 also sheds light on the circumstances in which ΠzU
s Z2s

=

0, so that Ĝ2 represents an unbiased estimator of the vector of causal effects Γ2. In particular,

suppose that every unobserved school characteristic that contributes to the index zU
s and is correlated

with Z2s is either an amenity considered by individuals at the time of choice or is perfectly predicted

by the vector of amenities. Furthermore, suppose the spanning assumption is satisfied so that As is

a function of Xs. This implies that Xs also perfectly determines the part of zU
s that is correlated with

Z2s. In this case, the residual variation in zU
s will be orthogonal to Z2s. As a result, ΠzU

s Z2s
= 0, and

Ĝ2 will be an unbiased estimator of Γ2.

Because we suspect that there are a large array of outcome-relevant school inputs, not all of

which are directly and accurately valued by parents when choosing schools, we do not assume

that ΠzU
s Z2s

= 0 in our empirical work. Thus, we do not attempt to interpret the individual coeffi-

cients estimated by Ĝ2.28 However, this analysis does suggest that controlling for group-averages

of individual characteristics can potentially remove part of the omitted variable bias from estimated

coefficients on group-level characteristics. This is particularly true in contexts where those choosing

groups are thought to consider and at least noisily observe most of the group-level characteristics

expected to have substantial causal effects. We return to this point when considering the estimation

of teacher value-added in Section 9.

6 Mechanics of Measuring School and Neighborhood Effects

6.1 Variance Decomposition

In the empirical work below, we estimate models of the form

Yi = XiB+XsG1 +Z2sG2 + vsi, (33)
28See Meghir et al. (2011) for a recent discussion of some of the issues in estimating the effects of particular school

characteristics. They highlight the vector of omitted school characteristics that determines zU
s as a key source of bias.
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where Xs is a vector of school-averages of student characteristics, and Z2s is a vector of observed

school characteristics (such as school size or student-teacher ratio). We can decompose the variance

of Yi into observable and unobservable components of both within- and between- school variation

via

ˆVar(Yi) = ˆVar(Yi−Ys)+ ˆVar(Ys) (34)

= [ ˆVar((Xi−Xs)B)+ ˆVar(vsi− vs)]+

[ ˆVar(XsB)+2 ˆCov(XsB,XsG1)+2 ˆCov(XsB,Z2sG2)+ ˆVar(XsG1)+

2 ˆCov(XsG1,Z2sG2)+ ˆVar(Z2sG2)+ ˆVar(vs)]. (35)

Motivated by the model of sorting presented in Section 2, we introduce two alternative lower bound

estimators of the contribution of school/neighborhood choice to student outcomes.

The first lower bound estimator is ˆVar(Z2sG2 + vs). Due to the presence of Xs in (33) it will

be purged of any effects of student sorting (observable or unobservable). Thus, it isolates only

school/neighborhood factors. ˆThe component vs includes z̃U
s , the unpredicted component of the

school/neighborhood contribution. However, for post secondary outcomes such as college enroll-

ment and permanent wage rates vs will also include ξs. Recall that ξs is an index of common

location-specific shocks (such as local labor demand shocks) that occur after the chosen cohort has

completed high school. One can argue that such shocks should not be attributed to schools because

they are beyond the control of school or town administrators. The effect is likely to be second order

for permanent wages. This is because local shocks that persist for less than 6 years will not bias

the method of moments estimator that we use. Furthermore, we pointed out in Section 3.2 that vs

will also contain an approximation error if the linearity assumption A4 is violated. This could lead

to upward bias in our estimates of variance of school/neighborhood effects.

Consequently, we also consider a second, more conservative lower bound estimator: ˆVar(Z2sG2).

This estimator only attributes to schools/neighborhooods the part of the residual between-school

variation that could be predicted based on observable characteristics of the schools at the time

students were attending. ˆVar(Z2sG2) excludes true school quality variation that is orthogonal to

observed characteristics, but also excludes any truly idiosyncratic local shocks that occur after grad-

uation.29

Online Appendices A6 and A7 describe the process by which the coefficients B, G1, and G2 are

estimated, as well as the process by which the empirical variance decomposition is performed. The

implementation differs depending on whether the outcome is binary or continuous.

29The approximation error might also bias G2, but we think this is likely to be minor given that we are controlling for
Xs.
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6.2 Interpreting the Lower Bound Estimates

The static sorting model presented in Section 2 is silent about when in a student’s childhood the

school/neighborhood decision is made. To illustrate how different assumptions about timing affect

the interpretation of our bounds, consider first the case in which changing schools/communities is

costless, so that each family decides each year where to live and send their children to school.

In this case, if the data are collected in 10th grade (as in ELS2002), then any impact of prior

schools/neighborhoods can be thought of as entering the outcome equation by altering the observ-

able or unobservable student contributions Xi and XU
i . Thus, if prior schooling inputs affect WTP

for school/neighborhood amenities, our control function argument suggests that 10th grade school

averages of Xi will absorb all between-school variation in prior school contributions. In this case,

the residual variance contributions Var(Z2sG2) or Var(Z2sG2 + vs) that we identify will represent a

lower bound on the contributions of only the high schools and their surrounding neighborhoods to

our outcomes.

Now consider the opposite extreme: moving costs are prohibitive, and each family makes a

one time choice about where to settle down when they begin to have children. Suppose that the

observed characteristics Xi are unaffected by early schooling.30 Then Xs will span the subspace

of the school/neighborhood amenities As as well as XU
s as they existed when the family made its

choice. In this scenario, the residual variance contributions Var(Z2sG2) or Var(Z2sG2 + vs) that

we identify will represent a lower bound on the variation in contributions to our later outcomes of

entire sequences of schools (elementary, middle, and high) and entire childhoods of neighborhood

exposure. In reality, of course, moving costs are substantial but not prohibitive, so that our estimates

probably reflect a mix of elementary school and high school contributions, with a stronger weight

on high school contributions.31 However, note that as long as high school quality in a neighborhood

is positively correlated with elementary and middle school quality, a lower bound estimate of the

variance of high school contributions is itself a (very conservative) lower bound estimate of the

variance of contributions of entire school systems. Thus, since our goal is to create an inviolable

lower bound, the safest interpretation is that our estimates represent lower bounds on the variance

of the cumulative effects of growing up in different school systems/neighborhoods.

6.3 Measuring the Effects of Shifts in School/Community Quality

The fraction of outcome variance unambiguously attributable to school/neighborhood factors

provides a good indication of the importance of school/community factors relative to student-

30As outlined in Section 7 below, we choose a set of variables in Xi that satisfies this property in our baseline specifi-
cation for each dataset.

31This interpretation is consistent with the evidence on moving in our data. In the ELS2002 base year survey, parents
report the number of years they have lived in the current neighborhood. 22.5% report 3 years or less, 29.91% report 4 to
7 years, 14.32% report 8 to 10 years, and 42.3% report more than 10 years. Parents also report the number of times the
student changed schools, not counting natural transitions resulting from grade advancement (e.g., from the elementary
school building to the middle school building). The values are 43.31% for no changes, 24% for 1 change, 12.5% for 2
changes, 9.94% for 3 changes, 5.28% for 4 changes, and 4.99% for 5 changes.
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specific factors. However, the effect of a shift in school/community quality from the left tail of

the distribution to the right tail of the distribution might be socially significant even if most of the

outcome variability is student-specific. This is particularly true in the case of binary outcomes such

as high school graduation and college enrollment, where many students may be near the decision

margin. Below we report lower bounds on the effect of a shift in school/neighborhood quality from

1.28 standard deviations below the mean to 1.28 standard deviations above the mean. This would

correspond to a shift from the 10th percentile to the 90th percentile if this component has a normal

distribution. We interpret these as lower bound estimates of the average change in outcomes from a

10th-to-90th quantile shift in the full distribution of school/neighborhood quality, where the average

is taken over the distribution of student contributions.

The more comprehensive estimates use V̂ar(Z2sG2 + vs) to calculate the 10th-90th shifts, while

the more conservative estimates that seek to remove common shocks use V̂ar(Z2sG2). For binary

outcomes, we estimate the effect of the shift in Z2sG2 via:

E[Ŷ 90− Ŷ 10] =
1
I ∑

i
Φ(

[XiB̂+XsĜ1 +Z2sĜ2 +1.28(V̂ar(Z2sG2))
.5]

(1+V̂ar(vs)).5
)

− 1
I ∑

i
Φ(

[XiB̂+XsĜ1 +Z2sĜ2−1.28(V̂ar(Z2sG2))
.5]

(1+V̂ar(vs)).5
) (36)

This average effectively integrates over the distribution of XiB+XsG1 + vsi, but uses the empirical

distributions of XiB and XsG1 (since they are observed) instead of imposing normality. Note that the

scale of the latent index Yi is unobserved, so we have normalized Var(vsi− vs) to 1.

We estimate the effect of the shift in Z2sG2 + vs analogously via:

E[Ŷ 90− Ŷ 10] =
1
I ∑

i
Φ(

[XiB̂+XsĜ1 +Z2sĜ2 +1.28(V̂ar(Z2sG2 + vs))
.5]

(1)
)

− 1
I ∑

i
Φ(

[XiB̂+XsĜ1 +Z2sĜ2−1.28(V̂ar(Z2sG2 + vs))
.5]

(1)
) (37)

We also report lower bound estimates of the impact of a 10th-to-50th percentile shift in school/neighborhood

quality. For the binary outcomes, the impact of a shift in Z2sG2, or (Z2sG2 + vs) will depend on the

values of a student’s observable characteristics, XiB. Thus, we report average impacts for certain

subpopulations of interest as well.32

32Recall that we have ruled out interactions between Xi or XU
i and Zs or zU

s in the production of Yi. To see how such
nonseparabilities can be addressed, first consider the simple case in which the interaction involves observed student and
school characteristics. Suppose, for example, that low income students benefit disproportionately from a low student
teacher ratio, one of the elements of Z2s. One could add the interaction between family income and the student/teacher
ratio to the outcome equation. If Proposition 1 holds, then the interaction between family income and the student teacher
ratio will be unrelated to the error term conditional on Xs, which includes the mean of family income. One can estimate
the coefficient on the interaction term. Next consider the interaction between an observed school characteristic Xsli and the
unobserved index zU

s . This will show up as variation across schools in Cov(Ysi,Ysi′ |Xlsi,Xlsi′) as well as variation across
schools in Var(Ysi′ |Xsli). It might be possible to learn about the importance of XslizU

s from such moments. Similarly,
interactions between xU

si and elements of Zs would influence Var(Ysi|Zs). With a nonseparable education production
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7 Data and Variable Selection

7.1 Overview of Data Sources

Our analysis uses data from four distinct sources. The first three sources consist of panel surveys

conducted by the National Center for Education Statistics: the National Longitudinal Study of 1972

(NLS72), the National Educational Longitudinal Survey of 1988 (NELS88), and the Educational

Longitudinal Survey of 2002 (ELS2002). These data sources possess a number of common proper-

ties that make them well suited for our analysis. First, each samples an entire cohort of American

students. The cohorts are students who were 12th graders in 1972 in the case of NLS72, 8th graders

in 1988 for NELS88, and 10th graders in 2002 for ELS2002. Second, each source provides a rep-

resentative sample of American high schools or 8th grades and samples of students are selected

within each school. Both public and private schools are represented.33 Enough students are sam-

pled from each school to permit construction of estimates of the school means of a large array of

student-specific variables and to provide sufficient within-school variation to support the variance

decomposition described above. Third, each survey administered questionnaires to school admin-

istrators in addition to sampled individuals at each school. This provides us with a rich set of both

individual-level and school-level variables to examine, allowing a meaningful decomposition of ob-

servable versus unobservable variation at both levels of observation. Fourth, each survey collects

follow-up information from each student past high school graduation, facilitating analysis of the

impact of high school environment on two or more of the outcomes economists and policymakers

care most about: the dropout decision, college enrollment, years of college, and and wage rates.

While these common properties are very helpful, differences in the surveys complicates efforts

to compare results across time. In our previous work (Altonji and Mansfield (2011)) we restricted

attention only to variables that are available and measured consistently across all three datasets.

However, because the efficacy of the control function approach introduced in this paper depends on

the richness and diversity of our student-level measures, for each dataset we include in Xi student-

level measures that may not appear in the other datasets. Section 7.3 details the process by which

we chose what to include in Xi, Xs, and Z2s, and Table 1 provides a list.

The one major drawback associated with the three panel surveys is that only around 20 students

per school are generally sampled. The simulation results discussed in Section 4 indicate that sam-

ples of this size may reduce to some degree the ability of sample school averages of observable

characteristics to serve as an effective control function for variation in average unobservable student

contributions across schools.

function schools may no longer be ordered. The best school for a low income student may not be the best school for a
high income student. When the nonseparability involves observed variables, one could measure the average performance
of a school over the distribution of student characteristics, and define the 10th and 90th percentile schools accordingly.
Alternatively, one could identify the 10th percentile school and the 90th percentile school for each student, evaluate the
difference in outcomes between the two schools, and then average over all students.

33We include private schools because they are an important part of the education landscape. However, the connection
between characteristics of the school and characteristics of the neighborhood may be weaker for private school students.

25



Consequently, we also exploit administrative data from North Carolina on the universe of public

schools and public school students (including charter schools) in the state. Since the North Carolina

data contains information on every student at each school, it does not suffer from the same small

subsample problem as the panel surveys. Furthermore, we can use the North Carolina data to assess

the potential for bias in our survey-based estimates more directly. Specifically, we draw samples

of students from North Carolina schools using either the NLS72, NELS88, or ELS2002 sampling

schemes and re-estimate the model for high school graduation using these samples. By comparing

the results derived from such samples to the true results based on the universe of students in North

Carolina, we can determine which if any of the survey datasets is likely to produce reliable results.

Online Appendix Table A10 reports the results of this exercise. It shows that using school sample

sizes whose distributions match the NLS72, NELS88, or ELS2002 distributions generates only

relatively minor biases, generally increasing V̂ar(Z2sG2) and decreasing V̂ar(Z2sG2 + vs) by less

than ten percent of their full sample values.

The North Carolina data are also the most recent: data are collected for all 2004-2006 public

school 9th graders. On the other hand, high school graduation is the only outcome we observe. And

the set of observable characteristics is not as diverse as in the panel surveys, though it is surprisingly

rich for administrative data.

We restrict our samples to those individuals whose school administrator filled out a school sur-

vey, and who have non-missing information on the outcome variable and the following key charac-

teristics: race, gender, SES, test scores, region, and urban/rural status.34 We then impute values for

the other explanatory variables to preserve the sample size, since no one other variable is critical to

our analysis.35 Finally, we use panel weights. The appropriate weights depend on the analysis. See

online Appendix A9 for the details.

7.2 Outcome Measures

The outcome variables are defined as follows. The measure of college attendance is an indicator

for whether the student is enrolled in a four year college in the second year beyond the high school

graduation year of his/her cohort. It is available in each dataset except the North Carolina data.36

The sample college enrollment rate is 27 percent in NLS72, 31 percent in NELS88, and 37 percent

in ELS2002. For NELS88 and ELS2002 the measure of high school graduation is an indicator for

34SES and urban/rural status are not available in the North Carolina data.
35This results in sample sizes for the four-year college enrollment analyses of: 12,257 from 903 schools for NLS72,

11,937 from 942 schools for NELS88, 12,168 from 686 schools for ELS2002. The sample sizes and number of schools
for the high school graduation analyses are 12,307 and 943 for NELS88, 12,096 and 686 for ELS2002, and 283,157 and
338 for North Carolina respectively. The analysis of years of postsecondary education uses 12,229 observations from
902 schools from NLS72, and the wage analysis uses 4,932 individuals with 9,864 wage observations from 901 schools.
We include mother’s education combined with a missing indicator for mother’s education when performing imputation,
along with school averages of all the key characteristics above. Appendix Tables A11-A18 report percent imputed for
each variable.

36However, in NLS72 enrollment status is reported in January-March of the second full school year after graduation,
while in NELS88 and ELS2002 it is reported in October.
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whether a student has a high school diploma (not including a GED) as of two years after the high

school graduation year of his/her cohort. For the North Carolina data, the measure is an indicator

for whether the student is classified as graduated for the official state reporting requirement. Notice,

though, that since ELS2002 first surveys students in 10th grade, it misses a substantial fraction of

the early dropouts. Indeed, in NELS88, about one third of the 16 percent who eventually drop out do

so before the first follow up survey in the middle of 10th grade. The North Carolina data considers

students as eligible for official dropout statistics if they are enrolled in a North Carolina school at

the beginning of 9th grade, so there is little scope for underestimating the dropout rate. Given that

NLS72 first surveys students in 12th grade, we cannot properly examine dropout behavior in this

dataset. However, because NLS72 re-surveys students in 1979 and 1986, when respondents are

around 25 and 32 years old, respectively, we can use it to analyze completed years of postsecondary

education and wages during adulthood. We use years of academic education as of 1979, because

attrition and subsampling reduced the 1986 sample by a considerable amount relative to the 1979

follow-up survey, and most respondents have completed their education as of 1979. For the wage

analysis, we include only respondents who report wages in both 1979 and 1986.

7.3 Selection of Xi, Xs, and Z2s

Xi should include variables that directly affect the outcome and/or are correlated with unob-

served student level characteristics that affect the outcome. In our “baseline” specification we only

use student-level characteristics that are unlikely to be affected by the high school the child attends.

However, we also provide results from a “full” specification which includes in Xi measures of stu-

dent behavior, parental expectations, and student academic ability (standardized test scores). Such

measures may be influenced directly by school inputs, so including them could cause an underesti-

mate of the contribution of school-level inputs (our lower bound estimates will be too conservative).

On the other hand, excluding such measures could instead cause an overestimate of the contribu-

tion of school-level inputs if the sparser set of student observables no longer satisfies the spanning

condition stated in Proposition 1. In this case there would exist differences in average unobserv-

able student contributions to outcomes across schools that are not predicted by the vector of school

averages of observable characteristics.

For purposes of the control function, Xs should contain aggregates of Xi. If one has school level

averages of student level variables for which one does not have individual level data, then these

aggregates should also be included (there are no such variables is the data sets we use).

What should be in Z2s? Observed school and neighborhood characteristics that could plausibly

influence the socioeconomic outcome of interest.

What should not be in Z2s? Z2s should exclude variables that are simple aggregates of par-

ent/student traits that might also affect willingness to pay for neighborhood characteristics and thus

lead to sorting. These are Xs variables regardless of whether the source is aggregates of the student

micro data, Census data or administrative data from the schools.
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School level variables that are determined both by school policy/efficacy and by the character-

istics of the students fall in a grey area. In ELS2002, we include Frequency of Fights at the school

in Xs in our full specification. This variable is determined by school and neighborhood quality and

by the unobserved characteristics of students. To the extent school policy and the skill of teachers

and the administration have a big effect on fighting, we are being conservative in our estimates of

school effects.

We also have a separate measure of school security policies. This belongs in Z2s even if the

policies in part are a response to the characteristics of students.

The other example we wish to highlight is average daily attendance percentage. Daily attendance

reflects both characteristics of the students and school quality. Suppose Proposition 1 fails, and Xs

is not sufficient to control for unobserved student body characteristics that directly influence school

attendance and education outcomes. Then including daily attendance in Z2s rather than in Xs might

bias our estimates school/neighborhood upward. On the other hand, including it in Xs would lead

us to understate school/neighborhood effects if school policy/quality has a big effect on attendance.

In the end we opted to exclude average percent daily attendance from the model.

The same issues apply to test scores measured during high school. Test scores are determined

by school quality and by student characteristics. We include them in X2s in the “full” specification.

We never include them in Z2s. This is conservative.

Table 1 lists the final choices of individual-level and school-level explanatory measures used in

each dataset. Online Appendix Tables A11 - A18 provide the mean, standard deviation, and percent

of observations imputed for each individual-level and school-level characteristic for each of our four

datasets.

8 Results

We now turn to the results. Along with the point estimates, we report bootstrap standard error

estimates based on re-sampling schools with replacement, with 500 replications. To preserve the

size distribution of the samples of students from particular schools, we divide the sample into five

school sample size classes and resample schools within class.

8.1 High School Graduation

The full variance decompositions described in Section 6 are provided for each of our outcomes

in online Appendix Tables A19, A20, and A21. Panel A of Table 2 displays our lower bound

estimates of the fraction of variance in the latent index that determines high school graduation that

can be directly attributed to school/neighborhood choices for each dataset. The first row presents

estimates that exclude Var(vs) (labeled “no unobs”), while the second row presents estimates that

include Var(vs) (labeled “w/ unobs”). However, recall that the motivation for excluding vs is that it
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may reflect common shocks that occur after high school that may not be responsive to any changes

in school or neighborhood policies. Since graduation is not a post-secondary outcome, vs is likely

to contain only school and neighborhood contributions that are orthogonal to the observed school-

level measures Z2s (or sorting bias if the spanning condition from Proposition 1 fails). Thus, for

high school graduation we focus on the results that contain vs. The first column displays the results

from the baseline specification using the North Carolina data: our lower bound estimate is that at

least 4.9 percent of the total student-level variance can be attributed exclusively to school system

and neighborhood contributions. Since the set of observed individual-level measures Xi is somewhat

sparse in the North Carolina data, it is possible that our control function of school-averages Xs does

not span the full amenity space, so that unobservable sorting bias may contribute to this estimate.

Thus, the second column displays results from the full specification that augments Xi by adding

past test scores and measures of behavior. Since these measures could potentially have been altered

by the school, including them removes some true school system contributions, but also makes the

spanning condition in Proposition 1 more plausible. The estimated lower bound falls from 4.9

percent to 3.6 percent of the latent index variance.

Comparing the North Carolina results to those of NELS88 (Columns 3 and 4) and ELS2002

(Columns 5 and 6), a couple of noteworthy patterns emerge. First, across both specifications and

both lower bound estimates, NELS88 features smaller fractions of outcome variance unambigu-

ously attributable to schools/neighborhoods than either NC or ELS2002 (∼ 1% relative to∼ 2-3%).

One possible explanation for this finding is that NELS88 school-level observables (Z2s) reflect the

8th grade school environment while the corresponding measures in the other two datasets reflect

the high school environment. It could be that the nature of the high school environment is partic-

ularly critical to dropout prevention. Second, comparing Row 2 across columns, we see that the

North Carolina administrative data features the largest gap between the lower bound estimates that

include versus exclude the school level residual, vs, while the gap is negligible for ELS2002. This

is not surprising; the North Carolina data has the sparsest set of school-level observables, which

leads to a small ˆVar(Z2G2) relative to ˆVar(vs), since less true variation in school quality is captured

by observables. North Carolina also has the sparsest set of student-level observables (even in the

full specification), which may cause vs to contain some between-school variation in student unob-

servables XU
s βU that is unabsorbed by the control function (the spanning condition in Proposition 1

fails). By contrast, ELS2002 has the richest set of both student-level and school-level observables,

so that there is very little residual school-level variation that cannot be captured by either the control

function Xs or the school-level observables Z2s.

