
IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018                    ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  138 | P a g e  
 

Implementation of Binary Counters using Reversible Logic 

Gates 
C. Santhi[1], Dr. Moparthy Gurunadha Babu[2] 

[1]PhD Scholar, Shri Jagdishprasad Jhabarmal Tibrewala University, Rajasthan, INDIA 
[2]Professor, Department of ECE, CMR Institute of Technology, Hyderabad, T.S, INDIA 

 

Abstract- High speed, efficient addition of multiple operands is 

an essential operation in any computational unit. The speed and 

power efficiency of multiplier circuits is of critical importance in 

the overall performance of microprocessors. Multiplier circuits 

are an essential part of an arithmetic logic unit, or a digital signal 

processor system for performing filtering and convolution. In 

this paper, a 7:3 counter circuit that accepts 7 bits of equal 

weight and counts the number of “1” bits is implemented using 

reversible logic gates. The7:3 and 6:3 counter circuits can be 
constructed using full and half adders. In VLSI simulations, the 

proposed counters are 30%faster than existing parallel counters 

and also have the merit of equal fanin and fanout using 

reversible logic gates. 

I. INTRODUCTION 

Reversible computing is a model of computing where the 

computational process to some extent is reversible, i.e., time-

invertible. In a model of computation that uses deterministic 

transitions from one state of the abstract machine to another, a 

necessary condition for reversibility is that the relation of the 

mapping from (nonzero-probability) states to their successors 
must be one-to-one. Reversible computing is a form of 

unconventional computing. A process is said to be physically 

reversible if it results in no increase in physical entropy; it is 

isentropic. There is a style of circuit design ideally exhibiting 

this property that is referred to as charge recovery logic, 

adiabatic circuits, or adiabatic computing. Although in practice 

no non-stationary physical process can be exactly physically 

reversible or isentropic, there is no known limit to the closeness 

with which we can approach perfect reversibility, in systems that 

are sufficiently well isolated from interactions with unknown 

external environments, when the laws of physics describing the 

system's evolution are precisely known. Probably the largest 
motivation for the study of technologies aimed at actually 

implementing reversible computing is that they offer what is 

predicted to be the only potential way to improve the 

computational energy efficiency of computers beyond the 

fundamental von Neumann-Landauer limit [1] of kT ln (2) 

energy dissipated per irreversible bit operation. Although the 

Landauer limit was millions of times below the energy 

consumption of computers in the 2000s and thousands of times 

less in the 2010s, proponents of reversible computing argue that 

this can be attributed largely to architectural overheads which 

effectively magnify the impact of Landauer's limit in practical 

circuit designs, so that it may prove difficult for practical 

technology to progress very far beyond current levels of energy 

efficiency if reversible computing principles are not used. As 

was first argued by Rolf Landauer of IBM, in order for a 

computational process to be physically reversible, it must also 

be logically reversible. Landauer's principle is the rigorously 

valid observation that the oblivious erasure of n bits of known 

information must always incur a cost of nkT ln (2) in 

thermodynamic entropy. A discrete, deterministic computational 
process is said to be logically reversible if the transition function 

that maps old computational states to new ones is a one-to-one 

function; i.e. the output logical states uniquely determine the 

input logical states of the computational operation. Landauer's 

principle (and indeed, the second law of thermodynamics itself) 

can also be understood to be a direct logical consequence of the 

underlying reversibility of physics, as is reflected in the general 

Hamiltonian formulation of mechanics and in the unitary time-

evolution operator of quantum mechanics more specifically. The 

implementation of reversible computing thus amounts to 

learning how to characterize and control the physical dynamics 
of mechanisms to carry out desired computational operations so 

precisely that we can accumulate a negligible total amount of 

uncertainty regarding the complete physical state of the 

mechanism, per each logic operation that is performed. In other 

words, we would need to precisely track the state of the active 

energy that is involved in carrying out computational operations 

within the machine, and design the machine in such a way that 

the majority of this energy is recovered in an organized form 

that can be reused for subsequent operations, rather than being 

permitted to dissipate into the form of heat. For computational 

processes that are nondeterministic (in the sense of being 

probabilistic or random), the relation between old and new states 
is not a single-valued function, and the requirement needed to 

obtain physical reversibility becomes a slightly weaker 

condition, namely that the size of a given ensemble of possible 

initial computational states does not decrease, on average, as the 

computation proceeds forwards. 

II. REVERSIBLE GATES 

Feynman gate is a 2×2 one through reversible gate as shown in 

figure 1. The input vector is I (A, B) and the output vector is O 

(P, Q). The outputs are defined by P=A, Q=A⨁B. Quantum cost 

of a Feynman gate is 1. Feynman Gate (FG) can be used as a 



IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018                    ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  139 | P a g e  
 

copying gate. Since a fan-out is not allowed in reversible logic, 

this gate is useful for duplication of the required outputs. 

 
Figure 1: Feynman Gate 

A B C B 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 

Table 1: Truth table of Feynman gates 

Double Feynman Gate (F2G) 

Fig.2 shows a 3×3 Double Feynman gate. The input vector is I 

(A, B, C) and the output vector is O (P, Q, and R). The outputs 

are defined by P = A, Q=A⨁B, R=A⨁C. Quantum cost of 

double Feynman gate is 2. 

 

 
Figure 2: Double Feynman gate 

A B C P Q R 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 1 1 

1 0 1 1 1 1 

1 0 1 1 1 0 

1 1 0 1 0 1 

1 1 1 1 0 0 

Table 2: Truth table of double Feynman gates 

Toffoli Gate: 

Fig. 3 shows a