The small fractions of variance attributed to schools in Panel A are consistent with the consider-

able literature emphasizing the importance of student talent, parental inputs, and even luck relative

to school and neighborhood inputs in determining who completes high school. Online Appendix

Table 19 provides a full variance decomposition that shows the critical role that individual-specific

factors play. However, to get a more intuitive sense of the difference that an effective school sys-

tem and neighborhood can make, in Panel B we use these two alternative lower bound variance
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estimates to form estimates of the average impact on the probability of graduation across the dis-

tribution of student contributions of choosing a school at the 90th percentile of the distribution of

school/neighborhood contributions instead of a school at the 10th percentile. We can think of this as

a thought experiment in which two students at each quantile in the student contribution distribution

are placed either in the 10th or the 90th quantile school system, and the difference in the graduation

status of these two pairs is summed over all such pairs.

The most striking feature of the results is the large magnitude of the estimated changes in gradu-

ation rates. For North Carolina, the estimate from the baseline specification suggests that, averaged

across the student distribution, attending a 90th quantile school increases graduation rates by a

whopping 17.4 percentage points relative to a school at the 10th quantile (from 67.6% to 85.0%)

The corresponding estimates are 9.8 percentage points for NELS88 (80.7% to 90.5%) and 8.3 per-

centage points for ELS2002 (86.0% to 94.3%). Even the more conservative estimates from the

full specification, which likely removes mostly true school/neighborhood contributions, suggest in-

creases in graduation rates from a 10th-to-90th quantile shift of 15.2, 7.5 and 7.0 percentage points

in NC, NELS88, and ELS2002, respectively. Notice further that these estimates are quite large de-

spite the fact that the fractions of variance upon which they are based is quite small: 3.6, 1.6, and

2.5 percent for NC, NELS88 and ELS2002. One reason for this seeming disconnect is that squaring

of deviations to produce variances will naturally mute moderate differences in school contributions

relative to the standard deviations on which the 10-90 shifts are based. A second reason may be

related to our reliance on the probit function and the assumption of normality. If the true distri-

bution of latent student contributions is normal, and the graduation rate is not too high, then there

is likely to be large mass of students near the decision margin. Thus, even a small push from the

surrounding school/neighborhood environment may be enough to induce a significant fraction of

students to graduate.

Second, notice that even though the estimated lower bound fractions of variance were smaller

for NELS88 than for ELS2002 in Row 2 of Panel A, the 10th-90th impact estimates displayed in

Row 2 of Panel B are larger for NELS88. This is due to differences in the sample average graduation

rates across the datasets. The graduation rate is 76 percent in the North Carolina data, 86 percent

in NELS88, and 90 percent in ELS2002. As a result, a shift of the same magnitude will induce a

greater increase in NELS88 than in ELS2002 (and an even larger shift in NC), because there seem

to be fewer students near the decision margin. Intuitively, as the sample average converges to 100

percent graduation, the variation in the latent index determining the personal relative benefit from

graduating becomes less relevant, as the entire population is far from the decision threshold .

Assuming the conditions of Proposition 1 are satisfied or nearly satisfied, the large lower bound

estimates suggest that school systems and neighborhoods have a considerable role to play in deter-

mining which students graduate high school.
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8.2 Enrollment in a Four-Year College

Panel A of Table 3 presents results for the decomposition of the latent index determining en-

rollment in a four-year college. Comparing the baseline specifications from NLS72, NELS88, and

ELS2002 (Columns 1, 3, and 5), we observe a surprising consistency in both of the lower bound

estimates of the school/neighborhood contribution across datasets and generations. Estimates that

exclude the between-school residual vs attribute at least 1.8 to 2.6 percent of the outcome variance

to schools/neighborhoods, while estimates that include vs attribute 3.8 to 4.6 percent. Including

test scores and behavioral variables reduces these lower bound estimates in a consistent fashion

across the three panel surveys (Columns 2, 4, and 6), with the estimates that exclude the residual vs

dropping to between 1.5 and 1.9 percent, and the estimates that include the residual vs dropping to

between 2.9 and 3.2 percent.

Panel B of Table 3 converts these variance fractions into the more easily interpreted average

impacts of a 10th-to-90th quantile shift in school/neighborhood environment. Recall that the sample

average college enrollment rate is 27 percent in NLS72, 31 percent in NELS88, and 37 percent in

ELS2002. Since more of the students are not close to the college attendance threshold in 1972, fewer

of them reach the decision margin for a given shift in school/neighborhood environment, relative

to the cohorts from later generations. Despite these differences in baseline enrollment rates, the

estimated lower bounds on the increase in the four-year enrollment rate from moving every student

(one at a time) from the 10th to the 90th quantile school/neighborhood are fairly consistent across

generations. When the residual component vs is excluded and the full specification is considered,

the estimates for each dataset are between 11 and 13 percentage points (Row 1, Columns 2, 4, and 6

of Panel B). Specifically, a 10th to 90th quantile shift in the school/neighborhood component Z2sG2

increases enrollment rates from 21.0% to 32.9% in NLS72, from 26.1% to 37.3% in NELS88, and

from 30.2% to 43.4% in ELS2002. Including the residual between-school component boosts the

range of estimates to 15 to 17 percentage points. Even 10th-to-50th quantile shifts still produce

average estimated impacts between 5 and 8 percentage points.

As with the estimates for high school graduation, the estimates in Table 3 suggest that schools

and neighborhoods also play an important role in determining who enrolls in a four-year college.

8.3 Heterogeneous Effects of 10th-90th Percentile Shifts in School Quality

The estimates reported in Panel B of Tables 2 and 3 are based on starting the full distribution of

students at a 10th quantile school versus starting them at a 90th quantile school. However, many of

the students with superior background characteristics would be quite unlikely to ever be observed in

a 10th quantile environment. A more realistic estimate might place greater weight on the individual-

specific estimates associated with the kinds of students most likely to be observed in 10th quantile

schools. While our method does not allow us to discern the quality of any given school, we can

nonetheless explore the extent to which the estimates in Tables 2 and 3 conceal heterogeneity in

the relative impact of alternative schools across students with varying student backgrounds. Due to
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the nonlinearity in the probit function that links Yi to the binary outcome indicators for high school

graduation and enrollment in a four-year college, the sensitivity to school quality is higher for groups

with values of XiB̂ that place them closer to a probability of 0.5. High school graduation is therefore

more sensitive to school quality for disadvantaged groups and less sensitive for advantaged groups.

The opposite tends to be true for enrollment in a four-year college.

Table 4 reports the lower bounds (excluding and including the school-level residual vs) for the

effect of a 10th to 90th percentile shift in school quality on graduation rates for two extreme cases:

students whose value of the background index XiB̂ places them at the 10th quantile of the XiB̂

distribution (Rows 1 and 2), and students at the 90th quantile of the XiB̂ distribution (Rows 3 and

4). For the North Carolina sample and the full specification (Column 2), the lower bound estimates

that include the between-school residual component vs suggest a 22.9 percentage point increase for

students at the 10th quantile (43.2% to 66.1%) and a 6.3 percentage point increase for students at

the 90th quantile (90.8% to 96.2%), respectively. For NELS88 grade 8 (Column 4), the numbers are

smaller, particularly for the 90th quantile: lower bound estimates that include vs are 15.9 percentage

points (55.5 to 71.4) and 0.6 percentage points (99.0% to 99.7%). This partly reflects the fact that

the average dropout rate is lower for the NELS88 than for the state of North Carolina between

2007 and 2009. ELS2002 results are quite similar to those from NELS88. The results suggest

that advantaged students tend to graduate high school regardless of the school they attend, while

disadvantaged students are strongly affected by school quality.

Table 4 also reports the average impact of a 10th-90th shift on high school graduation rates

for three subpopulations of interest: black students, white students with single mothers who did

not attend college, and white students with both parents present, at least one of whom completed

college. For the full specification in the North Carolina sample, the shift increases the predicted

graduation rate among black students from 68.4% to 83.6% (a net gain of 15.2 percentage points).

The corresponding increase for white students with single mothers who did not attend college is

20.6 percentage points (69.2% to 84.3%), while the increase for white students with both parents,

at least one of whom completed college, is 8.4 percentage points (86.3% to 94.6%). The estimated

increases in graduation rates are consistently smaller in the NELS88 and ELS samples, but are still

between 5 and 12 percentage points for black students and for white students with single mothers

who did not attend college.

Table 5 reports a corresponding set of results for enrollment in a four-year college. The college

enrollment rates for students at the 10th percentile of the XiB̂ distribution are substantially less

sensitive to school quality, reflecting the fact that most such students are nowhere near the four-year

college enrollment margin. For example, the ELS2002 estimate from the full specification suggests

that a 10th-90th shift in the school system/neighborhood component Z2sG2 + vs would increase the

college enrollment rates of students at the 10th percentile of XiB̂ by 6.4 percentage points (from

2.1% to 8.6%). More generally, the lower bound estimates that exclude and include the residual vs

are between 2.7 and 5.0 percentage points and between 3.4 and 6.4 percentage points, respectively,

depending on the dataset and specification. In contrast, for students at the 90th percentile of XiB̂
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the ELS2002 estimate from the full specification suggests that a 10th-90th shift in Z2sG2+vs would

increase enrollment rates at four-year colleges by 16.7 percentage points (from 72.8% to 89.6%).

More generally, across datasets the lower bound estimates excluding and including vs for students

at the 90th percentile of the XiB̂ distribution are between 13 and 18 percentage points and 17 and

23 percentage points, respectively. The values for blacks and for whites with non-college-educated

single mothers are similar to the results for the full sample, while the values for whites with college

educated parents are close to those for the 90th percentile of the XiB̂ distribution.

Overall, it appears that, except for the lowest stratum of student background, many students are

close enough to the decision margin for a major shift in school quality to be a deciding factor in

determining enrollment in a four-year college.

8.4 NLS Results for Years of Postsecondary Education and Permanent Log Wages

Table 6 displays the lower bound estimates of the impact of 10th-to-90th and 10th-to-50th shifts

in school/neighborhood quality on years of postsecondary education and permanent log wages for

the NLS72 sample. The baseline lower bound estimate that excludes the between-school residual

vs implies that a 10-90 shift in school quality increases years of postsecondary education by .31

years, while including standardized tests among the observable characteristics reduces this estimate

to .20 years. Note, though, that since the NLS72 data is collected in 12th grade, the standardized

test scores are particularly likely to reflect high school quality, making the full specification a likely

underestimate. Adding the variance in the unexplained between-school component raises these esti-

mates to .45 and .33 years respectively. 10th-to-50th quantile shifts are half as large by construction,

since no non-linear transformation takes place when the outcome is continuous (the “latent” index

is perfectly revealed). Collectively, the estimates suggest a substantive impact of shifts in school

quality on years of college education.

Columns 3-6 contain analogous estimates for the permanent component of log wages. Columns

3-4 reflect specifications in which years of postsecondary education is not included as a control,

while columns 5-6 include years of postsecondary education to focus on the effect on log wages

that does not occur via postsecondary education. In practice, the two sets of estimates are quite

similar. The estimates that exclude the residual vs imply that a 10-90 shift in school quality increases

wages by around 17 percent (100e0.157−100). The 10-50 shifts are again half as large at around 8.5

percent. Estimates that include vs imply that a 10-90 shift in school/neighborhood quality increases

wages by about 19 percent. Thus, at least for the 1972 cohort, shifts in school quality also seem to

have important impacts for longer run outcomes of prime importance for worker welfare.

Chetty and Hendren (In Progress) find that 20 years in a 1 standard deviation better neighbor-

hood raises the log of adult earnings by about 10%. When we include vs we find that a one standard

deviation shift in school/neighborhood raises permanent wage rates by 0.069 (0.069=0.177/(2*1.28).

Several factors contribute to the difference between the studies.. First, families are mobile and we

only condition on attendance in that same high school (or in 8th grade in the the case of NELS88).
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Consequently, our estimate represents the effect of a substantially shorter period of exposure than

20 years. This fact alone could easily reconcile the studies. Second, if neighborhood/school quality

raises employment and hours as well as wage rates, then the wage effect will be smaller than the

effects on earnings. Third, our estimates are likely to be a lower bound. On the other hand, the fact

that Chetty and Hendren work at the county level is likely to reduce their estimates relative to our

school level estimates. This because the standard deviation of county level effects abstracts from

within county heterogeneity in school/neighborhood quality.

8.5 Alternative Estimators

In this subsection we compare our lower bound estimates above with two alternative estimators

of school and neighborhood effects more commonly observed in the literature.

First, in Online Appendix Tables A1 - A2 we report estimates of Var(XsG1 + Z2sG2 + vs), or

equivalently Var(Ys−XsB). By including XsG1, this estimate reintroduces peer effects that oper-

ate through school averages of observable or unobservable student characteristics as well as other

unobserved school inputs that are predictable based on Xs given Z2s. But XsG1 also includes the

component XsΠX̃U
s Xs

βU , which reflects student sorting on unobservable characteristics. If there is

no sorting on XU
i , then the sorting component XsΠX̃U

s Xs
βU = 0, and Var(XsG1 + Z2sG2 + vs) =

Var(ZsΓ+zU
s +ξs). This is the true variance in school/neighborhood treatment effects. When unob-

servables do contribute to sorting, then Var(XsG1+Z2sG2+vs) will generally overstate the variance

in school/neighborhood treatment effects.37

Indeed, across all of the specifications and outcomes for the panel surveys these estimates

are noticeably larger than our lower bound estimates. For example, for the full specification in

NELS88, the sorting-on-observables estimator attributes 5.2% of the variance in the latent in-

dex that determines high school graduation to schools/neighborhoods, compared to 2.5% for the

lower bound estimate of Var(Z2sG2). The associated effect of a 10th-to-90th quantile shift in the

school/neighborhood quality on graduation is .10 (relative to .07 for the lower bound estimate).38

For enrollment in a four-year college, the corresponding school/neighborhood variance fractions for

the ELS full specification is 4.3% (versus 3.1% for the lower bound estimate), which corresponds

to a 10th-to-90th shift in the probability of enrollment of .205 (versus .170). The only case in which
ˆVar(XsG1+Z2sG2+vs) is not substantially higher than ˆVar(Z2sG2+vs) is for the high school grad-

37From (27), Var(XsG1+Z2sG2+vs) =Var(ZsΓ+zU
s +ξs+XsΠx̃U

i Xs
βU ). If the covariances between XsΠx̃U

i Xs
and the

components of the school treatment effect ZsΓ+ zU
s +ξs are sufficiently negative, then one can find Var(XsG1 +Z2sG2 +

vs) < Var(ZsΓ+ zU
s + ξs). In this case, which we consider unlikely, even Var(XsG1 +Z2sG2 + vs) would understate the

true contribution of schools/neighborhoods to the variance in outcomes.
38The effects a 10-to-90th shift in XsG1 +Z2sG2 + vs are constructed as

E[Ŷ 90− Ŷ 10] =
1
I ∑

i
Φ(

[XiB̂+X sĜ1 +Z2sĜ2 +1.28(V̂ar(X1sG1 +Z2sG2 + vs))
.5]

(1)
)

− 1
I ∑

i
Φ(

[XiB̂+X sĜ1 +Z2sĜ2−1.28(V̂ar(X1sG1 +Z2sG2 + vs))
.5]

(1)
). (38)
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uation outcome in the North Carolina administrative data, where ˆVar(XsG1) is nearly offset by a

strong negative covariance between XsĜ1 and Z2sĜ2.

Second, Online Appendix Table A3 reports estimates of Var(Z2sG2) and Var(Z2sG2 + vs) from

a four-year college enrollment specification in which the school-averages Xs are omitted. A small

fraction of the variance previously absorbed by the control function is now captured by Z2sĜ2, while

the bulk of it now enters the between-school residual v̂s. Thus, ˆVar(Z2sG2) increases slightly relative

to our main college enrollment estimates in Table 3, while ˆVar(Z2sG2 + vs) increases substantially,

to the point where they nearly match the sorting-on-observables estimates ˆVar(XsG1 +Z2sG2 + vs)

reported in the previous paragraph. Columns 3 and 4 of Online Appendix Table A4 report corre-

sponding estimates for years of postsecondary education, while columns 1 and 2 report estimates

from a specification in which B is estimated in a first stage in which school fixed effects are in-

cluded, and then Ys−XsB̂ is regressed on Z2s to recover Ĝ2 and v̂s. Each of these specifications

exhibits substantially higher estimates of Var(Z2sG2 + vs).

Taken together, the results from these alternative estimators suggest that our lower bound es-

timates, while more conservative than other existing estimators, still seem to capture a substantial

portion of the variation in the contributions of schools/neighborhoods.

8.6 Empirical Evidence on the Spanning Condition

In Online Appendix A2 we investigate the factor structure of Xs using two approaches. First,

we use principal components analysis to compute the eigenvalues and eigenvectors of ˆCov(Xs), the

estimated covariance matrix of Xs. While Cov(Xs) must be positive semidefinite, ˆCov(Xs) need

not be positive semidefinite given sampling error and the fact that our sample is unbalanced. In

practice we obtain small negative values for some of the eigenvalues. We interpret these estimates

as corresponding to eigenvalues that are in fact 0 or very close to 0. We find that for each of our

three survey datasets the number of positive eigenvalues is less than L, indicating that ˆCov(Xs) is

rank deficient. This means that each element of Xs can be written as a linear combination of a smaller

number of latent factors (generally between 25 and 30 factors, depending on the specification and

dataset). Since the rank of Cov(Xs) should reflect the dimension of the amenity vector AX , this

supports our assumption that the dimension of AX ≤ L. Indeed, we further show that in each dataset

an even smaller number of latent factors (generally around 10) can explain 90% of the sum of the

variances of the elements of Xs, suggesting that the variation in student composition across schools

is driven primarily by a small number of amenity factors. Bootstrap confidence interval estimates

of the number needed to explain 90% of the variances are fairly tight. The number of latent factors

required to explain a given percentage of the sum of the variances of the elements of Xs is larger in

the full specification, which contains more variables. This would be expected in the presence of

sampling error in Ĉov(Xs). However, it might also indicate that there are in fact a few additional

amenity factors that play a very small role in driving sorting (and thus have very small eigenvalues)

and are picked up by the additional elements of Xs in the full specification.
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Our second approach draws on the literature on testing for the number of factors or the matrix

rank, including Lewbel (1991), Cragg and Donald (1997), Robin and Smith (2000), Bai and Ng

(2002) and Kleibergen and Paap (2006). The test of the rank of a matrix proposed by Kleibergen and

Paap (2006) fits our application well. The test involves a singular value decomposition of Ĉov(Xs),

and can accommodate arbitrary forms of heteroskedasticity and correlation at the school level. We

perform tests of the null hypothesis of rank(Cov(Xs)) = j against the alternative that Cov(Xs) > j.

For all three data sets and specifications, we cannot reject the null hypothesis for values of j well

below L. See the Online Appendix.

9 Other Applications

The control function approach can also be applied to other situations in which selective sorting

into units makes identification of the independent effect of the units difficult. Measurement of

teacher quality is a particularly important application given the widespread use of teacher value

added models to aid in the evaluation of teachers. It is also an example of a set of problems in

which sorting into groups (classrooms in this case) is mediated by an administrator rather than the

result of individual choices.

Most of the analysis in Section 2 can be adapted easily to the administrator choice context.39 For

example, suppose that the school principal has already decided which teachers to allocate to which

courses for which periods of the day. A classroom c can also be characterized by a vector of amenity

values Ac. The amenities might include the principal’s perceptions of various teacher attributes or

skills as well as other amenities such as whether the heating system works and the difficulty level

of the class. The Θ and ΘU matrices that relate preferences for different elements of Ac to Xi and

XU
i will now reflect a principal’s belief about which types of students are most likely to benefit from

a better teacher, a higher difficulty level, etc. They might also reflect a desire to placate parents

or students, where students/parents with certain values of Xi or XU
i are more likely to advocate for

particular classroom assignments.

When the amenity vector Ac is taken to be exogenous to the principal’s choice (i.e. independent

of classroom composition), the classroom allocation problem aligns with that of the decentralized

choice problem considered in Section 2. The price vector P(Ac) is the shadow price associated with

the capacity constraint of c. However, in the elementary and middle school contexts, it seems likely

that the principal would internalize the effect that allocating a student to a classroom c has on the

classroom’s composition-dependent amenities Ac, whereas parents take the school amenities As as

given. We have not yet solved a planning problem featuring endogenous amenities.

Nevertheless, our analysis of the exogenous amenities case does suggest that the common prac-

tice of including classroom averages of student characteristics (such as in Chetty et al. (2014)) may

play a potentially powerful role in purging value-added estimates of biases stemming from non-

39See Altonji and Mansfield (2014), appendix A9 for additional discussion of the teacher value added case.
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random student sorting on unobservables and observables. Furthermore, as we note in the Online

Appendix, it may also reduce omitted variables bias from non-random assignment of teachers to

other unobserved outcome-relevant classroom environmental factors such as course difficulty level

(e.g. basic versus honors) or time of day. While there are many caveats to our analysis, it may par-

tially explain the otherwise surprising finding that non-experimental OLS estimators of teacher qual-

ity produce nearly unbiased estimates of true teacher quality as ascertained by quasi-experimental

and experimental estimates (Chetty et al. (2014), Kane and Staiger (2008)).

We also mentioned the evaluation of hospitals and hospital inputs in the introduction. Recent

work by Fletcher et al. (2014) uses patient data matched to physicians to estimate the effects of

physicians on health outcomes. It controls for very detailed patient characteristics but not for the

physician-specific averages of patient characteristics. Our analysis suggests that adding these would

allay concerns about sorting on patient unobservables.40

Finally, a very different type of application of our approach relates to government regula-

tion. The standard textbook treatment of occupational safety regulation (e.g. Ehrenberg and Smith

(2010)) suggests that government intervention only increases worker welfare if the safety risks are

unknown at the time the occupation is chosen. Otherwise such regulations remove the opportunity

for risk-loving workers to get paid welfare-enhancing compensating differentials for taking on risky

jobs. The sorting model we presented suggests that the residual from a regression of occupation-

average age at death on a large vector of occupation-average worker characteristics can potentially

isolate the part of the long run occupational contribution to health that was unknown to workers

when they chose the occupation. It addresses the concern that occupational sorting on unobserved

characteristics that influence mortality is responsible for differences in mortality rates across occu-

pations. Thus, one can directly identify the occupations that merit government-supported informa-

tion campaigns or other safety regulations.

10 Concluding Remarks

In this paper we provide conditions under which the tactic of controlling for group averages of

observed individual-level characteristics can control perfectly for group averages of unobservables.

This insight leads to a way to estimate a lower bound on the contribution of group effects to indi-

vidual outcomes. We also examine the conditions under which causal effects of particular observed

group characteristics can be estimated. Going forward, we view the central message of the paper

40In principle, one could adopt the model of group choice and the control function approach to the analysis of the
effects of years of schooling, dosage levels, or other endogenous choice problems that have a natural ordering. Let s
denote number of years of schooling. Each schooling level has an associated set of characteristics As governing the
pecuniary and non-pecuniary return to choosing level s. As is weighted by Xi and XU

i . This leads to a relationship
between Xs and XU

s that could serve as the basis for a control function for XU
s . However, as pointed out at the beginning

of Section 3.2, there must be at least as many levels of s as there are elements of Xs. Otherwise s will not vary conditional
on Xs unless restrictions are available that reduce the dimension of the index of Xs required to control for XU

s . Essentially,
there are fewer degrees of freedom (the number of levels) than there are parameters in coefficient vector on Xs (G1 in our
outcome equation). We leave a full analysis of the possibilities to future research.
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to be that the features of the distribution of observables in a group contains information about the

distribution of unobservables in the group—not that the relationship between the observed and un-

observed group averages is necessarily linear. We would like to know if a variant of Proposition 1

carries over to more general specifications of preferences than the class that work with. We would

also like to know how the choice mechanism affects sorting on observables and unobservables. In

particular, does a version of Proposition 1 carry over to two sided selection problems, such the

sorting of students across universities or workers across firms?

We apply our methodological insight and demonstrate its empirical value by addressing a classic

question in social science: How much does the school and surrounding community that we choose

for our children matter for their long run educational and labor market outcomes? The key takeaway

from the empirical analysis is that even conservative estimates of the contribution of schools and

surrounding neighborhoods to later outcomes suggest that improving school and neighborhood en-

vironments could have a large impact on high school graduation rates and college enrollment rates.

As we noted in the introduction, prior evidence on this topic is mixed, in part because prior research

showing substantial across-school and across-neighborhood variation in outcomes is subject to con-

cerns about sorting on unobservables that we address in this paper. Our results for wage rates are

qualitatively consistent with those of Chetty et al. (2015) and Chetty and Hendren (In Progress) for

earnings and with Aaronson’s (1998) findings for high school dropouts, although the magnitudes

are hard to compare for a number of reasons.

There is much to do on the empirical side. We briefly discussed the possibility of using an

outcome model that allows for interactions between observed and unobserved student characteristics

and observed and unobserved neighborhood characteristics. The details need to be worked out. The

application of our approach to distinguishing true group effects from sorting in other applications,

such as hospital quality, teacher productivity, and doctor quality should be explored.
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Tables and Figures

Table 1: Variables Used in Baseline and Full (in Italics) Specifications, by Dataset

Description of Variable(s) NLS72 NELS88 ELS2002 NC

Student Characteristics

Race Indicators, 1(Female), 1(Immigrant) X X X X

Student Ability

Math Standardized Score, Reading Standardized Score X X X X
1(Gifted at Math), 1(Gifted at Reading) X

Student Behavior

Hrs./Wk. Spent on Homework X X X
Hrs./Wk. Spent on Leisure Reading, Hrs./Wk. Spent Watching TV X X X
Hrs./Wk. Spent on Computer X
1(Physical Fight This Year), Parents Often Check Homework X X

Family Background

Standardized SES, Number of Siblings X X X
Indicators for Presence of Biological Parents X X X
Father’s Yrs. of Ed., Mother’s Yrs. of Ed. X X X X
Moth. Yrs. Ed. Missing X X X X
Average of Grandparents’ Education X
Log(Family Income), 1(English Spoken at Home) X X X
Indicators for Parental Religion X X X
1(Parents are Married) X X
1(Immigrant Father), 1(Immigrant Mother) X X
Indicators for Father’s Occupation Group X X
Indicators for Mother’s Occupation Group X X
Home Environ. Indicators (1st Prin. Comp.) X X X
Parental Sch. Involv. Indicators (1st Prin. Comp.) X X
1(Eligible for Free/Reduced Price Lunch) X
1(Currently Limited English Proficiency), 1(Ever LEP) X

Parental Expectations

Mother’s Desired Yrs. Of Ed., Father’s Desired Yrs. Of Ed. X X

School Characteristics (Treated as elements of Xs)*

School Pct. Minority X X X
School Pct. Free/Reduced Price Lunch X X X
School Pct. LEP, School Pct. Special Ed. X X
School Pct Remedial Reading, School Pct. Remedial Math X X
Frequency of Fights (Administrator’s Impression) X

School Characteristics (Treated as elements of Z2s)

1 (Catholic School), 1 (Private Non-Catholic School) X X X
Total School Enrollment, Student-Teacher Ratio X X X X
Log(Min. Teacher Salary) X X
% Tch. Turnover, % of Teachers w/ Master’s Degrees or More X X X X
% of Teachers w/ Master’s Degrees or More X X X X
% of Teachers w/ Certification X
School Teacher Pct. Minority X X X
1(Minimum Competency Test Exists) X
1(Gifted Program Exists), 1(Collectively Bargained Contract) X
1(Tracking System), Age of School Building X
Distance to 4-year College, Distance to Community College X
Teacher Evaluation Mechanism Indicators (1st Principal Component) X
Teacher Incentives Indicators (1st Principal Component) X
School Security Policy Indicators (1st, 2nd Principal Components) X
School Security Implementation Indicators (1st & 2nd Prin. Comps.) X X
Sch. Environ. Indicators (1st and 2nd Prin. Comps.) X
Sch. Facilities Indicators (Admin. Survey, 1st & 2nd Prin. Comps.) X
Teacher Access to Tech. Indicators (Admin. Survey, 1st Prin. Comp.) X
Magnet School, Charter School, Sch. Tch. % Highly Qualified X

Neighborhood Characteristics (Treated as elements of Z2s)

Urbanicity Indicators X X X X
Indicators for U.S. Census Region X X X
Neighborhood Crime Level Category (Sch. Admin. Survey) X
*School characteristics treated as elements of Xs are included to reduce measurement error in school sample averages of student charac-
teristics. They do not contribute to the estimated lower bound on contributions of schools/neighborhoods.
School averages of all student-level variables are also included in each specification. The school population average is used where
available (see the “School Characteristics (Treated as elements of Xs)” category in this table); otherwise the average among sampled
students is used in its place. 43



Table 2: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
High School Graduation Decisions

Panel A: Fraction of Latent Index Variance Determining Graduation
Attributable to School/Neighborhood Quality

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.018 0.013 0.011 0.006 0.025 0.024
Var(Z2sG2) (0.007) (0.005) (0.006) (0.005) (0.010) (0.010)

LB w/ unobs 0.049 0.036 0.028 0.016 0.036 0.025
Var(Z2sG2 + vs) (0.013) (0.008) (0.009) (0.006) (0.010) (0.010)

Panel B: Effect on Graduation Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.106 0.084 0.061 0.047 0.070 0.068
Based on Var(Z2sG2) (0.021) (0.015) (0.013) (0.012) (0.011) (0.011)

LB w/ unobs: 10th-90th 0.174 0.152 0.098 0.075 0.083 0.070
Based on Var(Z2sG2 + vs) (0.024) (0.017) (0.017) (0.014) (0.011) (0.011)

LB no unobs: 10th-50th 0.056 0.044 0.033 0.025 0.040 0.038
Based on Var(Z2sG2) (0.012) (0.008) (0.008) (0.007) (0.007) (0.007)

LB w/ unobs: 10th-50th 0.096 0.083 0.055 0.041 0.048 0.039
Based on Var(Z2sG2 + vs) (0.014) (0.010) (0.010) (0.008) (0.007) (0.007)

Sample Mean 0.760 0.760 0.838 0.838 0.917 0.917

Bootstrap standard errors based on resampling at the school level are in parentheses.
Panel A reports lower bound estimates of the fraction of variance in the latent index that determines high school
graduation that can be directly attributed to school/neighborhood choices for each dataset.
The row labelled “LB no unobs” reports Var(Z2sG2) and excludes the unobservable vs while the row labeled “LB
w/ unobs” reports Var(Z2sG2 + vs).
Panel B reports estimates of the average effect of moving students from a school/neighborhood at the 10th quantile
of the quality distribution to one at the 50th or 90th quantile.
The columns headed “NC” are based on the North Carolina data and refer to a decomposition that uses the 9th
grade school as the group variable. The columns headed “NELS88 gr8” are based on the NELS88 sample and
refer to a decomposition that uses the 8th grade school as the group variable. The columns headed “ELS2002” are
based on the ELS2002 sample and refer to a decomposition that uses the 10th grade school as the group variable.
For each data set the variables used in the baseline and full models are specified in 1.
The full variance decompositions underlying these estimates are presented in Web Appendix Table A19.
Appendix Sections A6 and A7 discuss estimation of model parameters and the variance decompositions. Section
6.3 discusses estimation of the 10-50 and 10-90 differentials.
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Table 3: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Four Year College Enrollment Decisions

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.026 0.019 0.018 0.015 0.024 0.018
Var(Z2sG2) (0.006) (0.004) (0.006) (0.005) (0.007) (0.006)

LB w/ unobs 0.038 0.032 0.040 0.029 0.046 0.031
Var(Z2sG2 + vs) (0.008) (0.006) (0.008) (0.007) (0.009) (0.007)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.138 0.118 0.127 0.112 0.155 0.132
Based on Var(Z2sG2) (0.013) (0.012) (0.017) (0.016) (0.018) (0.017)

LB w/ unobs: 10th-90th 0.168 0.153 0.188 0.155 0.216 0.172
Based on Var(Z2sG2 + vs) (0.017) (0.016) (0.021) (0.019) (0.022) (0.019)

LB no unobs: 10th-50th 0.065 0.056 0.061 0.054 0.075 0.064
Based on Var(Z2sG2) (0.006) (0.005) (0.008) (0.007) (0.008) (0.008)

LB w/ unobs: 10th-50th 0.077 0.071 0.088 0.073 0.103 0.083
Based on Var(Z2sG2 + vs) (0.007) (0.007) (0.009) (0.008) (0.010) (0.009)

Sample Mean .265 .265 .310 .310 .418 .418

Bootstrap standard errors based on resampling at the school level are in parentheses.
The notes to Table 2 apply, except that Table 3 reports results for enrollment in a 4-year college two years after
graduation.
The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the group
variable.
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Table 4: The Impact of 10th-90th Percentile Shifts in School Quality on High School Graduation
Rates for Selected Subpopulations

NC NELS88 gr8 ELS2002

Subpopulation Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

XB: 10th Quantile
LB no unobs 0.146 0.127 0.110 0.099 0.123 0.140

Based on Var(Z2sG2) (0.028) (0.022) (0.024) (0.026) (0.019) (0.021)

LB w/ unobs 0.242 0.229 0.176 0.159 0.146 0.144
Based on Var(Z2sG2 + vs) (0.031) (0.024) (0.030) (0.030) (0.019) (0.021)

XB: 90th Quantile
LB no unobs 0.060 0.036 0.016 0.004 0.019 0.010

Based on Var(Z2sG2) (0.013) (0.007) (0.004) (0.001) (0.004) (0.002)

LB w/ unobs 0.098 0.063 0.026 0.006 0.022 0.010
Based on Var(Z2sG2 + vs) (0.015) (0.008) (0.005) (0.001) (0.004) (0.002)

Black
LB no unobs 0.107 0.085 0.061 0.053 0.079 0.082

Based on Var(Z2sG2) (0.021) (0.015) (0.015) (0.015) (0.014) (0.014)

LB w/ unobs 0.176 0.152 0.098 0.084 0.094 0.084
Based on Var(Z2sG2 + vs) (0.024) (0.017) (0.018) (0.017) (0.014) (0.014)

White w/ Single Mother
Who Did Not Attend College

LB no unobs 0.142 0.114 0.099 0.078 0.101 0.096
Based on Var(Z2sG2) (0.027) (0.020) (0.022) (0.020) (0.017) (0.017)

LB w/ unobs 0.235 0.206 0.159 0.125 0.120 0.099
Based on Var(Z2sG2 + vs) (0.031) (0.022) (0.028) (0.024) (0.017) (0.017)

White w/ Both Parents,
At Least One Completed College

LB no unobs 0.062 0.047 0.025 0.016 0.032 0.016
Based on Var(Z2sG2) (0.013) (0.009) (0.006) (0.005) (0.006) (0.005)

LB w/ unobs 0.102 0.084 0.040 0.025 0.037 0.016
Based on Var(Z2sG2 + vs) (0.015) (0.010) (0.008) (0.006) (0.006) (0.005)

Bootstrap standard errors based on re-sampling at the school level are in parentheses.
The table reports the average effect for the subpopulation indicated by the row heading of moving students from
a school/neighborhood at the 10th quantile of the quality distribution to one at the 90th quantile.
“XB: 10th Quantile” and “XB: 90th Quantile” refer to students whose values of XsiB is equal the estimated 10th
(90th) quantile value of the XsiB distribution. See Section 8.3.
See the notes to Table 2 for row and column definitions
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Table 5: The Impact of 10th-90th Percentile Shifts in School Quality on Four-Year College
Enrollment Rates for Selected Subpopulations

NLS72 NELS88 gr8 ELS2002

Subpopulation Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

XB: 10th Quantile
LB no unobs 0.078 0.027 0.064 0.032 0.100 0.050

Based on Var(Z2sG2) (0.008) (0.004) (0.010) (0.005) (0.013) (0.008)

LB w/ unobs 0.094 0.034 0.093 0.046 0.138 0.064
Based on Var(Z2sG2 + vs) (0.010) (0.005) (0.011) (0.006) (0.016) (0.008)

XB: 90th Quantile
LB no unobs 0.191 0.182 0.160 0.128 0.166 0.128

Based on Var(Z2sG2) (0.018) (0.017) (0.022) (0.019) (0.020) (0.019)

LB w/ unobs 0.234 0.234 0.236 0.187 0.231 0.167
Based on Var(Z2sG2 + vs) (0.024) (0.024) (0.026) (0.024) (0.024) (0.020)

Black
LB no unobs 0.132 0.109 0.125 0.111 0.145 0.121

Based on Var(Z2sG2) (0.014) (0.012) (0.017) (0.015) (0.017) (0.016)

LB w/ unobs 0.161 0.140 0.184 0.152 0.201 0.158
Based on Var(Z2sG2 + vs) (0.017) (0.016) (0.021) (0.019) (0.021) (0.018)

White w/ Single Mother
Who Did Not Attend College

LB no unobs 0.110 0.099 0.091 0.074 0.140 0.124
Based on Var(Z2sG2) (0.012) (0.011) (0.014) (0.012) (0.018) (0.017)

LB w/ unobs 0.134 0.127 0.132 0.102 0.195 0.162
Based on Var(Z2sG2 + vs) (0.015) (0.013) (0.014) (0.013) (0.021) (0.019)

White w/ Both Parents,
At Least One Completed College

LB no unobs 0.180 0.158 0.157 0.139 0.173 0.148
Based on Var(Z2sG2) (0.017) (0.015) (0.021) (0.019) (0.020) (0.020)

LB w/ unobs 0.220 0.204 0.232 0.192 0.242 0.193
Based on Var(Z2sG2 + vs) (0.022) (0.021) (0.025) (0.023) (0.025) (0.022)

Bootstrap standard errors based on resampling at the school level are in parentheses.
The notes to Table 4 apply, except that Table 5 reports results for enrollment in a four-year college two
years after graduation, and the NLS72 is one of the data sets.
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Table 6: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Completed Years of Postsecondary Education and Permanent Wages (NLS72 data)

Panel A: Fraction of Variance
Attributable to School/Neighborhood Quality

Lower Bound Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.005 0.002 0.039 0.041 0.039 0.040
Var(Z2sG2) (0.002) (0.002) (0.010) (0.011) (0.012) (0.012)

LB w/ unobs 0.010 0.006 0.052 0.052 0.050 0.049
Var(Z2sG2 + vs) (0.004) (0.002) (0.013) (0.016) (0.021) (0.021)

Panel B: Effects on Years of Postsecondary Education and Permanent Wages
of a School System/Neighborhood at the 50th or 90th Percentile

of the Quality Distribution vs. the 10th Percentile

Lower Bound Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.308 0.197 0.152 0.157 0.155 0.157
Based on Var(Z2sG2) (0.057) (0.045) (0.021) (0.020) (0.021) (0.021)

LB w/unobs: 10th-90th 0.445 0.334 0.177 0.177 0.175 0.173
Based on Var(Z2sG2 + vs) (0.065) (0.049) (0.028) (0.026) (0.028) (0.027)

LB no unobs: 10th-50th 0.154 0.098 0.076 0.079 0.077 0.078
Based on Var(Z2sG2) (0.028) (0.022) (0.011) (0.010) (0.011) (0.010)

LB w/unobs: 10th-50th 0.222 0.167 0.088 0.088 0.087 0.087
Based on Var(Z2sG2 + vs) (0.032) (0.025) (0.014) (0.013) (0.014) (0.013)

Sample Mean .27 .27 .31 .31 .37 .37

Bootstrap standard errors based on resampling at the school level are in parentheses.
Panel A of Table 5 reports lower bound estimates of the fraction of variance of years of postsecondary
education and permanent wage rates (with and without controls for postsecondary education) that can
be directly attributed to school/neighborhood choices for each dataset. The sample is NLS72.
The row labelled “LB no unobs” reports Var(Z2sG2) and excludes the unobservable vs while the row
labeled “LB w/ unobs” reports Var(Z2sG2 + vs).
Panel B reports estimates of the average effect of moving students from a school/neighborhood at the
10th quantile of the quality distribution to one at the 50th or 90th quantile. It is equal to 2∗1.28 times
the value of [V̂ar(Z2sG2 + vs)]

0.5 or [V̂ar(Z2sG2)]
0.5 in the corresponding column of the table.

See Table 1 for the variables in the baseline model and the full model. The full variance decompo-
sitions are in Appendix Table A21. Web Appendix Sections A6 and A7 discuss estimation of model
parameters and the variance decompositions.
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Appendix: For Online Publication Only

A1 Spanning Condition Examples

Consider first a scenario in which there are two observed student characteristics X ≡ [X1,X2], two

outcome-relevant unobserved student characteristics XU = [XU
1 ,XU

2 ], and two school/neighborhood

amenity factors, A = [A1,A2].

Case 1: rank(ΘU)≤ rank(Θ̃) = dim(A)

Suppose that the matrices Θ̃ = Θ+ΠXU X ΘU and ΘU , are each full rank. For example:

Θ̃ =

{
1 1

0 1

}
Θ

U =

{
1 2

2 1

}

Then we can write ΘU = RΘ̃, where

R =

{
1 1

2 −1

}
Thus, the spanning condition is satisfied in this case. If ΘU were rank-deficient, then the spanning

condition would still be satisfied, but R would be rank-deficient.

Now suppose that there are instead three outcome-relevant unobserved characteristics: XU =

[XU
1 ,XU

2 ,XU
3 ], each of which affects WTP for the two amenities differentially. Suppose that X and

Θ̃ are unchanged from Case 1:

Θ̃ =

{
1 1

0 1

}
Θ

U =


1 2

2 1

1 1


Then we can write ΘU = RΘ̃, where

R =


1 1

2 −1

1 0


Thus, the spanning condition is satisfied in this case. We see that dim(X) can be less than dim(XU)

without violating the spanning condition, as long as the row rank of Θ̃ is at least as large as the

row rank of ΘU . Any scenario satisfying rank(ΘU) ≤ rank(Θ̃) = dim(A) will satisfy the spanning

condition in Proposition 1.
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Case 2: rank(Θ̃)< rank(ΘU)≤ dim(A)

Suppose instead that neither X1 nor X2 predicts willingness to pay for A2. Further, suppose that

neither X1 nor X2 is correlated with any elements of XU that predict willingness to pay for A2. This

implies that the second column of Θ̃ is a zero vector:

Θ̃ =

{
1 0

2 0

}
Θ

U =

{
1 2

2 1

}

Since Θ̃ is now rank-deficient, there is no matrix R such that RΘ̃ = ΘU . In particular, for any matrix

R, each entry in column 2 will always be zero, but the second column of ΘU contains non-zero

entries. Similarly, if both X1 and X2 affect WTP for A1 and A2 in the same proportion (and are each

uncorrelated with XU , so that ΠXU X = 0, a rank-deficiency will also occur:

Θ̃ =

{
1 2

2 4

}
.

Here, an incremental unit of X1 or X2 will affect WTP for A2 by twice as much as it will affect WTP

for A1. As in the previous example, there is no matrix R such that RΘ̃ = ΘU . For any choice of R, in

each row of RΘ̃ the second column will always be twice as large as the first column, but the second

row of ΘU has a first column entry that is only half as large as its second column entry. Both these

examples violate the spanning condition. If the row rank of Θ̃ is less than the row rank of ΘU , then

the row space of ΘU cannot possibly be a subspace of the row space of Θ̃.

Case 3: rank(ΘU)≤ rank(Θ̃)< dim(A)

Suppose now that both X and XU are scalars: X ≡ X1, XU ≡ XU
1 . Consider first the case where

X1 only predicts WTP for A1, XU
1 only predicts WTP for A2, and X1 and XU

1 are uncorrelated:

Θ̃ =
{

1 0
}

Θ
U =

{
0 1

}
Regardless of the 1x1 scalar R, the product RΘ̃ will have a zero in the second column, which does

not match ΘU . Despite the fact that rank(Θ̃) = rank(ΘU) = 1, the spanning condition fails because

the row space of ΘU is not a subspace of the row space of Θ̃.

Indeed, suppose that we alter Θ̃ and ΘU so that both X1 and XU
1 affect WTP for both amenities

(but in different proportions):

Θ̃ =
{

1 1
}

Θ
U =

{
2 4

}
There is no scalar R such that RΘ̃ = ΘU , since any value of R will preserve the one-to-one ratio

between the first and second entries in Θ, while ΘU has a one-to-two ratio between its first and

second entries. The spanning condition also fails in this case because the row space of ΘU is not a
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subspace of the row space of Θ̃. This example demonstrates that if the set of factors that individuals

consider when choosing groups is large, one will generally need an equally large set of observable

characteristics in order to satisfy the spanning condition in Proposition 1.

Finally, suppose that both X1 and XU
1 only affect willingness to pay for A1 (W may affect taste

for A2, so that A2 is still relevant for school choice):

Θ̃ =
{

1 0
}

Θ
U =

{
2 0

}
Then for R = 2, RΘ̃ = ΘU , and the spanning condition is satisfied. Note that the row space of Θ̃ is

a subspace of the row space of ΘU , despite the fact that both Θ̃ and ΘU are rank deficient. This last

example illustrates that the observed characteristics need not predict WTP for all choice-relevant

amenities as long as the rows of Θ̃ span the same (or a superspace) of the amenity subspace spanned

by the rows of ΘU .

A2 Testing Whether Xs Spans the Amenity Space AX

As discussed in Section 3.2.2, Assumption 5.1 is one of the two key sufficient conditions for the

spanning assumption, Assumption 5, to hold. Assumption 5.1 requires that the vector of observables

Xi captures enough independent factors determining families’ preferences over group amenities that

Xs can span the space of amenities (denoted AX ) for which Xi affects tastes, either through direct

effects on willingness to pay or indirectly through correlation between Xi and elements of XU
i . For

the particular linear specification of utility featured in (2), this condition is tantamount to requiring

that rank(Θ̃)≥ dim(AX
s ).

The restriction rank(Θ̃)≥ dim(AX
s ) restricts rank(Cov(Xs)), which forms the basis for our test.

To see this, note that taking expectations of both sides of (48) conditional on s implies that

Xs = ϒsVar(γ i)
−1

Θ̃
′Var(Xi),

where ϒs≡E(ϒi|si = s) is the average of the willingness to pay vector for those who choose s. Thus

Xs is a linear combination of ϒs. Recall that the length of ϒs is K, the number of valued amenities.

Consequently, if L > K, then the L elements of Xs are all linear combinations of the smaller number

of components of the average willingness to pay vector ϒs. But this implies that Cov(Xs) will be rank

deficient, with rank(Cov(Xs)) = K. In fact, if WTP for some of the K amenities is not influenced

by Xi, then some of the columns of Θ̃ will be 0. In this case, rank(Cov(Xs)) = dim(AX)< K further

reducing the rank of Cov(Xs). This is a testable condition.

More generally, suppose Assumption 5.1 is nearly satisfied, so that a small number of amenity

factors drive the vast majority of the variation in Xs, but elements of Xi slightly influence tastes

for several other amenities. Our simulations in section 4 suggest that such minor departures from

the Assumptions 5.1 and 5.2 have little impact on the ability of Xs to effectively control for the
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unobservable between-school variation XU
s . But in such contexts, a small number of amenity factors

should account for a very large fraction of the variation in Xs, with only a very small amount of

unexplained residual variation.

We test these predictions by performing principal components analysis (PCA) on Xs. Because

the sample school averages of observable characteristics X s are noisy measures of the expected

values Xs ≡ E[Xi|s(i) = s], we do not fit the PCA model to X s directly. Instead, we estimate the

underlying true covariance matrix Cov(Xs)
41, and then directly perform the principal components

analysis on the estimated covariance matrix.42

The results are in online Appendix Table A5. Panel A reports, for each dataset we use, the

number of principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the sum

∑
L
`=1Var(Xs`) of the variances of the standardized values of the L characteristics in Xs, respectively.

This is the standard output from a factor analysis. In Panel B, we also provide the number of

principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the variance in

XsĜ1, the regression index formed by using the estimated coefficients on school-level averages

from our empirical analysis.

Both Panel A and Panel B provide strong evidence that rank(Θ̃) ≥ dim(AX
s ), implying that

Assumption 5.1 for the spanning condition ΘU = RΘ̃ is satisfied in the datasets we use. Specifically,

in each dataset, Cov(Xs) is found to be rank deficient. For example, in the full specification using

ELS2002, only 33 latent factors are needed to explain all of the variance in Xs (Panel A, Row 6,

Column 6), compared to L = 51 elements of Xs. Similarly, in the NELS88 full specification, only

32 factors fully explain the variance in the 49 factors of Xs.

Furthermore, the PCA analysis also suggests that a much smaller number of factors can account

for the vast majority of the variation in either ∑
L
`=1Var(Xs`) or Var(XsĜ1). In the ELS2002 full

specification, only 19 and 15 factors are needed to explain 95% of the variation in ∑
L
`=1Var(Xs`)

and Var(XsĜ1), respectively (Panels A and B, Row 4, Column 6). For NELS88, only 20 and 13

factors are needed to explain 95% of the variation in the corresponding two measures (Panels A

and B, Row 4, Column 4). The number of latent factors required to explain a given percentage of

the sum the variances of the elements of Xs is larger in the full specification, which contains more

variables. This would be expected in the presence of sampling error in Ĉov(Xs). However, it might

also indicate that there are in fact additional amenity factors that play a very small role in driving

sorting (and thus have very small eigenvalues) that can be picked up by the additional elements of

Xs in the full specification.

41Specifically, we estimate ˆCov(Xi) and ˆCov(Xi−Xs) by taking the sample (weighted) covariances of Xi and Xi− X̂ s,
performing the requisite degrees-of-freedom adjustment, and then obtaining ˆCov(Xs) via ˆCov(Xs) = ˆCov(Xi)− ˆCov(Xi−
Xs).

42When constructing our control function in our main estimating equations we augment the vector X s that comes from
directly aggregating student level variables Xi with school-level aggregates directly reported by the school administrators
(e.g. percent minority), since these are likely to measure the true school population average Xs with minimal error.
However, when performing the principal components analysis of Xs, we do not include these additional measurements
that come directly from schools, since they are likely to be nearly collinear with X s, and could cause us to find spurious
evidence of rank deficiency in Cov(Xs).
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Note, though, that because we only observe small samples of students in each school in our

panel surveys and only have a sample of schools, the covariance matrix ˆCov(Xs) that is decomposed

by PCA is merely a consistent estimate of the population covariance matrix Cov(Xs), and thus

contains sampling error. The assumption underlying the spanning condition pertains to the rank of

the population matrix Cov(Xs). We address this issue in two ways. First, Panel A and B of online

Appendix Table A5 report bootstrap confidence interval estimates of the number needed to explain

the specified percentages of ∑
L
l Var(Xsl) and Var(XsĜ1). They are fairly tight.

Second, we also implement the formal test of rank proposed by Kleibergen and Paap (2006).

Building on Cragg and Donald (1997) and Robin and Smith (2000), this test exploits the fact that

a rank deficient matrix will have a subset of its singular values equal to 0, and tests whether the

smallest singular values are farther from zero than one would expect based on sampling error.43 The

test compares the null hypothesis that rank(Cov(Xs)) = q, for some q < L, against the alternative

that rank(Cov(Xs)) > q. Thus, Table A6 report the p-value from this test for each possible rank

1, . . . ,L− 1 for each of our panel survey datasets for our baseline specification. Table A7 displays

the corresponding p-values across datasets for our full specification.

One advantage of this test is that it can accommodate both heteroskedasticity and autocorrelation

among the error components. However, while the tests that cluster at the school-level allow for the

most general correlation structure, they sometimes fail to converge in our samples (indicated by

“NaN” in Tables A6 and A7). Consequently, for each dataset we display p-values both from tests

that are robust to heteroskedasticity but assume zero autocorrelation as well as those that cluster at

the school-level and are robust to both heteroskedasticity and autocorrelation.

Across tests and datasets, the results are broadly quite consistent with the PCA results reported

above. In particular, not only do the tests consistently fail to reject rank values well below the

number of observables, but in fact the p-values generally converge to values indistinguishable from

1 as the numbers of factors being tested nears the number of principal components identified in

Table A5. In sum, the Kleibergen/Paap tests reveal a complete absence of evidence with which to

reject the null hypothesis that a much smaller number of factors are driving sorting on the vector of

observable characteristics Xi.

43Specifically, Kleibergen and Paap (2006) show that if the vectorized form of the covariance matrix estimator has a
normal limiting distribution, then the limiting distribution of an orthogonal transformation of the smallest singular values
of this matrix is also normal. Their rank statistic thus consists of a quadratic form of this orthogonal transformation with
respect to the inverse of its covariance matrix, and hence follows a χ2 limiting distribution. Bai and Ng (2002) provide
an alternative approach.
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A3 The Relationship between XU
s and Xs when E(Xi|ϒi) and E(XU

i |ϒi)

are Nonlinear

Decompose E[X̃U
i |ϒi] and E[Xi|ϒi] as

E[X̃U
i |ϒi] = E∗[X̃U

i |ϒi]+ eX̃U

i (ϒi) (39)

E[Xi|ϒi] = E∗(Xi|ϒi)+ eX
i (ϒi) (40)

where the vectors E∗[X̃U
i |ϒi] and E∗[Xi|ϒi] are the linear least squares projections of X̃U

i and Xi on

ϒi and the error terms eX̃U

i and eXU

i are uncorrelated with ϒi.

Proposition 2: Assume that Assumptions A1, A2, A3, and A4 hold.

Then the expectation XU
s is

XU
s = Xs[ΠXU X +Var(Xi)

−1R
′
Var(X̃U

i )]

−E[eX
i (ϒi)|s(i) = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i (ϒi)|si = s] (41)

A3.1 Proof of Proposition 2:

The key steps of the proof are identical to first steps of the proof of Proposition 1 that lead to

(11) and (12). These say that

XU
s ≡ E[XU

i |s(i) = s] = E[[E(XU
i |ϒi)]|s(i) = s]

Xs ≡ E[Xi|s(i) = s] = E[[E(Xi|ϒi)]|s(i) = s].

Next we find expressions for E[XU
i |ϒi] and E[Xi|ϒi] involving E∗[X̃U

i |ϒi] and E∗[Xi|ϒi] and eX̃U

i

and eX
i By definition of a linear projection,

E∗[X̃U
i |ϒi] = ϒiVar(ϒi)

−1
Θ

U ′Var(X̃U
i ) (42)

E∗[Xi|ϒi] = ϒiVar(ϒi)
−1

Θ̃
′
Var(Xi). (43)

Assumption A4 says that ΘU = RΘ̃. Substituting for ΘU ′ in (42) and using (43) for E∗[Xi|ϒi] leads

to

E∗[X̃U
i |ϒi] = ϒiVar(ϒi)

−1
Θ̃
′R′Var(X̃U

i ))

= ϒiVar(ϒi)
−1

Θ̃
′Var(Xi)Var(Xi)

−1R′Var(X̃U
i ))

= E∗[Xi|ϒi]Var(Xi)
−1R′Var(X̃U

i ). (44)

Using

E[XU
i |ϒi] = E[Xi|ϒi]ΠXU X +E[X̃U

i |ϒi]. (45)
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and (39), (40) and (44), we obtain:

E[XU
i |ϒi] = [E∗[Xi|ϒi]+ eX

i ]ΠXU X +E∗[Xi|ϒi]Var(Xi)
−1R′Var(X̃U

i )+ eX̃U

i . (46)

The final step is to take expectations of both sides of the above equation conditional on s(i) = s

and use (11) and (12). Doing so leads to

XU
s = E[E∗[Xi|ϒi]+ eXi |si = s][ΠXU X +Var(Xi)

−1R′Var(X̃U
i )]

−E(eX
i |si = s)[Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s].

= Xs[ΠXU X +Var(Xi)
−1R′Var(X̃U

i )]

−E(eX
i |si = s)[Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s]

where the second and third terms combine to form an approximation error. This completes the

proof.

A4 Deriving an Analytical Formula for XU
s when the Spanning As-

sumption (A5) Is Not Satisfied

We begin by introducing new notation that will be necessary to generalize Proposition 1 in the

case where Assumption (A5) is not satisfied.

Partition XU
i into a subset XU

1i that is correlated with Xi and a subset XU
2i that is not correlated

with Xi. Let L denote the number of elements of Xi, L1U denote the number of elements of XU
1i , and

let L2U denote the number of elements of XU
2i . Recall that Assumption 5.2 will fail if XU

2i affects

preferences for an amenity that neither Xi nor XU
1i affect preferences for.

Denote by AU2 the subvector of A that is not contained in AX . Similarly, let K1 be the number of

amenities in AX and let K2 capture the number of amenities in AU2. Then consider writing the taste

matrix ΘU as:

Θ
U =

{
ΘU

11 ΘU
12

ΘU
21 ΘU

22

}
=

{
ΘU

11 0

ΘU
21 ΘU

22

}
Where ΘU

11 is LU1×K1, ΘU
21 is LU2×K1, ΘU

12 is LU1×K2, and ΘU
22 is LU2×K2. Note that since XU

1i

does not affect WTP for any amenities in AU2, ΘU
12 = 0. Similarly, consider writing the taste matrix

Θ as:

Θ =
{

Θ1 Θ2

}
=
{

Θ1 0
}

Where Θ1 is L×K1 and Θ2 = 0 is L×K2.
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We can then write Θ̃ as:

Θ̃ =
{

Θ̃1 Θ̃2

}
=
{

Θ1 +Π1
XU X ΘU

11 0
}

Consider replacing assumption (A5) with the following assumptions, (A6) and (A7):

• (A6): There exists an LU1×L matrix R1 such that ΘU
11 = R1Θ̃1.

• (A7): There exists an LU2×L matrix R2 such that ΘU
21 = R2Θ̃1

We can also define the LU ×L matrix R as:

R =

{
R1

R2

}

Given these definitions and additional assumptions, we are now ready to develop a more general

expression for E[X̃U
i |s(i) = s]. We begin by generalizing the expression for E[X̃U

i |ϒi]. Note first that

since E[Xi|ϒi] and E[XU
i |ϒi] are linear in ϒi (from Assumption (A4), E[X̃U

i |ϒi] is also linear in ϒi.

Basic regression theory then implies that

E[X̃U
i |ϒi] = ϒiVar(ϒi)

−1Cov(ϒ′i, X̃
U
i ) (47)

E[Xi|ϒi] = ϒiVar(ϒi)
−1Cov(ϒ′i,Xi). (48)

Next, recall that we can write ϒi as:

ϒi = XiΘ̃+ X̃U
i Θ

U +Wi

where Xi, X̃U
i , and Wi are mutually uncorrelated by construction. This leads to the following expres-

sion for Cov(ϒi, X̃U
i ):

Cov(ϒ′i, X̃
U
i ) =Cov(ΘU

′
X̃U ′

i , X̃U
i ) =Cov(

{
ΘU ′

11 ΘU ′
21

ΘU ′
12 ΘU ′

22

}{
X̃U ′

i1

X̃U ′
i2

}
,
{

X̃U
i1 X̃U

i2

}
)

=

{
Cov(ΘU ′

11X̃U ′
1i , X̃

U
1i )+Cov(ΘU ′

21X̃U ′
2i , X̃

U
1i ) Cov(ΘU ′

11X̃U ′
1i , X̃

U
2i )+Cov(ΘU ′

21X̃U ′
2i , X̃

U
2i )

Cov(ΘU ′
12X̃U ′

1i , X̃
U
1i )+Cov(ΘU ′

22X̃U ′
2i , X̃

U
1i ) Cov(ΘU ′

12X̃U ′
1i , X̃

U
2i )+Cov(ΘU ′

22X̃U ′
2i , X̃

U
2i )

}

=

{
ΘU ′

11Var(X̃U
1i )+ΘU ′

21Cov(X̃U ′
2i , X̃

U
1i ) ΘU ′

11Cov(X̃U ′
1i , X̃

U
2i )+ΘU ′

21Var(X̃U
2i )

ΘU ′
22Cov(X̃U ′

1i , X̃
U
2i ) ΘU ′

22Var(X̃U
2i )

}

=

{
Θ̃′1R′1Var(X̃U

1i )+ Θ̃′1R′2Cov(X̃U ′
2i , X̃

U
1i ) Θ̃′1R′1Cov(X̃U ′

1i , X̃
U
2i )+ Θ̃′1R′2Var(X̃U

2i )

ΘU ′
22Cov(X̃U ′

1i , X̃
U
2i ) ΘU ′

22Var(X̃U
2i )

}

Where the last line imposes (A6), (A7) and ΘU
12 = 0.
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Similarly, we have:

Cov(ϒi,Xi) =Cov(Θ̃′Xi,Xi) = Θ̃
′Var(Xi) = (49){

Θ̃′1
Θ̃′2

}
Var(Xi) =

{
Θ′1 +ΘU ′

11Π1′
XU X

0

}
Var(Xi) (50)

Plugging in the formulas for Cov(ϒ′i, X̃
U
i ) and Cov(ϒ′i, X̃i) into 47 and 48 , we obtain:

E[X̃U
i |ϒi] = ϒiVar(ϒi)

−1

{
Θ̃′1R′1Var(X̃U

1i )+ Θ̃′1R′2Cov(X̃U
1i , X̃

U
2i ) Θ̃′1R′1Cov(X̃U

1i , X̃
U
2i )+ Θ̃′1R′2Var(X̃U

2i )

ΘU ′
22Cov(X̃U

1i , X̃
U
2i ) ΘU ′

22Var(X̃U
2i )

}
(51)

E[Xi|ϒi] = ϒiVar(ϒi)
−1

{
Θ̃′1
0

}
Var(Xi). (52)

Using (52), we can rewrite (51) as:

E[X̃U
i |ϒi] = E[Xi|ϒi]Var(Xi)

−1
{

R′1 R′2
}{ Var(X̃U

1i ) Cov(X̃U
1i , X̃

U
2i )

Cov(X̃U
2i , X̃

U
1i ) Var(X̃U

1i )

}
(53)

+ϒiVar(ϒi)
−1

{
0 0

ΘU ′
22Cov(X̃U

1i , X̃
U
2i ) ΘU ′

22Var(X̃U
2i )

}

= E[Xi|ϒi]Var(Xi)
−1R′Var(X̃U

i )+ϒiVar(ϒi)
−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i ) (54)

Plugging back into the original iterated expectations formula and taking expectations at the school

level, we recover:

X̃U
s = XsVar(Xi)

−1R′Var(X̃U
i )+ϒsVar(ϒi)

−1

{
0 0

0 ΘU
22

}
Var(X̃U

i ) (55)

Note that in equilibrium E[ϒi|s(i) = s] will depend on the full joint distribution of amenities and

the joint distribution of ϒi. With a finite number of students and schools and with idiosyncratic

student-school match components in preferences (εis), there exists no closed-form solution for the

equilibrium mapping between the amenity vector As and school averages of the WTP for amenities

ϒs.

However, we can gain additional insight by re-considering the continuous version of the model

analyzed in Altonji-Mansfield (2014). In that context we assumed a continuum of schools and

therefore a continuous joint distribution of amenity vectors. In Appendix A3 of Altonji-Mansfied

(2014), we solve for an explicit unique equilibrium mapping between As and ϒs under the assump-

tions that a) [Xi,XU
i ,Wi] and As(i) are each jointly normally distributed (with variance matrices Σϒ

and ΣA respectively), b) and the equilibrium allocation takes a linear form: As(i) = Ψϒ′i. The unique
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equilibrium mapping takes the form:

Ψ = Σ
−1/2
ϒ′ (Σ

1/2
ϒ′ ΣAΣ

1/2
ϒ′ )Σ

−1/2
ϒ′ (56)

Note that the spanning condition (A5) is not necessary to derive the equilibrium relationship in

equation 56.

Furthermore, since every positive definite matrix is invertible, we can also express the vector ϒi

for any individual as a linear function of the amenity vector of their chosen school:

ϒi = (Ψ−1As(i))
′. (57)

In the continuous version of the model, every individual at the same school has the same value

of ϒi. Thus, we also obtain:

E(ϒi|s = s(i))≡ ϒs = (Ψ−1As(i))
′. (58)

Substituting equation (58) into the formula in the previous section, we obtain:

X̃U
s = XsVar(Xi)

−1R′Var(X̃U
i )+A′s(i)Ψ

−1Var(ϒi)
−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i ) (59)

This shows more clearly that the variances and covariances involving Xi, X̃U
i and Wi play a role,

and that Var(As) plays a role.

However, note that the variance of A′s(i)Ψ
−1Var(ϒi)

−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i ) is not the variance

of the component of XU
s that is not controlled for by Xs. This is because the two terms in equation

(59) for XU
s co-vary.

Next, recall the composition of ϒi:

ϒi = XiΘ̃+ X̃U
i Θ

U +Wi (60)

Substituting equation (60) into equation (55), we obtain:

X̃U
s = Xs{Var(Xi)

−1R′Var(X̃U
i )+ [XsΘ+ X̃U

1sΘ
U
1 + X̃U

2 Θ
U
2 +Ws]Var(ϒi)

−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i )

(61)

Now suppose that in addition to Assumption (A4), we assume that E[Wi|ϒi] is also linear in ϒi,

so that:

E[Wi|ϒi] = ϒiVar(ϒi)
−1Cov(ϒ′i,Wi). (62)
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If we take iterated expectations of equations (48), (47), and (62) conditional on school s(i) and

replace ϒs with (Ψ−1As(i))
′, we obtain:

X̃U
s = As(i)

′
Ψ
−1Var(ϒi)

−1
Θ

U ′Var(X̃U
i ) (63)

Xs = As(i)
′
Ψ
−1Var(ϒi)

−1
Θ̃
′
Var(Xi) (64)

Ws = As(i)
′
Ψ
−1Var(ϒi)

−1Var(Wi) (65)

Collecting terms involving Xs and substituting equations (63) and (65) into (61) yields:

X̃U
s = Xs{Var(Xi)

−1R′Var(X̃U
i )+ Θ̃

′Var(ϒi)
−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i )} (66)

+As(i)
′
Ψ
−1Var(ϒi)

−1
Θ

U ′Var(X̃U
i )Var(ϒi)

−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i ) (67)

+As(i)
′
Ψ
−1Var(ϒi)

−1Var(Wi)Var(ϒi)
−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i ) (68)

Even this doesn’t let us decompose Var(X̃U
s ) into a term involving Xs and an uncorrelated resid-

ual piece, because As(i) will be correlated with Xs.

But consider projecting the amenity subvectors AX ′
s and AU2′

s onto Xs:

AX ′
s = XsΠAX Xs

+ ÃX ′
s = XsΠAX Xs

(69)

AU2′
s = XsΠAU2Xs

+ ÃU2′
s (70)

where ΠAX Xs
is an L×K1 projection matrix, ΠAX Xs

is an L×K2 projection matrix, and Ã′s(i) ÃU2′
s

are the residuals from these projections. Note that ÃX ′
s = 0 as long as Θ̃1 is full rank (essentially

Assumption A5.1 adapted to the linear utility case).

This implies:

X̃U
s = Xs[Var(Xi)

−1R′Var(X̃U
i )+ Θ̃

′Var(ϒi)
−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i )+M]

+{0, ÃU2′
s }Ψ−1Var(ϒi)

−1[ΘU ′Var(X̃U
i )+Var(Wi)]Θ

UVar(ϒi)
−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i ) (71)

where the matrix M is

M = {ΠAX Xs
,ΠAU2Xs

}Ψ−1Var(ϒi)
−1[ΘU ′Var(X̃U

i )+Var(Wi)]Θ
UVar(ϒi)

−1

{
0 0

0 ΘU ′
22

}
Var(X̃U

i )

(72)

While cumbersome, the second term in equation (71 provides an expression for the component of
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X̃U
s that cannot be predicted by Xs (and thus may be a source of bias in our lower bound estimates

of the variance in school/neighborhood treatment effects). The variance in this component depends

on the following five factors: a) the full joint distribution of amenities (through Ψ); b) the joint

distribution of the WTP index ϒi (entering via the covariance matrix Var(ϒi)); c) the matrix ΘU

mapping unobserved individual characteristics into willingness to pay for particular amenities; d)

the joint distribution of the residual component of unobserved outcome-relevant student character-

istics (entering via the covariance matrix Var(X̃U
i ); and e) the joint distribution of the unobserved

outcome-irrelevant (but school choice-relevant) student characteristics (entering via the covariance

matrix Var(Wi).

Given the complicated manner in which each of these five factors enters the second term in

equation (71), there does not appear to be any straightforward way to place an bound on the variance

in this error component.

A5 Monte Carlo Evidence on the Properties of the Control Function
Estimator

This section describes a set of monte carlo simulations designed to explore the performance of

our control function estimator across a number of key dimensions. As we noted in section 4, a full

characterization of these finite-sample properties is not feasible. Instead, we focus on sensitivity

to deviations in a set of key parameters from a stylized test case that is rich enough to reveal the

strengths and weaknesses of our approach. In the first set of simulations, we restrict attention to

cases in which the conditions of Proposition 1 are satisfied in an infinite population, and consider

the sensitivity of the performance of the control function approach in removing bias from sorting on

unobservables to various parameters capturing the structure of tastes, amenities, school sizes, and

survey sampling design. Then, in a second set of simulations, we fix the parameters considered in

the first set of simulations at a set of baseline values, and examine the sensitivity of our approach

to violations of the key spanning condition in Proposition 1 that vary in nature and degree. Section

A5.1 lays out the simulation methodology, while section A5.2 presents and interprets the results.

A5.1 Methodology

The stylized test case we consider is one in which:

1. The elements of [Xi,XU
i ,Wi] are jointly normally distributed; the elements of Wi are inde-

pendent of each other and [Xi,XU
i ], and each pair of characteristics in [Xi,XU

i ] features a .25

correlation.44

2. The latent amenity vectors As are normally distributed with a .25 correlation between any pair

of amenities across schools.
44This is the average correlation between observed continuous student-level characteristics in ELS2002.
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3. The matrices of taste parameters Θ and ΘU represent draws from a multivariate normal distri-

bution in which (a) corr(Θk`,Θ jm)≡ ρ if j = k or `=m, and 0 otherwise, (b) corr(ΘU
k`,Θ

U
jm)=

ρ if j = k or `= m, and 0 otherwise, and (c) corr(Θk`,Θ
U
jm) = ρ if `= m, and 0 otherwise.

4. The variances of the elements of As, [Xi,XU
i ,Wi], and εi,s (i.i.d. draws from a normal distribu-

tion) are chosen to create interclass correlations for Xi and XU
i of between .1 and .25 across

specifications. These values are in line with the range observed across the datasets used in the

empirical analysis.

5. There are no school/neighborhood effects, so that Y = Xiβ + xU
i , where xU

i ≡ XU
i βU . Conse-

quently, our estimating equation also omits the school level controls Z2s that are not averages

of student characteristics. These simplifications allow us to focus attention exclusively on the

extent to which a vector of group averages of observable individual characteristics can absorb

between-school variation in the outcome contributions of unobservable individual character-

istics.

6. All the observable and unobservable characteristics in Xi and XU
i are equally important in

determining the outcome, so that each characteristic features the same (unit) variance, β` =

1 ∀ `, and βU
` = 1 ∀ `.

Our test case implies considerable sorting into schools along many dimensions of school ameni-

ties and along many observable and unobservable dimensions of student quality. It represents

a conservative case because one might expect that in reality a few key observable (and unob-

servable) individual level factors (e.g. parental income, education, and wealth) and a few key

school/neighborhood amenities (e.g. ethnic composition, crime, principal quality) drive most of

the systematic sorting of students to schools. Given restrictions 1-6, we complete the model by

choosing particular sets of seven remaining parameters. The first parameter is students per school.

For simplicity, we impose that each school has capacity equal to a common student/school ratio.45

The student/school ratio is denoted “# Stu” in online Appendix Table A8. The second parameter is

the total number of school/neighborhood combinations available (denoted “# Sch”).

The parameter #Con is the number of schools in the consideration set for each household. This

captures the possibility that most parents only realistically consider a limited number of possible

locations. We implement this by distributing schools uniformly throughout the unit square, and

drawing a random latitude/longitude combination for each household. The households then consider

the preset number of schools that are closest to their location. Thus, consideration sets of different

households are overlapping.

The fourth and fifth parameters (denoted “# Ob.” and “# Un.”) specify the number of observed

and unobserved student characteristics that affect outcomes. The sixth parameter is the dimension

of the amenity vector over which households have preferences. In most of the specifications we

assume that it less then or equal to the number of observed characteristics and that the rows of ΘU

45We believe that this is essentially without loss of generality. Without a finite elasticity of supply of land/school
vacancies though, it is hard to avoid having tiny school sizes in locations with low values of amenities that tend to be
highly desired. Fixed costs would prevent this.
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form a linear subspace of the rows of Θ̃, as required by Proposition 1.

The seventh parameter determines ρ , introduced in the definition of our stylized test case, which

governs the correlation between pairs of random variables from which each (Θk`,Θ jm) or ΘU
k`,Θ

U
jm)

is a draw. If ρ is high, then student characteristics that have a strong positive effect on willingness

to pay for one amenity factor will also tend to have a relatively strong positive effect on WTP for

other amenities. And if ρ is high, then amenities that are strongly weighted by one characteristic

are likely to be strongly weighted by other characteristics. That is, WTP for some amenity factors

may generally be particularly sensitive to student characteristics.

In addition, in a second set of simulations we hold fixed these seven parameters at their baseline

values, and consider additional specifications that illustrate the degree to which our control function

approach is robust to various failures of the spanning condition from Proposition 1 (i.e. cases in

which ΘU 6= RΘ̃ for any R). These simulations consider robustness of the control function approach

to changes in the structure of the three matrices that determine whether a one-to-one mapping from

a vector of group-average unobservables to a vector of group-average observables exists at the pop-

ulation level: (1) the projection matrix ΠXU X , which captures the degree to which individual-level

unobservables project onto the space of individual-level observables, (2) the taste matrix Θ, which

captures the degree to which each of the student-level observables affects tastes for each of the

school/neighborhood amenities, and (3) the corresponding taste matrix for unobservable student

characteristics, ΘU .

We have two related metrics for evaluating the effectiveness of our control function approach.

The first is the fraction of the between-group variance in the outcome contribution of unobservable

individual-level characteristics (Var(xU
s )≡Var(XU

s βU) that can be predicted using group-averages

of observable characteristics. This is the R2 from a regression of the potential bias from unobserv-

able sorting, xU
s , on the vector Xs. In cases where the conditions of Proposition 1 are satisfied, the

R2 should converge to 1 as the number of students per school gets large. However, the rate at which

it does so is important for the efficacy of the control function approach.

The second metric is [(1−R2)Var(xU
s )]/Var(Yi), which is the fraction of the total variance in the

outcome Yi accounted for by residual variance of xU
s not accounted for by Xs. In the results tables

presented in the next subsection, we denote our measures “R-sq” and “Resid” (short for “residual

sorting variance fraction”).

We present values of R-squared and the residual sorting variance fraction from specifications

where the full population of students is used to calculate the school averages of observables X s that

compose the control function (denoted “R-sq (All)” and “Resid (All)”, respectively), as well as val-

ues from specifications in which random samples of 10, 20, or 40 students from each school are used

to calculate X s (these values are denoted “R-sq (10/20/40)” and “Resid (10/20/40)”, respectively, in

our tables).
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We draw Xi, XU
i , Wi, and {εis} from the distributions described above to calculate the WTP of

each household for each school.46 Since our method does not require observation of the equilibrium

price function P(A), rather than iterating on an excess demand function to find the equilibrium

matching, we instead exploit the fact that a perfectly competitive market will always lead to a pareto

efficient allocation. The problem of allocating students to schools to maximize total consumer

surplus can be written as a linear programming problem, and solved quickly at relatively large scale

using the simplex method combined with sparse matrix techniques.47

A5.2 Simulation Results

The simulation results are presented in online Appendix Table A8. Row (1) presents the base

parameter set to which other parameter sets will be compared. It features 1000 students per school

and 50 schools in the area, all of which are considered by each family when the school choice is

made. It also features 10 amenities, 10 observable student characteristics, and 10 unobservable

student characteristics. The variances of these characteristics are all identical, so that sorting on

unobservables is as strong as sorting on observables. This is probably a conservative choice. Finally,

the within-row and within-column correlation ρ among the elements of the random matrices from

which the taste weight matrices Θ and ΘU are drawn is assumed to be .25.

The first takeaway from Row (1) is that the control function approach is extremely effective

even with reasonably-sized schools of 1000 students each (most of the schools in the North Car-

olina sample enroll between 250 and 2000 students) and a moderate number of available schools:

99.8 percent of the variance in the school-level contribution of unobserved student characteristics

can be predicted by a linear combination of school-average observable characteristics (Column 9).

Furthermore, the control function only leaves two hundredths of a percent of the variance in the

outcome Yi that can be attributed to residual between-school sorting (Column 10).

The second insight from Row (1) is that the performance of the control function may suffer

somewhat when estimation is based on small subsamples of students at each school. We see that

the R-squared falls from .998 to .896 when school averages are merely approximated based on

samples of 10 students (top entry in column (11)). Increasing the sample size to 20 students per

school (middle entry in column (11)) raises the R-squared to .941, while increasing it further to 40

students per school (bottom entry in column (11)) raises the R-squared to .967. Column (12) shows

that the fraction of the outcome variance consisting of residual between-school sorting unabsorbed

by the control function is .013/.007/.004 when 10/20/40 student samples, respectively, are used to

construct the vector of school averages, Xs.

Rows (2) and (3) illustrate the impact of adapting the specification in Row (1) by decreasing or

46To minimize the statistical “chatter” introduced by the particular Θ and ΘU matrices that we happened to draw, we
drew ten different sets of Θ and ΘU matrices from the prescribed distributions, ran the simulations for each parameter set
for each of these sets of matrices, and then averaged the results across the ten iterations within each parameter set.

47The problem can actually be classified as a binary assignment problem (a subset of linear programming problems),
but we were unable to implement the standard binary assignment algorithms at scale.
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increasing the number of individuals per group. Decreasing school sizes from 1000 to 500 decreases

the R-squared from .998 to .997, while increasing from 1000 to 2000 increases the R-squared to

.999 (column (9)). Perhaps not surprisingly, more individuals per school has almost no impact on

the effectiveness of the control function if the larger number of individuals are not used to construct

the group averages of individual characteristics, X s. In columns (11) and (12), the R-squared values

and residual sorting variance fraction when samples of 10, 20 and 40 students are used to construct

Xs (R-sq(10/20/40)) are nearly identical across Rows (1) - (3).

Comparing Row (4) to Row (1), we see that increasing the number of schools from 50 to 100 has

minimal impact on the performance of the control function when the full population of students is

used to construct school averages. Interestingly, reducing the number of schools slightly reduces the

problems posed by using small samples of students from each school to construct X s (column (11)).

Similarly, Row (5) shows that restricting the number of schools in each household’s consideration

set from 50 to 10 reduces the control function’s ability to absorb unobservable sorting, but only

negligibly. The R-squared is effectively unchanged when the full population of students is used to

construct Xs, but drops modestly from Row (1) to Row (5) when samples of 10, 20, or 40 students are

used instead. Nonetheless, the high R-squared and low variance of the residual sorting component

in Row (5) reveals that our approach works well even if households only consider a relatively small

number of schools.

Row (6) illustrates the impact of doubling both the number of observable and unobservable

outcome relevant characteristics. By increasing the numbers of both observable and unobservable

characteristics symmetrically, we can show the impact of utilizing a richer control set while holding

fixed the strength of sorting on observables relative to unobservables.48 Doubling the number of

elements of Xi and XU
i increases the R-squared from .9983 in Row (1) to .9996, and decreases

the fraction of outcome variance attributable to the residual sorting component to one-hundredth

of a percentage point. This somewhat small increase understates the importance of the richness

of the control set, since the control function was already nearly perfectly effective for the baseline

parameter set. Column 11 shows that when only 10 students are used to construct sample school

averages, doubling the control set from 10 to 20 characteristics increases the R-squared from .896

to .939. This highlights the importance of collecting data on a wide variety of student/parent inputs

that capture different dimensions of taste (as the panel surveys we use do).

Row (7) shows that doubling the number of amenity factors from 5 to 10 very slightly reduces

the effectiveness of the control function, dropping the R-squared from .9983 in Row (1) to .9947.

Note, though, that increasing the dimension of the amenity space has a negligible impact when small

samples of students are used to construct school averages. However, Row (8), when compared to

48In all of these simulations, we assumed that the strength of sorting on unobservables mirrored the strength of sorting
on unobservables. In results not shown, we also experimented with weakening the degree of sorting on unobservables by
making ΘU smaller in magnitude and increasing the variance of Wi to compensate. While the control function absorbs
a slightly smaller fraction of the between-school variance of the regression index of unobservable outcome-relevant
characteristics when sorting on these characteristics is weak, this is precisely the case when the magnitude of the between-
school variance in outcome-relevant unobservables is small. Thus, there is very little potential bias to be absorbed.
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Row (6), reveals that the performance of the control function really depends on the dimension of the

amenity space relative to the dimension of Xs, rather than the absolute number of amenities: when

Xs has 20 elements, the fraction of absorbed sorting bias barely changes as the number of amenities

rises from 5 to 10.

Finally, Row (9) displays the results of a specification in which all of the Θk` and ΘU
k` elements

are drawn independently (ρ = 0). Compared to Row (1), the R-squared for the full population falls

slightly (.9983 to .9953), and the R-squared when samples of (10/20/40) are used to construct Xs

falls more substantially, from (.90/.94/.97) to (.72/.82/.89). However, removing correlation among

the elements of Θ also reduces the amount of sorting on unobservables to be explained, since the

school averages of the various unobservables become more weakly correlated with one another, so

that their contributions to student outcomes tend to cancel each other out. Consequently, the fraction

of between school outcome variation that can be attributed to residual school-level differences in

unobservable student characteristics that is unpredictable based on the vector of school-average

observables Xs remains quite small.

Overall, the results in online Appendix Table A8 indicate that the control function approach

could potentially work extremely well even in settings where 1) individuals have idiosyncratic tastes

for particular groups, 2) there are only moderate number of total groups to join, and 3) only a subset

of these are considered by any given individual.49 The simulations suggest that the control function

works well even when only a small sample of individuals is observed in each group. In online

Appendix A8, we use the North Carolina administrative data to directly assess the effect of using

smaller samples of students to construct Xs for some of the outcomes and characteristics we actually

consider. We find that our main results are relatively insensitive to restricting school sample sizes

to match the distribution of sample sizes observed in the NLS72, NELS88, and ELS2002 datasets.

A5.2.1 Performance of the Control Function When the Spanning Condition Fails

Note that all the specifications in online Appendix Table A8 consider cases in which the con-

ditions presented in Proposition 1 are satisfied, so that we should expect the control function to

perfectly absorb sorting on observables as the number of students per school gets sufficiently large.

However, there may also be many contexts in which the set of observables is not sufficiently rich to

make our spanning condition plausible. Thus, we are also interested in the extent to which the ad-

dition of group-averages of individual characteristics can substantially reduce bias from sorting on

unobservables, even if it cannot completely eliminate the bias. Online Appendix Table A9 considers

a number of such scenarios.

Recall from the discussion in Section 3.1 that Θ̃ can be represented as the sum Θ̃=Θ+ΠXU X ΘU .

Thus, in general, the mapping from XU
s to Xs is generated partly because observed characteristics

49In other simulations available upon request, we have also examined the impact of altering the variance of εis. We
find that increasing Var(εis) reduces the between school variance in both Xi and XU

i symmetrically, but does not erode
the effectiveness of Xs as a control for XU

s . Intuitively, as Var(εis)→ ∞, idiosyncratic tastes fully drive choice, and the
between school variation in Xi and XU

i disappears, so that there is no more sorting problem to address.
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Xi and unobserved characteristics XU
i directly affect WTP for overlapping sets of amenities (which

creates a degree of overlap in the row spaces of Θ and ΘU ), and partly because Xi indirectly predicts

WTP for the amenities for which XU
i predicts WTP through the correlation between Xi and XU

i

(thereby creating further overlap in the row spaces of Θ and ΘU ). The spanning condition (ΘU =RΘ̃

for some matrix LU×L matrix R) is satisfied whenever these two pathways, working in combination,

produce a preference matrix Θ̃ whose row space is a linear superspace of the row space of ΘU .

Thus, before investigating the impact of violations of the spanning condition, we illustrate the

importance of both pathways by considering specifications in which one or the other pathway is shut

down. Row (1) is identical to Row (1) of online Appendix Table A8, and represents the baseline

case against which the other specifications are compared. Row (2) considers the case in which the

entire vector of unobservable characteristics XU
i is independent of the vector of obervables Xi, so

that ΠXU X converges to the zero matrix as school sizes become large. However, Xi and XU
i predict

tastes for a common set of amenities (A1−A5), so that Θ has (full) rank K and the row space of ΘU

is a linear subspace of the row space of Θ. The results in Row (2) suggest that the control function

approach still works quite well when large populations of students at each school are available (R-

squared of .972), but suffers somewhat when school averages are constructed using subsamples of

10, 20 or 40 students: R-squared values of .60/.69/.78 (column 10), with substantial residual bias

from sorting on unobservables left uncaptured by the control function X s (column 11).

Row (3) considers the opposite case in which the spanning condition is satisfied only through the

indirect pathway that operates via the correlation between Xi and XU
i . Specifically, the observables

and unobservables affect tastes for disjoint sets of amenities ({A1, . . . ,A4} and {A5} respectively), so

that the row space of ΘU is orthogonal to the row space of Θ, but each element of Xi is correlated .25

with each element of XU
i , so that ΠXU X is full rank and the row space of ΘU is a linear subspace of

the row space of ΠXU X ΘU . The results in Row (3) are quite similar to those in Row (2): strong when

large samples are used to construct school averages, weaker otherwise. Rows (2) and (3) combined

illustrate that the two pathways by which a mapping between Xs and XU
s may be generated are each

sufficient in isolation to produce desirable finite sample properties with large samples of students

per school, but it is the blend of both pathways to spanning that produced the surprisingly strong

finite sample results in online Appendix Table A8.

The remaining rows of online Appendix Table A9 consider cases in which the spanning con-

dition fails (the row space of ΘU is not a linear subspace of the row space of Θ̃ = Θ+ΠXU X ΘU ).

Row (4) presents results from the the worst-case scenario: the entire vector of unobservable char-

acteristics is independent of the entire vector of observable characteristics (ΠXU X = 0), and the

unobservable characteristics only predict WTP for an amenity (A5) that the observable character-

istics do not affect taste for (they exclusively weight A1−A4). Thus, Θ and ΘU have orthogonal

row spaces as well. Since the group averages of the observables and unobservables are functions of

disjoint sets of amenities, it comes as no surprise that only 32% of the variance in XU
s is predictable

given Xs, even when the universe of students at each school is observed (column 8).50

50The limited explanatory power we do obtain derives from correlation between A5 and A1−A4.
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Row (5) alters the scenario from Row (4) by allowing the unobservable characteristics XU
i to

predict WTP for amenities A1 to A4 in addition to A5. The control function performs somewhat

better: 62% of the variance in XU
s is absorbed by the coefficients on Xs.

These two scenarios are quite pessimistic, however. If WTP for an amenity is unaffected by the

entire vector Xi, then it seems likely that a subset of the unobservables may not predict WTP for

this amenity either. Thus, we consider two additional scenarios in which WTP for the last amenity

(A5) is only affected by one of the ten components of the unobserved vector XU
i . In Row (6), XU

i,10

affects WTP for A5 only. In Row (7), XU
i,10 predicts willingness to pay for all amenities A1 to A5.

Rows (6) and (7) reveal that our control function performs quite well in these scenarios: it absorbs

around 96% of the variation in XU
s in each case.

Finally, Rows (8) and (9) replicate the scenarios in Rows (6) and (7) but allow each of the

unobservable characteristics except the one affecting taste for A5 (XU
i,10) to exhibit a .25 correlation

with each of the observed characteristics, so that both ΠXU X ΘU and Θ would be linear superspaces

of ΘU in the absence of the last unobservable, XU
i,10. The performance of the control function for

these specifications is every bit as strong as in the baseline specification in Row (1). This suggests

that a violation of the spanning condition in Proposition 1 need not produce appreciable bias if it is

driven by only a small number of characteristics that weakly affect school/neighborhood choices.

We conclude that our control function approach is likely to be quite robust to the violations

of the spanning condition that are arguably the most plausible: namely, cases in which just a few

components of the subvector of XU
i that is orthogonal to Xi affect WTP for just a few additional

amenities for which Xi does not affect WTP.

A6 Estimation of Model Parameters

In this section we discuss estimation of the coefficients B, G1, and G2. The estimation strategy

depends on the outcome, so we consider the outcomes in turn.

A6.1 Years of Postsecondary Academic Education

Parameter estimation is most straightforward in the case of years of postsecondary academic

education. We estimate B using ordinary least squares regression with high school fixed effects,

which controls for all observed and unobserved school and neighborhood influences.

Recall that Zs is comprised of two components: Zs = [Xs;Z2s]. Z2s consists of school and neigh-

borhood characteristics for which direct measures are available, such as student/teacher ratio, city

size, and school type. Xs consists of school wide averages for each variable in Xi, such as parental

education or income, which we do not observe directly but must estimate from sample members

at each school. Consequently, the makeup of Xs differs across specifications that use different X

vectors. G1 and G2 are the corresponding subsets of the coefficients in G.
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We replace Xs with X̄s, where X̄s is the average of Xi computed over all available students from

the school.51 We estimate G1 and G2 by applying least squares regression to

Ysi−XiB̂ = X sG1 +Z2sG2 + vsi

using the appropriate panel weights from the surveys.

A6.2 Permanent Wage Rates

Abstracting from the effects of labor market experience and a time trend, let the log wage Ysit of

individual i, from school s, at time t be governed by

Ysit = Ysi + esit + ςsit .

In the above equation Ysi is i’s “permanent” log wage (given that he/she attended high school s) as

of the time by which most students have completed education and spent at least a couple of years in

the labor market, which we take to be 1979 in the case of NLS72. esit is a random walk component

that evolves as a result of luck in the job search process or within a company, or perhaps changes

in motivation or productivity due to health and other factors. We normalize esit to be 0 in 1979.52

ςsit includes measurement error and relatively short term factors that have little influence on the

lifetime earnings of an individual. The determination of the permanent wage is given by (20). After

substituting for Ysi, the wage equation is

Ysit = XiB+XsG1 +Z2sG2 + vsi + esit + ςsit .

We estimate B by OLS with school fixed effects included.53

Let Ỹsit ≡ Ysit −XiB̂. We estimate G1 and G2 by applying OLS to

Ỹsit = X̄sG1 +Z2sG2 + vsi + esit + ςsit (73)

The presence of ςsit complicates the variance decompositions, as we discuss below.

51A substantial number of students who appear in the base year of the surveys can be used to construct X̄s but cannot be
used to estimate (A6.1) because some variables, such as test scores, are missing, or because the students are not included
in the follow-up surveys that provide the measure of Ysi. As we discuss in Section 7, we impute missing values for most
of our explanatory variables prior to estimating B and G, but we do not use the imputed values when constructing the
school averages.

52We include esit as well as ςsit because the earnings dynamics literature typically finds evidence of a highly persistent
wage component. Several studies cannot reject the hypothesis that esit is a random walk. Recent examples include Baker
and Solon (2003), Haider (2001), and Meghir and Pistaferri (2004).

53In reality, we also include a vector Tit consisting of a dummy indicator for the year 1979 (relative to 1986), years of
work experience of i at time t, and experience squared. Let Ψ be the corresponding vector of wage coefficients. We adjust
wages for differences in labor market experience and for whether the data are from 1979 or 1986 by subtracting TitΨ̂ from
the wage prior to performing the variance decompositions. The estimate of Ψ̂ depends on whether tests, postsecondary
education, or both are in Xi. We report results with and without these variables. In our main specification, we exclude
postsecondary education from Xi.
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A6.3 High School Graduation and College Enrollment

The methods outlined in online Appendix A6.1 and A6.2 need to be adapted for binary measures

such as high school graduation and college attendance. Consequently, for high school graduation we

reinterpret Ysi to be the latent variable that determines the indicator for whether a student graduates,

HSGRADsi. That is,

HSGRADsi = 1(Ysi > 0).

Or, after substituting for Ysi,

HSGRADsi = 1(XiB+XsG1 +Z2sG2 + vsi > 0) (74)

We replace Xs with X̄s and estimate the equation

HSGRADsi = 1(XiB+ X̄sG1 +Z2G2 +(Xs− X̄s)G1 + vsi > 0) (75)

using maximum likelihood probit. The procedure for enrollment in a four-year college is analogous

to that of high school graduation.

A7 Decomposing the Variance in Educational Attainment and Wages

In this section we discuss an analysis of variance based on equation (35) that can be used to place

a lower bound on the importance of factors that are common to students from the same school.54 As

with parameter estimation, the details of our procedure depend upon the outcome. We begin with

years of postsecondary education.

A7.1 Years of Postsecondary Education

One may decompose Var(Ysi) into its within and between school components

Var(Ysi) =Var(Ysi−Ys)+Var(Ys)

where (Ysi−Ys) is the part of Ysi that varies across students in school s and Ys is the average outcome

for students from s. We estimate Var(Ysi−Ys) by using the sample variances of Var(Ysi−Y s) with

an appropriate correction for degrees of freedom lost in using the sample mean Y s in place of Ys.

Then Var(Ys) can be estimated as

V̂ar(Ys) = V̂ar(Ysi)−V̂ar(Ysi−Ys).

Then, from (33) we obtain

(Ysi−Ys) = (Xi−Xs)B+(vsi− vs)

54Jencks and Brown (1975) propose and implement a similar decomposition.
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and

Ys = XsB+XsG1 +Z2sG2 + vs.

Thus, one may express the outcome variance as55

Var(Yi) = [Var((Xi−Xs)B)+Var(vsi− vs)]+ (76)

[Var(XsB)+2Cov(XsB,XsG1)+2Cov(XsB,Z2sG2)+Var(XsG1)+ (77)

2Cov(XsG1,Z2sG2)+Var(Z2sG2)+Var(vs)] (78)

Given an estimate of B, Var((Xi− Xs)B) can be estimated using its corresponding sample vari-

ance, Var((Xi−X s)B). Var(vsi− vs) can then be estimated as V̂ar(Ysi−Ys)− V̂ar((Xi−Xs)B), and

Var(XsB) can be calculated as V̂ar(XiB)− V̂ar((Xi − Xs)B). One can also estimate the compo-

nents Var(XsG1) and Var(Z2sG2) of the school/community contribution and the common terms

2Cov(XsB,XsG1), 2Cov(XsB,Z2sG2) and 2Cov(XsG1,Z2sG2) using the estimates of B, G1, G2 and

the data X̄s and Z2s. Var(vs) can be calculated as

V̂ar(vs) =

V̂ar(Ys)−V̂ar(XsB)−V̂ar(XsG1)−V̂ar(Z2sG2)

−2Ĉov(XsB,XsG1)−2Ĉov(XsB,Z2sG2)−2Ĉov(XsG1,Z2sG2)

A7.2 Permanent Wage Rates

We focus on decomposing the permanent wage component Ysi. We take advantage of the ex-

istence of panel data on wages in NLS72 and work with a balanced sample of individuals who

report wages in both 1979 and 1986 (the fourth and fifth follow-ups, respectively). We estimate

the variance in the permanent component of the wage, Var(Ysi), using the covariance between wage

observations from the same individual in different years

Cov(Ysit ,Ysit ′) = Cov(Ysi + esit + ςsit ,Ysi + esit ′+ ςsit ′)

= Var(Ysi),

where Cov(ςsit ,ςsit ′) is assumed to be 0 given that the observations are seven years apart and

Cov(esit ,esit ′) = 0 from normalizing esit to be 0 in 1979. We use the sample estimate of Cov(Ysit ,Ysit ′)

as our estimate of Var(Ysi). We estimate this covariance by subtracting out the global mean for Ysit ,

calculating the wage product (Ysit)(Ysit ′) for each individual, and taking a weighted average across

all the individuals in the sample using the weights discussed in online Appendix A9, adjusting for

55The equation below imposes Cov(XsiB,vsi − vs) = 0, which is implied by our definition of B and vsi − vs. The
equation also assumes Cov(Xs,vs) = 0 and Cov(Z2s,vs) = 0, which are implied by our definition of [G1,G2] and vs (see
Section 5).
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degrees of freedom. Similarly, we estimate the between-school component of the permanent wage,

Var(Ys), by estimating the covariance between wage observations for different years (1979 and

1986) from different individuals from the same school. Specifically, we use the moment condition

Cov(Ysit ,Ys jt ′) = Cov(Ysi + esit + ςsit ,Ys j + es jt ′+ ςs jt ′), i 6= j, t 6= t ′

= Var(Ys),

where Cov(esit ,es jt ′) is defined to be 0, and Cov(ςsit ,ςs jt ′) is assumed to be 0. We estimate this

covariance by first calculating ((YsitYs jt ′) + (Ysit ′Ys jt))/2 for each pair of individuals i and j at school s

and then computing the weighted mean for each school s. We then average across schools, weighting

each school by the sum of the weights of the individuals who contributed to the school-specific

estimate.

We estimate the corresponding within school component using

V̂ar(Ysi−Ys) = V̂ar(Ysi)−V̂ar(Ys).

Given V̂ar(Ysi), V̂ar(Ysi−Ys), V̂ar(Ys), Ĝ1, Ĝ2, and B̂, estimation of the contributions of XiB, XsG1,

Z2sG2, vsi, and vs to Var(Ysi) proceeds as in previous subsection.

A7.3 High School Graduation and College Enrollment

For both of our binary outcomes, high school graduation and enrollment in a four-year college,

we decompose the latent variable that determines the outcome. Given that there is no natural scale

to the variance of the latent variable, we normalize Var(vsi−vs) to one, and define the total variance

of the latent variable to be

Var(Yi) = [Var((Xi−Xs)B)+1]+ (79)

[Var(XsB)+2Cov(XsB,XsG1)+2Cov(XsB,Z2sG2)+Var(XsG1)+

2Cov(XsG1,Z2sG2)+Var(Z2sG2)+Var(vs)] (80)

Given that the raw variance component estimates are specific to the choice of normalization, we

instead report fractions of the variance contributed by the various components.

A7.4 Calculation of Standard Errors

We calculate bootstrap standard errors for each of our point estimates and bound estimates based

on re-sampling schools with replacement, with 500 replications. To preserve the size distribution

of the samples of students from particular schools, we divide the sample into 5 school sample size

classes and resample schools within class.
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A8 Using the North Carolina Data to Assess the Magnitude of Bias
from Limited Samples of Students Per School

Before considering estimates from the three survey datasets, we first use the North Carolina

sample to better gauge the biases produced by the student sampling schemes used by each survey.

The monte carlo simulations in Section 4 suggested that estimation based on subsamples of 20 stu-

dents per school (similar to those in the three datasets) could diminish the ability of school-average

observables to capture sorting on unobservables. However, these simulations are based on particu-

lar assumptions about the dimensionality of the underlying desired amenities, the joint distribution

of the observable and unobservable characteristics, and the degree to which these characteristics

predict tastes for schools/neighborhoods.

In this appendix, we assess the potential for bias in our survey-based estimates more directly

by drawing samples of students from North Carolina schools using either the NLS72, NELS88, or

ELS2002 sampling schemes and re-estimating the model for high school graduation using these

samples. By comparing the results derived from such samples to the true results based on the

universe of students in North Carolina, we can determine which if any of the survey datasets is

likely to produce reliable results. To remove the chatter produced by a single draw from these

sampling schemes, we computed estimate averages over 100 samples drawn from each sampling

scheme.

Table A10 presents the results of this exercise. For comparison, the first column of Panel A

presents the variance decomposition described in Section 6 for the full North Carolina sample,

while the first column of Panel B converts the variance components isolating school/neighborhood

effects into our lower bound estimates of the average impact of moving from the 10th to the 90th

quantile of the distribution of school/neighborhood contributions. Columns 2 through 5 display the

results from recomputing these estimates for subsamples of the North Carolina population featuring

the same distributions of school-specific sample sizes as in NLS72, ELS2002, grade 8 schools in

NELS88 and grade 10 schools in NELS88.56 Focusing first on Column 2, we see that the use of

small student samples at each school may actually produce a relatively small amount of bias in

our NLS72 results. Most of the rows of Panel A match quite closely across Columns 1 and 2. Of

particular interest are the last two rows of Panel A: we see that the NLS72 sample size distribution

overstates the true variance fraction for the lower bound without common shocks, Var(Z2sG2), by

0.88%, and understates true variance fraction for the lower bound that may include common shocks,

Var(Z2sG2 + vs), by 0.48%. These translate to over/under estimates of the impact of a 10th-90th

quantile shift in school quality on the probability of graduation of .0198 and .0111, respectively.

Comparing the full NC sample with the NELS88 grade 8 and ELS2002 results (Columns 3 and 5),

we see a similar pattern. These results are comforting, and suggest that the estimates from these

samples may overstate the lower bound slightly in the estimates that attempt to exclude common

5610th grade schools in NELS88 are the schools in which the original 8th grade NELS sample are observed in the first
follow-up survey.
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shocks, but may even understate appropriate lower bound estimates that include common shocks.

Column 4 reports results from NELS88 in which students are grouped by their 10th grade school

rather than their 8th grade school. Since grade 10 schools were not part of the original NELS88

sampling frame, they feature particularly small samples of students, and only produce large samples

of students to the extent that many students from a given grade 8 school attend the same grade

10 school. These results reveal that considerable bias may be produced if student samples are

sufficiently small. Looking at the last two rows of Panel A, we see that the NELS88 grade 10

sample size distribution overstates the true variance fraction for the lower bound without common

shocks by 1.7 percent, and the lower bound with common shocks by 1.4 percent. These translate to

overestimates of the impact of a 10th-90th quantile shift in school quality of 3.8 percentage points

and 2.2 percentage points, respectively. Due the poor performance of the NELS88 grade 10 school

sample size distribution in our simulation test, we do not report any NELS88 results that group

students by their grade 10 school.

A9 Construction and Use of Weights

In the NLS72 analyses of four-year college enrollment and postsecondary years of education, we

use a set of panel weights (w22) designed to make nationally representative a sample of respondents

who completed the base-year and fourth-follow up (1979) questionnaires. For the NLS72 wage

analysis, we chose a set of panel weights (comvrwt) designed for all 1986 survey respondents for

whom information exists on 5 of 6 key characteristics: high school grades, high school program,

educational attainment as of 1986, gender, race, and socioeconomic status. Since there are very

few 1986 respondents who did not also respond in 1979, this weight matches the wage sample

fairly well. For the NELS88 sample, we use a set of weights (f3pnlwt) designed to make nationally

representative the sample of respondents who completed the first four rounds of questionnaires

(through 1994, when our outcomes are measured). For the ELS02 sample, we use a set of weights

(f2bywt) designed to make nationally representative a sample of respondents who completed the

second follow up questionnaire (2006) and for whom information was available on certain key

baseline characteristics (gathered either in the base year questionnaire or the first follow-up). This

seemed most appropriate given that our outcomes are measured in the 2006 questionnaire and we

require non-missing observations on key characteristics for inclusion in the sample.

We use panel weights in the estimation for a number of reasons. The first is to reduce the in-

fluence of choice-based sampling, which is an issue in NELS88 and in the wage analysis based on

NLS72. The second is to correct for non-random attrition from follow-up surveys. The third is a

pragmatic adjustment to account for the possibility that the link between the observables and out-

comes involves interaction terms or nonlinearities that we do not include. The weighted estimates

may provide a better indication of average effects in such a setting. Finally, various populations

and school types were oversampled in the three datasets, so that applying weights makes our sam-

ple more representative of the universe of American 8th graders, 10th graders, and 12th graders,
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respectively. Note, though, that we do not adjust weights for item non-response associated with the

key variables required for inclusion in our sample. Thus, even after weighting, our estimates do not

represent estimates of population parameters for the populations of American high school students

of which the surveys were designed to be representative.

A10 Other Applications: Estimating Teacher Value-Added

This section examines how our central insight that group averages of observed individual char-

acteristics can control for group averages of unobserved individual characteristics can be extended

to contexts in which group assignments are determined by a central administrator rather in a de-

centralized competitive equilibrium. The particular context we consider is one in which a school

principal is assigning students to classrooms based on a combination of observed and unobserved

(to the econometrician) student inputs, where the goal is to estimate each teacher’s value-added to

test score achievement.

A10.1 Sorting of Students Across Class Rooms

Assume for now that the administrator has already determined which teachers to allocate to

which courses for which periods of the day, so that a classroom c can be effectively captured by

a vector of amenity values Ac. Consider first the case in which none of amenities reflect the de-

mographic makeup of the class, so that the amenity vector Ac can be considered exogenous to the

principal’s student-to-classroom allocation problem. Instead, these amenities may include the prin-

cipal’s perceptions of various teacher attributes or skills, but could also include classroom amenities

unrelated to teacher quality that might capture whether the heating works, the quality of class-

room technology in the room, the time in the day that the class is held, or the difficulty level of

the class. As noted in Section 9, exogeneity of the amenity vector may be a reasonable assump-

tion in some high school and college contexts in which students submit course preferences and a

schedule-making algorithm assigns students to classrooms.

We can then adapt the utility function featured in equation (2) to model the payoff that the prin-

cipal obtains from assigning student i to class c (simply replace all s subscripts with c subscripts).

As before, Xi is a vector of student characteristics that are observed by the econometrician and are

relevant for the outcome Yi, the student’s end-of-year standardized test score. Similarly, XU
i is a

vector of student characteristics that are unobserved by the econometrician but are observed by the

principal and are relevant for test score performance, and Wi represents a vector of student charac-

teristics that are unobserved by the econometrician and observed by the principal, but do not affect

test score performance. The Θ and ΘU parameter matrices might capture a principal’s belief about

which types of students are most likely to benefit from a better teacher or difficulty level. Θ and

ΘU might also reflect the desire to placate parents or students, where students/parents with certain

values of Xi or XU
i are more likely to advocate for particular classroom assignments. Some parental
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or student characteristics may predict a stronger preference for a particular difficulty level or time

of day, while others predict a stronger preference for teacher quality. Similarly, the idiosyncratic

match value εic might capture, for example, the desire to fulfill a particular family’s request that

their child be assigned to the same teacher that his brother had. Thus, we model parent and student

preferences as affecting choice through their impact on principal preferences.57

Let I represent the set of students to be allocated, and let C represent the set of available

classrooms (each of which has an associated teacher). The principal’s problem is to choose the

mapping c : I →C from students to classrooms that maximizes the sum of student utilities, subject

to the constraints that each classroom cannot exceed its capacity and every student (or perhaps

student-subject combination at the high school level) can only be assigned to one classroom:

max
c:I→C

∑
i∈I

Uic(i)

s.t. ∑
c′
1(c(i) = c′) = 1 ∀ i

s.t. ∑
i′
1(c(i′) = c) =Cc ∀ c ∈ C (81)

where 1(c(i) = c′) indicates that student i is assigned to classroom c′, and Cc′ is the capacity of

classroom c′.

This optimization problem can be recast as a binary integer programming problem:

max
d

a∗d

s.t. Mi ∗d = 1 ∀ i ∈I

s.t. Nc ∗d =Cc ∀ c ∈ C

s.t. d ∈ {0,1} (82)

Here a consists of a 1× (I ∗C) row vector of the student utility values associated with each

potential student-classroom combination:

a =
(

U11 . . . UI1 U12 . . . UI2 . . . U1C . . . UIC

)
57Rothstein (2009) provides a useful classroom assignment model in which principals assign students to classrooms

based on student characteristics that are observable to both the principal and the econometrician Xi and student character-
istics that are only available to the principal (part of XU

i ). He discusses bias in VAM models that include Xi and possibly
other controls. He does not consider the potential for Xc to control for XU

c .
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d consists of a (I ∗C)×1 vector of potential student-classroom assignments:

d =



d11
...

dI1

d12
...

dI2
...

d1C
...

dIC


where dic′ = 1(c(i) = c′) is an indicator for whether student i is assigned to classroom c′.

Mi consists of a 1× I ∗C row vector capturing the number of classrooms to which each student

(or student-subject combination) is assigned (restricted here to be 1 ∀ i):

Mi =

 i−1︷ ︸︸ ︷
0 . . .0 1

I−i︷ ︸︸ ︷
0 . . .0︸ ︷︷ ︸

repeated C times

. . .

i−1︷ ︸︸ ︷
0 . . .0 1

I−i︷ ︸︸ ︷
0 . . .0


Nc consists of a 1× I ∗C row vector capturing the number of students assigned to classroom c

(restricted to be less than or equal to the classroom capacity Cc):

Nc =

(c−1)∗I︷ ︸︸ ︷
0 . . .0 1 . . .1︸ ︷︷ ︸

I

(C−c)∗I︷ ︸︸ ︷
0 . . .0

 .

Koopmans and Beckmann (1957) show that the solution to this binary integer program problem

can be sustained by a one-sided set of prices for classrooms {Pc}. This means that the optimal

assignment for each individual is also the solution to his/her utility maximization problem:

c(i) = argmax
c

Ũic−Pc ≡Uic (83)

Notice that the structure of this utility maximization problem is isomorphic to that of the decentral-

ized school choice problem from Section 2. Consequently, if the spanning condition ΘU = RΘ̃ is

satisfied for some matrix R, Xc will be a linear function of XU
c .

However, in the elementary and middle school contexts, it seems particularly likely that some

elements of Ac could reflect the student makeup of the class. Including anticipated peer effects

complicates the specification of principal preferences, since now the utility from assigning a given

student to a classroom would depend on the other students assigned to the classroom. The classroom
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sorting problem differs from the school/neighborhood sorting problem in that the principal would

internalize the effect that allocating a student to c has on Ac, while parents would take As as given.

We have not yet solved a classroom assignment problem with endogenous amenities.

A10.2 Implications for Estimation of Teacher Value Added

Suppose that the true classroom contribution to a given student i’s test scores can be captured

by ZcΓ+ zU
c +ηci, mirroring equation (20). As before, partition the vector of observed classroom

characteristics into two parts Zc = [Xc,Z2c], where Xc captures classroom averages of observed stu-

dent characteristics and Z2c represents other observed classroom characteristics.58 Consider the

classroom version of our estimating equation (33):

Yi = Xiβ +XcG1 +Z2cG2 + vci, (84)

When past test scores are elements of Xi and a design matrix Dc(i) indicating which classrooms were

taught by which teachers is included in Z2c, equation (84) represents a standard teacher value-added

specification.59

Suppose that Proposition 1 can be extended to the classroom choice setting (as proven in the

exogenous amenities case) and that the corresponding spanning condition is satisfied, so that Xc and

XU
c are linearly dependent. Suppose in addition that the principal’s perception of teacher quality is

noisy, so that Dc is not collinear with Ac (and therefore not collinear with Xc). Then our analysis

in Section 5.3 suggests that G2 = Γ2 +ΠZU
c Z2c

. Since Z2c includes the teacher design matrix Dc(i),

we see that including classroom averages of student characteristics Xc in teacher value-added re-

gressions will purge estimates of individual teachers’ value-added from any bias from non-random

student sorting on either observables or unobservables. Any remaining bias ΠZU
c Z2c

stems from the

possible correlation between the assignment of the chosen teacher to the classroom and other aspects

of the classroom environment.

However, suppose that all unobserved classroom factors that are inequitably distributed across

teachers are either being used as a basis for student allocation to classrooms or are directly included

as other controls in Zc. Then the analysis in Section 5.3.1 reveals that including classroom averages

of observed student characteristics will also purge teacher value-added estimates G2 of any omitted

variables bias driven by inequitable access to advantageous classroom environments (the subvector

of ΠZU
c Z2c

corresponding to the teacher design matrix Dc will equal 0).

Of course, our simulations suggest that the effectiveness of the control function approach de-

pends on observing moderately large samples of students with each teacher. And in practice there

may be classroom factors ignored by students and principals that do not even out across teachers.

While these caveats should be kept in mind, our analysis may partially explain the otherwise sur-

prising finding that non-experimental OLS estimators of teacher quality produce nearly unbiased
58We assume here that teacher quality is not classroom-specific, as in most teacher value-added models.
59Z2c might also include a set of indicators for the teacher’s experience level.
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estimates of true teacher quality as ascertained by quasi-experimental and experimental estimates

(Chetty et al. (2014), Kane and Staiger (2008)).
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Appendix Tables

Table A1: Estimates of the Contribution of School Systems and Neighborhoods to High School
Graduation Decisions Under the Assumption that Only Observables Xi Drive Sorting

Panel A: Fraction of Latent Index Variance Determining Graduation
Attributable to School/Neighborhood Quality

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort. 0.050 0.038 0.072 0.048 0.064 0.052
Var(XsG1 +Z2sG2 + vs) (0.017) (0.011) (0.009) (0.009) (0.011) (0.010)

Panel B: Effect on Graduation Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort.: 10th-90th 0.177 0.155 0.156 0.132 0.111 0.100
Based on Var(XsG1 +Z2sG2 + vs) (0.026) (0.017) (0.015) (0.012) (0.020) (0.008)

No Unobs. Sort.: 10th-50th 0.098 0.085 0.093 0.076 0.068 0.060
Based on Var(XsG1 +Z2sG2 + vs) (0.016) (0.010) (0.024) (0.008) (0.012) (0.006)

Bootstrap standard errors based on resampling at the school level are in parentheses.
Panel A reports lower bound estimates of the fraction of variance in the latent index that determines high school
graduation that can be directly attributed to school/neighborhood choices for each dataset.
The label “No Unobs. Sort. ” reports Var(XsG1 + Z2sG2 + vs), which captures the variance in true
school/neighborhood contributions under the assumption that sorting is driven only by Xi.
Panel B reports estimates of the average effect of moving students from a school/neighborhood at the 10th quantile
of the quality distribution to one at the 50th or 90th quantile.
The columns headed “NC” are based on the North Carolina data and refer to a decomposition that uses the 9th
grade school as the group variable. The columns headed “NELS88 gr8” are based on the NELS88 sample and
refer to a decomposition that uses the 8th grade school as the group variable. The columns headed “ELS2002” are
based on the ELS2002 sample and refer to a decomposition that uses the 10th grade school as the group variable.
For each data set the variables in the baseline and full models are specified in Table 1.
The full variance decompositions underlying these estimates are presented in Web Appendix Table A19.
Appendix Sections A6 and A7 discuss estimation of model parameters and the variance decompositions. Section
6.3 discusses estimation of the 10-50 and 10-90 differentials.
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Table A2: Estimates of the Contribution of School Systems and Neighborhoods to Four Year
College Enrollment Decisions Under the Assumption that Only Observables Xi Drive Sorting

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort. 0.064 0.049 0.067 0.055 0.065 0.043
Var(XsG1 +Z2sG2 + vs) (0.012) (0.006) (0.009) (0.007) (0.007) (0.005)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort.: 10th-90th 0.220 0.190 0.245 0.213 0.258 0.205
Based on Var(XsG1 +Z2sG2 + vs) (0.015) (0.016) (0.020) (0.014) (0.018) (0.013)

No Unobs. Sort.: 10th-50th 0.098 0.087 0.112 0.099 0.121 0.098
Based on Var(XsG1 +Z2sG2 + vs) (0.006) (0.007) (0.007) (0.006) (0.008) (0.006)

Bootstrap standard errors based on resampling at the school level are in parentheses.
The notes to Table A1 apply, except that Table A2 reports results for enrollment in a 4-year college two years after
graduation.
The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the group
variable.
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Table A3: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Four Year College Enrollment Decisions (Naive OLS Specification: School-Averages Xs omitted

from estimating equation)

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.030 0.020 0.023 0.021 0.028 0.020
Var(Z2sG2) (0.005) (0.004) (0.004) (0.004) (0.004) (0.003)

LB w/ unobs 0.060 0.046 0.061 0.050 0.061 0.042
Var(Z2sG2 + vs) (0.009) (0.007) (0.007) (0.006) (0.008) (0.006)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.147 0.119 0.140 0.130 0.164 0.136
Based on Var(Z2sG2) (0.012) (0.011) (0.012) (0.012) (0.012) (0.011)

LB w/ unobs: 10th-90th 0.211 0.182 0.229 0.201 0.245 0.199
Based on Var(Z2sG2 + vs) (0.016) (0.014) (0.014) (0.013) (0.017) (0.015)

LB no unobs: 10th-50th 0.068 0.056 0.067 0.062 0.079 0.066
Based on Var(Z2sG2) (0.005) (0.005) (0.006) (0.006) (0.005) (0.005)

LB w/ unobs: 10th-50th 0.095 0.083 0.105 0.093 0.116 0.095
Based on Var(Z2sG2 + vs) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007)

“Naive OLS Specification” refers to a specification in which school-averages of individual
characteristics X s are omitted from the estimating equation (or equivalently, the coefficient
vector G1 is constrained to be equal to 0).
Bootstrap standard errors based on resampling at the school level are in parentheses.
The notes to Table 2 apply, except that Table A3 reports results for enrollment in a 4-year college two
years after graduation.
The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the
group variable.
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Table A4: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods to
Completed Years of Postsecondary Education in NLS72 data (Naive OLS Specification:

School-Averages Xs omitted from estimating equation)

Panel A: Fraction of Variance
Attributable to School/Neighborhood Quality

Lower Bound
Yrs. Postsec. Ed. Yrs. Postsec. Ed.

Fixed Effects No Fixed Effects

Baseline Full Baseline Full

(1) (2) (3) (4)

LB no unobs 0.010 0.006 0.008 0.004
Var(Z2sG2) (0.002) (0.002) (0.001) (0.001)

LB w/ unobs 0.045 0.029 0.040 0.026
Var(Z2sG2 + vs) (0.007) (0.006) (0.006) (0.005)

Panel B: Effects on Years of Postsecondary Education
of a School System/Neighborhood at the 50th or 90th Percentile

of the Quality Distribution vs. the 10th Percentile

Lower Bound
Yrs. Postsec. Ed. Yrs. Postsec. Ed.

Fixed Effects No Fixed Effexts

Baseline Full Baseline Full

(1) (2) (3) (4)

LB no unobs: 10th-90th 0.431 0.339 0.396 0.299
Based on Var(Z2sG2) (0.048) (0.036) (0.046) (0.034)

LB w/unobs: 10th-90th 0.923 0.747 0.875 0.703
Based on Var(Z2sG2 + vs) (0.074) (0.079) (0.069) (0.074)

LB no unobs: 10th-50th 0.216 0.169 0.198 0.149
Based on Var(Z2sG2) (0.024) (0.018) (0.023) (0.017)

LB w/unobs: 10th-50th 0.461 0.373 0.437 0.351
Based on Var(Z2sG2 + vs) (0.037) (0.040) (0.035) (0.037)

“Naive OLS Specification” refers to a specification in which school-averages of individual
characteristics X s are omitted from the estimating equation (or equivalently, the coefficient
vector G1 is constrained to be equal to 0).
Bootstrap standard errors based on resampling at the school level are in parentheses.
Panel A reports lower bound estimates of the fraction of variance of years of postsecondary
education and permanent wage rates (with and without controls for postsecondary educa-
tion) that can be directly attributed to school/neighborhood choices for each dataset. The
sample is NLS72.
The row labelled “LB no unobs” reports Var(Z2sG2) and excludes the unobservable vs
while the row labeled “LB w/ unobs” reports Var(Z2sG2 + vs).
Panel B reports estimates of the average effect of moving students from a
school/neighborhood at the 10th quantile of the quality distribution to one at the 50th
or 90th quantile. It is equal to 2 ∗ 1.28 times the value of [V̂ar(Z2sG2 + vs)]

0.5 or
[V̂ar(Z2sG2)]

0.5 in the corresponding column of the table.
See Table Table 1 for the variables in the baseline model and the full model. The full
variance decompositions are in Appendix Table A21. Web Appendix Sections A6 and A7
discuss estimation of model parameters and the variance decompositions.
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Table A5: Principal Components Analysis of the Vector of School Average Observable
Characteristics Xs

Panel A: Fraction of Total Variance in Xs
Explained by Various Numbers of Principal Components

NLS72 NELS88 gr8 ELS2002
Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

(1) # of Variables in Xs 32 34 39 49 40 51

# Factors Needed to Explain:

(2) 75% of Total Xs Var. 7 7 7 9 6 8
[7,8] [8,8] [7,8] [8,9] [6,7] [7,8]

(3) 90% of Total Xs Var. 12 12 13 16 11 14
[11,12] [12,13] [11,13] [14,15] [11,12] [14,15]

(4) 95% of Total Xs Var. 15 15 17 20 14 19
[14,15] [14,15] [14,16] [18,19] [14,15] [17,19]

(5) 99% of Total Xs Var. 20 21 22 26 20 25
[18,19] [17,18] [19,21] [23,25] [18,20] [23,25]

(6) 100% of Total Xs Var. 24 25 27 32 26 33
[21,23] [18,19] [23,26] [29,31] [23,25] [29,31]

Panel B: Fraction of Variance in the Regression Index XsĜ1
Explained by Various Numbers of Principal Components

NLS NELS gr8 ELS
Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

(1) # of Variables in Xs 32 34 39 49 40 51

# Factors Needed to Explain:

(2) 75% of Var(XsG1) 3 3 6 5 2 5
[3,5] [3,6] [3,7] [5,8] [2,3] [4,7]

(3) 90% of Var(XsG1) 8 7 10 10 5 11
[5,9] [5,10] [6,11] [9,14] [3,7] [8,14]

(4) 95% of Var(XsG1) 10 9 13 13 7 15
[8,13] [7,11] [9,14] [12,17] [5,11] [11,17]

(5) 99% of Var(XsG1) 14 15 19 20 14 22
[13,17] [10,15] [13,19] [19,24] [11,16] [17,23]

(6) 100% of Var(XsG1) 24 25 27 32 26 33
[21,23] [18,19] [23,26] [29,31] [23,25] [29,31]

See Section A2 for details.
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Table A6: Estimating the Number of Latent Amenities (dim(As)): Kleibergen and Paap (2006)
Heteroskedasticity-Robust and Cluster Robust Tests of the Rank of the Xs Covariance Matrix

(Baseline Specification Results)

Dataset (Number of Variables in Xs)

NLS72 (32) NELS88 gr8 (39) ELS2002 (40)

Het. Only Cluster Het. Only Cluster Het. Only Cluster

# Fact. (1) (2) (3) (4) (5) (6)
H0 HA P-val P-val P-val P-val P-val P-val

0 1+ 0 NaN 0 NaN 0 NaN
1 2+ 0 NaN 0 NaN 0 NaN
2 3+ 0 .483 0 NaN 0 NaN
3 4+ 0 .332 0 NaN 0 NaN
4 5+ 0 .137 0 NaN 0 NaN
5 6+ 0 .096 0 NaN 0 NaN
6 7+ 0 .049 0 NaN 0 NaN
7 8+ 0 .066 0 NaN 0 NaN
8 9+ 0 .230 0 NaN 0 NaN
9 10+ 0 .270 0 .485 0 NaN
10 11+ 0 .210 0 .401 0 NaN
11 12+ 0 .199 0 .370 0 NaN
12 13+ 0 .211 .001 .389 0 NaN
13 14+ .016 .354 .001 .368 .047 NaN
14 15+ .278 .485 .009 .309 .532 NaN
15 16+ .834 .641 .139 .253 .942 NaN
16 17+ .995 .944 .557 .349 .993 NaN
17 18+ .999 .950 .718 .349 .999 NaN
18 19+ 1 .991 .879 .576 1 NaN
19 20+ 1 .996 .984 .705 1 NaN
20 21+ 1 .990 .998 .747 1 NaN
21 22+ 1 .994 .999 .865 1 NaN
22 23+ 1 .999 1 .867 1 NaN
23 24+ 1 .999 1 .902 1 NaN
24 25+ 1 1 1 .918 1 NaN
25 26+ 1 1 1 .990 1 .499
26 27+ 1 1 1 .986 1 .580
27 28+ 1 1 1 .991 1 .690
28 29+ 1 1 1 .997 1 .701
29 30+ .998 .999 1 .999 1 .888
30 31+ .982 .978 1 .999 1 .973
31 32+ .921 .940 1 1 1 .991
32 33+ – – 1 1 1 .997
33 34+ – – 1 1 1 .999
34 35+ – – 1 1 1 1
35 36+ – – 1 1 1 1
36 37+ – – .999 .999 1 1
37 38+ – – .998 .998 1 1
38 39+ – – .985 .985 .998 1
39 40+ – – – – .886 1

Under the conditions laid out in Proposition 1 of the paper, the rank of the covariance of
Xs reveals the number of amenity factors driving sorting. See Section A2 for details. Each
element in the table reports a p-value from a test based on Kleibergen and Paap (2006)
of the null that the rank of the covariance matrix of school-averages of observable student
characteristics Xs is equal to value associated with the row label, against the alternative
hypothesis that the rank exceeds this value. “Het. Only” refers to the heteroskedasticity-
robust (but unclustered) version of the test. “Cluster” refers to the more general test that
is robust to arbitrary correlation in sampling error within clusters. We cluster at the school
level. Each test is implemented via the STATA ranktest.ado code provided by Kleibergen
and Paap (2006).
‘–’ indicates that the entry corresponds to a case in which the hypothesized rank associated
with the row is as large as or larger than the size of the covariance matrix whose rank is
being tested (which corresponds to the number of variables in Xs for the dataset associated
with the chosen column), thus obviating the need for a rank test.
‘NaN’ indicates that the entry corresponds to a case in which the Kleibergen-Paap rank test
returned an error due to a non-positive definite covariance matrix.
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Table A7: Estimating the Number of Latent Amenities (dim(As)): Kleibergen and Paap (2006)
Heteroskedasticity-Robust and Cluster Robust Tests of the Rank of the Xs Covariance Matrix

(Full Specification Results)

Dataset (Number of Variables in Xs)
NLS72 (34) NELS88 gr8 (49) ELS2002 (51)

Het. Only Cluster Het. Only Cluster Het. Only Cluster
# Fact. (1) (2) (3) (4) (5) (6)

H0 HA P-val P-val P-val P-val P-val P-val

0 1+ 0 NaN 0 NaN 0 NaN
1 2+ 0 NaN 0 NaN 0 NaN
2 3+ 0 NaN 0 NaN 0 NaN
3 4+ 0 NaN 0 NaN 0 NaN
4 5+ 0 .471 0 NaN 0 NaN
5 6+ 0 .341 0 NaN 0 NaN
6 7+ 0 .199 0 NaN 0 NaN
7 8+ 0 .185 0 NaN 0 NaN
8 9+ 0 .336 0 NaN 0 NaN
9 10+ 0 .347 0 NaN 0 NaN
10 11+ 0 .351 0 NaN 0 NaN
11 12+ 0 .275 0 NaN 0 NaN
12 13+ 0 .187 0 NaN 0 NaN
13 14+ .001 .399 0 NaN 0 NaN
14 15+ .074 .693 0 NaN 0 NaN
15 16+ .451 .596 0 NaN .001 NaN
16 17+ .918 .745 .002 NaN .136 NaN
17 18+ .998 .925 .021 NaN .632 NaN
18 19+ .999 .920 .139 NaN .970 NaN
19 20+ 1 .972 .445 .430 .996 NaN
20 21+ 1 .998 .762 .377 .999 NaN
21 22+ 1 .998 .967 .497 1 NaN
22 23+ 1 .999 .998 .576 1 NaN
23 24+ 1 1 .999 .590 1 NaN
24 25+ 1 1 1 .725 1 NaN
25 26+ 1 1 1 .697 1 .499
26 27+ 1 1 1 .701 1 .580
27 28+ 1 1 1 .636 1 .690
28 29+ 1 1 1 .858 1 .701
29 30+ 1 1 1 .944 1 .888
30 31+ 1 1 1 .952 1 .973
31 32+ 1 1 1 .996 1 .991
32 33+ .991 .996 1 .994 1 .997
33 34+ .996 .997 1 1 1 .999
34 35+ – – 1 1 1 1
35 36+ – – 1 1 1 1
36 37+ – – 1 1 1 1
37 38+ – – 1 1 1 1
38 39+ – – 1 1 1 1
39 40+ – – 1 1 1 1
40 41+ – – 1 1 1 1
41 42+ – – 1 1 1 1
42 43+ – – 1 1 1 1
43 44+ – – 1 1 1 1
44 45+ – – 1 1 1 1
45 46+ – – 1 1 1 1
46 47+ – – 1 1 1 1
47 48+ – – .999 .998 1 1
48 49+ – – .993 .992 1 1
49 50+ – – – – .998 .998
50 51+ – – – – .919 .911

Under the conditions laid out in Proposition 1 of the paper, the rank of the covariance of Xs reveals the number
of amenity factors driving sorting. See Section A2 for details. Each element in the table reports a p-value from
a test based on Kleibergen and Paap (2006) of the null that the rank of the covariance matrix of school-averages
of observable student characteristics Xs is equal to value associated with the row label, against the alternative
hypothesis that the rank exceeds this value. “Het. Only” refers to the heteroskedasticity-robust (but unclustered)
version of the test. “Cluster” refers to the more general test that is robust to arbitrary correlation in sampling
error within clusters. We cluster at the school level. Each test is implemented via the STATA ranktest.ado code
provided by Kleibergen and Paap (2006).
‘–’ indicates that the entry corresponds to a case in which the hypothesized rank associated with the row is as large
as or larger than the size of the covariance matrix whose rank is being tested (which corresponds to the number of
variables in Xs for the dataset associated with the chosen column), thus obviating the need for a rank test.
‘NaN’ indicates that the entry corresponds to a case in which the Kleibergen-Paap rank test returned an error due
to a non-positive definite covariance matrix.
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Table A8: Monte Carlo Simulation Results: Cases in which the Spanning Condition
in Proposition 1 is Satisfied (ΘU = RΘ For Some R)

Row # Stu. # Sch. # Con. # Ob. # Un. # Am. Θ Corr Var(XU
s BU )

Var(Y )
R-Sq Resid R-Sq Resid
(All) (All) (10/20/40) (10/20/40)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 1000 50 50 10 10 5 0.25 .122 0.9983 .0002
.896 .013
.941 .007
.967 .004

(2) 500 50 50 10 10 5 0.25 .123 0.9969 .0004
.896 .013
.941 .007
.968 .004

(3) 2000 50 50 10 10 5 0.25 .122 0.9991 .0001
.896 .013
.940 .007
.967 .004

(4) 1000 100 50 10 10 5 0.25 .122 0.9981 .0002
.881 .015
.932 .008
.963 .005

(5) 1000 50 10 10 10 5 0.25 .100 0.9981 .0001
.869 .013
.927 .007
.960 .004

(6) 1000 50 50 20 20 5 0.25 .122 0.9996 .0001
.939 .008
.967 .004
.983 .002

(7) 1000 50 50 10 10 10 0.25 .136 0.9947 .0007
.898 .014
.939 .008
.962 .005

(8) 1000 50 50 20 20 10 0.25 .135 0.9993 .0001
.946 .008
.971 .004
.984 .002

(9) 1000 50 50 10 10 5 0 .048 0.9953 .0002
.721 .013
.824 .008
.894 .005

# Stu.: Number of students per school

# Sch.: Total number of schools

# Con.: Number of schools in each family’s consideration set

# Ob: Number of observable student characteristics

# Un: Number of unobservable student characteristics

# Am.: Number of latent amenity factors valued by families

Θ Corr: Correlation in Θlk taste parameters across student characteristics for a given amenity and across amenities
for a given student characteristic
Var(XU

s βU )
Var(Yi)

: Fraction of variance in the student-level outcome accounted for by between-school variation in the re-
gression index of unobserved student characteristics

R-sq (All): Fraction of between-school variance in unobservable student characteristics XU
s βU explained by the

control function X s (sample averages of both X s and XU
s are computed using all students)

Resid (All): Fraction of outcome variance accounted for by the residual component of the between-school variation
in the regression index of unobserved student characteristics that cannot be predicted based on the vector of observed
school-averages X s, [(1−R2)Var(XU

s βU)]/Var(Yi) (sample averages of both X s and XU
s are computed using all

students)
R-sq (10/20/40): Fraction of between-school variance in unobservable student characteristics XU

s βU explained by
the control function X s (sample school averages X s are computed using 10/20/40 students, while school averages
XU

s are computed using all students.)
Resid (10/20/40): Fraction of outcome variance accounted for by the part of the between-school variation in the
regression index of unobserved student characteristics that cannot be predicted based on the vector of observed
school-averages X s (sample averages X s are computed using 10/20/40 students, while school averages XU

s are com-
puted using all students.) 86



Table A9: Monte Carlo Simulation Results: Sensitivity of Control Function Performance to the
Spanning Condition in Proposition 1

Row
X /XU Corr. WTP for A1-A4 WTP for A5 Assu. (A5) Assu. (A5.1) Assu. (A5.2) Var(XU

s BU )
Var(Y )

R-Sq Resid R-Sq Resid
Structure Depends On Depends On Satisfied Satisfied Satisfied (All) (All) (10/20/40) (10/20/40)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1)
Corr = .25 for each All elements All elements

Yes Yes Yes .122 0.998 .0002
.896 .013

pair of (obs. of Xi and XU
i of Xi and XU

i .941 .007
or unobs.) char. .967 .004

(2)
Elements of XU All elements All elements

Yes No Yes .101 0.972 .0028
.596 .041

independent of of Xi and XU
i of Xi and XU

i .687 .032
elements of X .775 .023

(3)
Corr = .25 for each All elements All elements

Yes Yes No .049 0.974 .0012
.699 .015

pair of (obs. of Xi of XU
i .777 .011

or unobs.) char. .837 .008

(4)
Elements of XU All elements All elements

No No No .069 0.322 .047
.295 .049

independent of of Xi of XU
i .306 .048

elements of X .315 .047

(5)
Elements of XU All elements All elements

No No No .098 0.621 .037
.463 .052

independent of of Xi and XU
i of XU

i .502 .049
elements of X .539 .045

(6)
Elements of XU All elements

XU
i,10 only No No No .109 0.969 .003

.673 .036
independent of of Xi and XU

i .747 .028
elements of X .809 .021

(7)
Elements of XU All obs. and

XU
i,10 only No No No .095 0.962 .004

.666 .032
independent of unobs. char. .743 .024
elements of X except XU

i,10 .806 .018

(8)
Corr = .25 for each All elements

XU
i,10 only No No No .117 0.998 .0002

.925 .0010
pair of obs. or unobs. char. of Xi and XU

i .958 .005
except XU

i,10 (independent) .977 .003

(9)
Corr = .25 for each All obs. and

XU
i,10 only No No No .131 0.998 .0002

.915 .0010
pair of obs. or unobs. char. unobs. char. .954 .005
except XU

i,10 (independent) except XU
i,10 .975 .003

All specifications share the following parameter values: # Stu. = 1000, # Sch. = 50, # Con. = 50, # Ob = 10, # Un = 10, # Am. = 5, Θ Corr = 0.25
(See Table A8 for definitions of parameters).
The column labeled “X /XU Corr. Structure” describes the correlation structure among and between the elements of the vectors of observed and
unobserved individual characteristics Xi and XU

i .
The columns labeled “WTP for A1-A4 Depends On” and “WTP for A5 Depends On” specifies which elements of the observable (Xi) and unobservable
(XU

i ) characteristics predict willingness-to-pay for amenity factors 1-4 and amenity factor 5, respectively.
The columns labeled “Assu. A5/A5.1/A5.2 Satisfied” specify whether Assumptions A5, A5.1 and A5.2 are satisfied, respectively. In the context
of a linear utility function, these assumptions are tantamount to assuming that the taste matrix ΘU can be written as ΘU = RΘ̃, ΘU = RAΘ, and
ΘU = RBΠXU X ΘU , for some matrix (matrices) R, RA, and RB, respectively. Assumption A5 is a necessary condition for Proposition 1 to hold, while
Assumptions A5.1 and A5.2 are each sufficient conditions for Condition 2 to hold. See Section 3.2.2 for further discussion of these conditions.
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Table A10: Bias from Observing Subsamples of Students from Each School: Comparing Results
from the Full North Carolina Sample to Results from Subsamples Mirroring the Sampling

Schemes of NLS72, NELS88, and ELS2002

Panel A: Fractions of Total Outcome Variance

Row Full NC Sample NLS72 NELSg8 NELSg10 ELS2002

Within School:
Total 0.9153 0.9126 0.9131 0.8763 0.9120

Var(Yis−Ys)

Observable Student-Level (Within): 0.1244 0.1296 0.1296 0.1301 0.1285
Var((Xsi−Xs)B)

Unobservable Student-Level (Within) 0.7909 0.7828 0.7834 0.7461 0.7834
Var(vsi− vs)

Between School:
Total 0.0847 0.0874 0.0869 0.1237 0.088
Var(Ys)

Observable Student-Level: 0.0181 0.018 0.0183 0.0179 0.0184
Var(XsB)

Student-Level/ 0.0165 0.0175 0.0170 0.0187 0.175School-Level Covariance
2∗Cov(XsB,XsG1 +Z2sG2)

School-Avg. Student-Level/ -0.0166 -0.0047 0.0061 -0.0053 -0.0054School Char. Covariance
2∗Cov(XsG1,Z2sG2)

School-Avg. Student-Level 0.0178 0.0125 0.0137 0.0290 0.0139
Var(XsG1)

School Char. 0.0181 0.0269 0.023 0.0353 0.0238
Var(Z2sG2)

Unobservable School-Level 0.0309 0.0173 0.0211 0.0283 0.0199
Var(vs)

Panel B: 10th to 90th Quantile Shifts in School Quality

Row Full NC Sample NLS72 NELSg8 NELSg10 ELS2002

LB no unobs 0.1056 0.1254 0.1167 0.1435 0.1177
Var(Z2sG2)

LB w/unobs 0.1742 0.1631 0.164 0.1959 0.1626
Var(Z2sG2 + vs)

The column “Full NC Sample” reports variance decompositions based on the full North Carolina sample. They are the same as the
estimates reported for NC sample in Appendix Table A8.
The other columns report estimates based on draws of samples of students from the North Carolina schools to match the distributions
of sample sizes per school from the NLS72, NELS88 grade 8, NELS88 grade 10, or ELS2002 samples (respectively).
To remove the chatter produced by a single draw from these sampling schemes, we report averages of estimates for each of 100
samples drawn from each sampling scheme.
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Table A11: Summary Statistics for Student Characteristics in NLS72

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .510 .500
1(Black) 0.00 .123 .328
1(Hispanic) 0.00 .043 .203
1(Asian) 0.00 .012 .108

Student Ability

Std. Math Score 0.00 -.062 1.01
Std. Reading Score 0.00 -.059 1.01

Student Behavior

[None]

Family Background Characteristics

SES Index 0.00 -.136 1.08
Number of Siblings 2.90 2.70 2.06
1(Both Parents Present) 43.17 .752 .432
1(Mother, Male Guardian) 43.17 .019 .136
1(Mother Only Present) 43.17 .126 .332
1(Father Only Present) 43.17 .039 .194
Father’s Years of Educ. 0.74 12.46 2.47
Mother’s Years of Educ. 0.00 12.22 2.07
1(Mother’s Ed. Missing) 0.00 .005 .071
Log(Family Income) 19.98 10.82 .745
1(Eng. Spoken at Home) 0.46 .911 .285
1(Home Environ. Index) 3.33 .037 1.34
1(No Religion) 0.00 .053 .224
1(Eastern Religion) 0.00 .046 .209
1(Jewish) 0.00 .023 .149
1(Catholic) 0.00 .300 .458
1(Oth. Christian Relig.) 0.00 .196 .397
1(Fath. Occ.: Service) 22.21 .108 .310
1(Fath. Occ.: Security/Military) 22.21 .054 .225
1(Fath. Occ.: Farmer/Laborer) 22.21 .294 .456
1(Fath. Occ.: Craftsman/Technician) 22.21 .208 .406
1(Fath. Occ.: Manager) 22.21 .128 .334
1(Fath. Occ.: Owner) 22.21 .069 .254
1(Fath. Occ.: Professional) 22.21 .137 .344
1(Moth. Occ.: Sales) 18.42 .033 .180
1(Moth. Occ.: Service) 18.42 .060 .238
1(Moth. Occ.: Clerical) 18.42 .148 .355
1(Moth. Occ.: Professional) 18.42 .092 .289
1(Moth. Occ.: Other) 18.42 .095 .293

Parental Beliefs/Desires

[None]

Outcomes

1(Enrolled at a 4-Yr. Coll.) 0.00 .263 .440
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Table A12: Summary Statistics for School Characteristics in NLS72

Variable % Imputed Mean Std. Dev.

School Characteristics

% Minority Students 1.87 .200 .265
1(Catholic School) 3.52 .065 .246
1(Private School) 3.52 .003 .058
% of Teachers with Masters’ Deg. 1.03 .405 .210
Teacher Turnover Rate 0.27 .086 .091
Total School Enrollment 0.86 1364 892
Student-to-Teacher Ratio 1.51 20.30 4.36
% of Minority Teachers 2.61 .096 .162
1(Tracking System Exists) 17.80 .752 .432
Age of School Building 1.32 21.85 17.48

Neighborhood Characteristics

Distance to 4-Year College 4.61 19.97 26.57
Distance to Community College 4.64 18.82 26.4
1(South Region) 0.00 .345 .475
1(Midwest Region) 0.00 .260 .438
1(West Region) 0.00 .173 .378
1(Small Town) 0.00 .290 .454
1(Medium-Sized City) 0.00 .084 .277
1(Suburb of Medium-Sized City) 0.00 .045 .208
1(Large City) 0.00 .109 .311
1(Suburb of Large City) 0.00 .096 .295
1(Huge City) 0.00 .097 .296
1(Suburb of Huge City) 0.00 .082 .285
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Table A13: Summary Statistics for Student Characteristics in NELS88

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .515 .500
1(Black) 0.00 .106 .307
1(Hispanic) 0.00 .131 .338
1(Asian) 0.00 .069 .253
1(Immigrant) 6.80 .070 .255

Student Ability

Std. Math Score (8th grd.) 0.00 .091 1.02
Std. Reading Score (8th grd.) 0.00 .074 1.01

Student Behavior

Parent checks HW 0.36 .439 .496
# Weekly HW Hours 5.71 6.03 5.24
# Weekly Reading Hours 4.28 2.24 2.68
# Weekly TV Hours 14.15 21.73 10.81
1(Often Missing Pencil) 4.20 .219 .413
1(Fought at School) 1.45 .202 .401

Family Background Characteristics

SES Index 0.00 .003 1.03
Number of Siblings 0.46 2.30 1.59
1(Both Parents Present) 0.84 .681 .466
1(Mother, Male Guardian) 0.00 .098 .297
1(Mother Only Present) 0.00 .148 .355
1(Father Only Present) 0.00 .044 .205
Father’s Years of Educ. 6.38 13.30 2.98
Mother’s Years of Educ. 0.00 12.85 2.41
1(Mother’s Ed. Missing) 0.00 .023 .148
Log(Family Income) 9.67 10.87 .945
1(Eng. Spoken at Home) 0.87 .871 .335
1(Moth. Is Immigrant) 7.66 .145 .352
1(Fath. Is Immigrant) 8.62 .138 .345
1(Parents Married) 7.70 .793 .405
1(No Religion) 0.00 .024 .154
1(Eastern Religion) 0.00 .048 .214
1(Jewish) 0.00 .014 .119
1(Catholic) 0.00 .308 .462
1(Oth. Christian Relig.) 0.00 .308 .462
1(Home Environ. Index) 6.49 -.013 1.45
1(Fath. Occ.: Service) 24.39 .103 .304
1(Fath. Occ.: Security/Military) 24.39 .044 .206
1(Fath. Occ.: Farmer/Laborer) 24.39 .256 .437
1(Fath. Occ.: Craftsman/Technician) 24.39 .194 .396
1(Fath. Occ.: Dentist/Lawyer/Etc.) 24.39 .062 .241
1(Fath. Occ.: Accountant/Nurse/Etc.) 24.39 .102 .302
1(Fath. Occ.: Manager) 24.39 .130 .337
1(Fath. Occ.: Owner) 24.39 .083 .276
1(Moth. Occ.: Sales) 11.23 .056 .231
1(Moth. Occ.: Service) 11.23 .137 .344
1(Moth. Occ.: Clerical) 11.23 .219 .414
1(Moth. Occ.: Teacher) 11.23 .073 .261
1(Moth. Occ.: Accountant/Nurse/Etc.) 11.23 .092 .289
1(Moth. Occ.: Other) 11.23 .259 .438
Parental Sch. Engage. Index 10.79 -.045 1.54

Parental Beliefs/Desires

Moth. Desired Educ. for Child 12.63 16.3 2.07
Fath. Desired Educ. for Child 16.09 16.23 2.11

Outcomes

1(Enrolled at a 4-Yr. Coll.) 0.00 .329 .470
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Table A14: Summary Statistics for School Characteristics in NELS88

Variable % Imputed Mean Std. Dev.

School Characteristics

% Minority Students 1.51 .223 .288
% Limited English Proficient 1.31 .070 .084
% Receiving Free/Reduced Price Lunch 1.49 .233 .231
% in Special Ed. 1.31 .063 .052
% in Remedial Reading 1.19 .099 .127
% in Remedial Math 1.19 .072 .101
Admin’s Perceived Sch. Problems Index 1.16 3.10 .681
1(Catholic School) 0.00 .093 .290
1(Private School) 0.00 .072 .258
% of Teachers with Masters’ Deg. 3.75 .478 .248
Total School Enrollment 1.05 665.9 373.1
Student-to-Teacher Ratio 1.05 17.74 5.06
% of Minority Teachers 2.92 .108 .183
Log(Minimum Teacher Salary) 2.51 9.76 .180
1(Collectively Bargained Contracts) 1.49 .561 .496
1(Gifted Program Exists) 1.05 .658 .474
Admin.’s Reported Security. Policies Index (1) 1.36 .098 1.14
Admin.’s Reported Security. Policies Index (2) 1.36 -.035 1.07

Neighborhood Characteristics

1(Urban Neighborhood) 0.00 .253 .434
1(Suburban Neighborhood) 0.00 .429 .495
1(South Region) 0.00 .353 .478
1(Midwest Region) 0.00 .266 .442
1(West Region) 0.00 .196 .397
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Table A15: Summary Statistics for Student Characteristics in ELS2002

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .520 .500
1(Black) 0.00 .129 .335
1(Hispanic) 0.00 .141 .348
1(Asian) 0.00 .091 .287
1(Immigrant) 10.78 .100 .300

Student Ability

Std. Math Score 0.00 .125 1.01
Std. Reading Score 0.00 .108 1.01

Student Behavior

Parent checks HW 14.43 .343 .475
# Weekly HW Hours 3.72 10.98 9.07
# Weekly Reading Hours 4.06 2.80 4.10
# Weekly Computer Hours 3.92 2.20 1.71
# Weekly TV Hours 4.01 22.73 12.21
1(Often Missing Pencil) 1.71 .166 .372
1(Fought at School) 0.85 .124 .329

Family Background Characteristics

SES Index 0.00 .099 1.04
Number of Siblings 17.22 2.26 1.51
1(Both Parents Present) 10.44 .615 .487
1(Mother, Male Guardian) 10.44 .118 .322
1(Mother Only Present) 10.44 .174 .379
1(Father Only Present) 10.44 .057 .231
Father’s Years of Educ. 9.24 13.95 2.72
Mother’s Years of Educ. 0.00 13.65 2.33
1(Mother’s Ed. Missing) 0.00 .033 .179
Avg. Grandparents’ Educ. 23.77 12.32 1.82
Log(Family Income) 21.01 10.97 .957
1(Eng. Spoken at Home) 13.32 .889 .317
1(Moth. Is Immigrant) 11.38 .215 .411
1(Fath. Is Immigrant) 12.33 .214 .410
1(Parents Married) 10.85 .755 .430
1(No Religion) 18.55 .031 .172
1(Eastern Religion) 18.55 .072 .259
1(Jewish) 18.55 .012 .108
1(Catholic) 18.55 .364 .481
1(Oth. Christian Relig.) 18.55 .184 .387
1(Home Environ. Index) 13.35 .042 1.39
1(Fath. Occ.: Service) 30.74 .108 .310
1(Fath. Occ.: Security/Military) 30.74 .047 .211
1(Fath. Occ.: Farmer/Laborer) 30.74 .228 .419
1(Fath. Occ.: Craftsman/Technician) 30.74 .179 .383
1(Fath. Occ.: Dentist/Lawyer/Etc.) 30.74 .069 .254
1(Fath. Occ.: Accountant/Nurse/Etc.) 30.74 .141 .348
1(Fath. Occ.: Manager) 30.74 .163 .370
1(Fath. Occ.: Owner) 30.74 .060 .238
1(Fath. Occ.: Other) 30.74 .004 .064
1(Moth. Occ.: Sales) 21.10 .047 .212
1(Moth. Occ.: Service) 21.10 .142 .349
1(Moth. Occ.: Clerical) 21.10 .176 .381
1(Moth. Occ.: Teacher) 21.10 .081 .273
1(Moth. Occ.: Accountant etc.) 21.10 .171 .376
1(Moth. Occ.: Other) 21.10 .230 .421
Parental Sch. Engage. Index 20.71 .012 1.55

Parental Beliefs/Desires

Moth. Desired Educ. for Child 15.90 16.76 2.38
Fath. Desired Educ. for Child 23.04 16.74 2.45

Outcomes

1(Enrolled at a 4-Yr. Coll.) 0.00 .422 .49393



Table A16: Summary Statistics for School Characteristics in ELS2002

Variable % Imputed Mean Std. Dev.

School Characteristics

% Minority Students 1.53 .331 .306
% Limited English Proficient 4.71 .040 .083
% Receiving Free/Reduced Price Lunch 7.68 .231 .246
% in Special Ed. 5.98 .092 .088
% in Remedial Reading 17.81 .041 .072
% in Remedial Math 19.24 .057 .094
Admin’s Perceived Sch. Problems Index 15.74 3.60 .817
1(Catholic School) 1.23 .133 .339
1(Private School) 1.84 .084 .278
% of Teachers with Masters’ Deg. 33.72 .459 .216
Teacher Turnover Rate 28.01 .058 .061
Total School Enrollment 0.34 1254 807
Student-to-Teacher Ratio 2.67 16.6 4.09
% of Minority Teachers 37.99 .115 .185
Log(Minimum Teacher Salary) 20.01 10.2 .176
% of Teachers with Certification 3.35 92.4 17.48
Teacher Evaluation Policy Index 14.42 -.002 1.17
Teacher Incentive Pay Index (1) 13.25 -.007 1.46
Teacher Incentive Pay Index (2) 13.25 -.005 1.18
Teaching Technology Index 16.29 .029 1.71
1(High Stakes Competency Exam) 0.00 .994 .075
Observed Sch. Cleanliness/Disorder Index (1) 29.85 -.062 2.02
Observed Sch. Cleanliness/Disorder Index (2) 29.85 .006 1.40
Security Policy Implementation Index (1) 8.56 -.010 1.39
Security Policy Implementation Index (2) 8.56 -.008 1.08
Admin.’s Reported Security. Policies Index (1) 15.78 .019 1.55
Admin.’s Reported Security. Policies Index (2) 15.78 -.007 1.30
Admin.’s Impression of Fac. Quality Index (1) 19.31 -.004 2.36
Admin.’s Impression of Fac. Quality Index (2) 19.31 .004 1.08

Neighborhood Characteristics

1(Rural within MSA) 0.24 .104 .305
1(Small Town) 0.24 .095 .294
1(Large Town) 0.24 .014 .117
1(Suburb of Medium City) 0.24 .085 .279
1(Suburb of Large City) 0.24 .277 .447
1(Medium City) 0.24 .163 .370
1(Large City) 0.24 .160 .367
1(South Region) 0.00 .367 .482
1(Midwest Region) 0.00 .256 .437
1(West Region) 0.00 .192 .394
Admin. Perception of N-Hood Crime 12.24 .422 .494
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Table A17: Summary Statistics for Student Characteristics in North Carolina Administrative Data

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .505 .500
1(Black) 0.00 .276 .447
1(Hispanic) 0.00 .059 .236
1(Asian) 0.00 .023 .149

Student Ability

Std. Math Score (Grade 8) 13.0 .059 .990
Std. Reading Score (Grade 8) 13.0 .054 .979
Std. Math Score (Grade 7) 15.9 .061 .985
Std. Reading Score (Grade 7) 16.0 .057 .971
1(Gifted in Math) 15.8 .136 .343
1(Gifted in Reading) 15.8 .133 .339

Student Behavior

1(Daily HW Hours < 1) 17.3 .267 .442
1(Daily HW Hours >= 1 and < 3) 17.2 .463 .499
1(Daily HW Hours >= 3) 17.3 .239 .426
1(Ignore Homework) 17.3 .013 .114
1(Daily TV Hours < 1) 17.3 .226 .418
1(Daily TV Hours ≈ 2) 17.3 .270 .444
1(Daily TV Hours ≈ 3) 17.3 .222 .416
1(Daily TV Hours >= 4 and <= 5) 17.3 .160 .367
1(Daily TV Hours >= 6) 17.3 .091 .287
1(Daily Free Reading Hours <= 1/2) 17.2 .489 .500
1(Daily Free Reading Hours ≈ 1) 17.2 .215 .411
1(Daily Free Reading Hours > 1 and <= 2) 17.2 .110 .313
1(Daily Free Reading Hours >= 2) 17.2 .055 .227

Family Background Characteristics

1(Highest Parent Education = HS Graduate) 0.00 .221 .415
1(Highest Parent Education = Some College) 0.00 .131 .337
1(Highest Parent Education = Community College) 0.00 .163 .370
1(Highest Parent Education = 4-Yr College Graduate) 0.00 .223 .417
1(Highest Parent Education = Graduate School) 0.00 .104 .306
1(Free/Reduced Price Lunch Eligible) 0.00 .596 .491
1(Limited English Proficiency) 0.54 .027 .161
1(Ever Limited English Proficient) 0.00 .062 .242

Parental Beliefs/Desires

[None]

Outcomes

1(High School Graduate) 0.00 .760 .427

95



Table A18: Summary Statistics for School Characteristics in North Carolina Administrative Data

Variable % Imputed Mean Std. Dev.

School Characteristics

# of Books Per Student 0.41 10.85 6.74
1(Magnet School) 0.00 .064 .244
1(Charter School) 0.00 .007 .083
% of Teachers with Advanced Degrees 0.79 .249 .079
% of Classrooms Taught by “High Quality” Teachers 0.03 .956 .060
Teacher Turnover Rate 0.87 .214 .081
Total School Enrollment 0.03 1323 581
Student-to-Teacher Ratio 0.03 15.5 2.02

Neighborhood Characteristics

1(Remote Rural) 0.00 .028 .166
1(Distant Rural) 0.00 .160 .366
1(Fringe Rural) 0.00 .284 .451
1(Remote Town) 0.00 .006 .078
1(Distant Town) 0.00 .075 .263
1(Fringe Town) 0.00 .050 .218
1(Small Suburb) 0.00 .006 .076
1(Mid-Sized Suburb) 0.00 .049 .216
1(Large Suburb) 0.00 .096 .295
1(Small City) 0.00 .072 .259
1(Midsize City) 0.00 .086 .281
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Table A19: Decomposition of Variance in Latent Index Determining High School Graduation from
the NC, NELS88, and ELS2002 Datasets (Baseline and Full Specifications)

NC NELS88 gr8 ELS2002

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.915 0.919 0.830 0.836 0.874 0.881
Var(Yi−Ys) (0.014) (0.013) (0.018) (0.016) (0.016) (0.016)

Observable Student-Level (Within): 0.124 0.213 0.162 0.292 0.134 0.221
Var((Xi−Xs)B) (0.004) (0.006) (0.013) (0.015) (0.040) (0.042)

Unobservable Student-Level (Within) 0.791 0.706 0.668 0.543 0.740 0.660
Var(vsi− vs) (0.013) (0.011) (0.019) (0.017) (0.037) (0.037)

Between School:
Total 0.085 0.081 0.170 0.164 0.126 0.119
Var(Ys) (0.014) (0.013) (0.018) (0.016) (0.016) (0.016)

Observable Student-Level: 0.018 0.033 0.073 0.109 0.037 0.060
Var(XsB) (0.002) (0.002) (0.010) (0.011) (0.006) (0.008)

Student-Level/
School-Level Covariance 0.016 0.010 0.025 0.007 0.025 0.006

2∗Cov(XsB,XsG1 +Z2sG2) (0.003) (0.005) (0.018) (0.019) (0.009) (0.012)

School-Avg. Student-Level/
School Char. Covariance -0.017 -0.008 0.007 0.004 0.001 -0.002

2∗Cov(XsG1,Z2sG2) (0.007) (0.005) (0.008) (0.006) (0.013) (0.013)

School-Avg. Student-Level 0.018 0.009 0.037 0.029 0.028 0.029
Var(XsG1) (0.005) (0.004) (0.010) (0.009) (0.013) (0.012)

School Char. 0.018 0.012 0.011 0.006 0.025 0.024
Var(Z2sG2) (0.008) (0.005) (0.006) (0.005) (0.010) (0.010)

Unobservable School-Level 0.031 0.026 0.017 0.010 0.010 0.001
Var(vs) (0.006) (0.005) (0.007) (0.004) (0.002) (0.000)

The table reports fractions of the total variance of the latent index that determines high school gradua-
tion.
The rows labels indicate the variance component.
Bootstrap standard errors based on resampling at the school level are in parentheses.
Appendix Sections 5 and 6 discuss estimation of model parameters and the variance decompositions.
The columns headed NC refers to a variance decomposition that uses the 9th grade school as the group
variable for schools in North Carolina.
NELS88 gr8 is based on the NELS88 sample and refers to a decomposition that uses the 8th grade
school as the group variable.
ELS2002 is based on the ELS2002 sample and refers to a decomposition that uses the 10th grade
school as the group variable.
For each data set the variables in the baseline model and the full model are specified in Web Appendix
Tables ?? - ??

97



Table A20: Decomposition of Variance in Latent Index Determining Enrollment in a Four-Year
College from the NLS72, NELS88, and ELS2002 Datasets (Baseline and Full Specifications)

NLS72 NELS88 gr8 ELS2002

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.857 0.857 0.776 0.774 0.785 0.791
Var(Yis−Ys) (0.018) (0.012) (0.016) (0.016) (0.016) (0.015)

Observable Student-Level (Within): 0.176 0.354 0.192 0.316 0.184 0.330
Var((Xsi−Xs)B) (0.082) (0.017) (0.010) (0.013) (0.031) (0.024)

Unobservable Student-Level (Within) 0.681 0.503 0.584 0.458 0.600 0.461
Var(vsi− vs) (0.070) (0.015) (0.016) (0.014) (0.026) (0.019)

Between School:
Total 0.143 0.143 0.224 0.226 0.215 0.209
Var(Ys) (0.018) (0.012) (0.016) (0.016) (0.016) (0.015)

Observable Student-Level: 0.042 0.062 0.010 0.143 0.079 0.127
Var(XsB) (0.006) (0.006) (0.010) (0.012) (0.007) (0.010)

Student-Level/
School-Level Covariance 0.037 0.032 0.057 0.027 0.071 0.039

2∗Cov(XsB,XsG1 +Z2sG2) (0.008) (0.008) (0.011) (0.014) (0.009) (0.012)

School-Avg. Student-Level/
School Char. Covariance 0.000 -0.002 0.004 0.005 -.003 -0.002

2∗Cov(XsG1,Z2sG2) (0.005) (0.004) (0.005) (0.004) (0.008) (0.006)

School-Avg. Student-Level 0.026 0.020 0.023 0.021 0.022 0.015
Var(XsG1) (0.006) (0.005) (0.005) (0.005) (0.007) (0.005)

School Char. 0.026 0.019 0.018 0.015 0.024 0.018
Var(Z2sG2) (0.006) (0.004) (0.006) (0.005) (0.007) (0.006)

Unobservable School-Level 0.012 0.013 0.021 0.014 0.022 0.013
Var(vs) (0.005) (0.005) (0.006) (0.004) (0.005) (0.003)

The table reports fractions of the total variance of the latent index that determines enrollment in a
4-year college two years after high school graduation.
The rows labels indicate the variance component.
Bootstrap standard errors based on resampling at the school level are in parentheses.
NLS72 refers to a variance decomposition that employs NLS72 data and uses the 12th grade school as
the group variable.
See the note to Table A19 for additional details.
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Table A21: Decomposition of Variance in Years of Post-Secondary Education and Adult Log
Wages using NLS72 (Baseline and Full Specifications)

Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.904 0.904 0.837 0.834 0.829 0.829
Var(Yis−Ys) (0.008) (0.008) (0.020) (0.019) (0.020) (0.019)

Observable Student-Level (Within): 0.154 0.280 0.140 0.174 0.212 0.224
Var((Xsi−Xs)B) (0.007) (0.008) (0.014) (0.016) (0.016) (0.016)

Unobservable Student-Level (Within) 0.749 0.624 0.697 0.660 0.617 0.605
Var(vsi− vs) (0.009) (0.008) (0.022) (0.022) (0.022) (0.022)

Between School:
Total 0.096 0.096 0.163 0.166 0.171 0.171
Var(Ys) (0.008) (0.008) (0.020) (0.019) (0.020) (0.019)

Observable Student-Level: 0.041 0.058 0.045 0.055 0.061 0.065
Var(XsB) (0.004) (0.004) (0.008) (0.008) (0.008) (0.008)

Student-Level/
School-Level Covariance 0.031 0.023 0.033 0.028 0.033 0.029

2∗Cov(XsB,XsG1 +Z2sG2) (0.006) (0.006) (0.020) (0.010) (0.011) (0.009)

School-Avg. Student-Level/
School Char. Covariance 0.001 0.002 -0.002 0.001 -0.003 0.000

2∗Cov(XsG1,Z2sG2) (0.002) (0.004) (0.012) (0.011) (0.012) (0.011)

School-Avg. Student-Level 0.012 0.008 0.033 0.029 0.029 0.028
Var(XsG1) (0.003) (0.002) (0.010) (0.009) (0.010) (0.009)

School Char. 0.005 0.002 0.039 0.041 0.039 0.040
Var(Z2sG2) (0.002) (0.002) (0.012) (0.011) (0.012) (0.012)

Unobservable School-Level 0.005 0.004 0.014 0.011 0.011 0.009
Var(vs) (0.002) (0.002) (0.012) (0.011) (0.011) (0.011)

The table reports fractions of the total variance of years of postsecondary education, permanent wages
controlling for year of post secondary education, and permanent wages not controlling for years of
post secondary education.
Bootstrap standard errors based on re-sampling at the school level are in parentheses.
See the note to Table A19 for additional details.
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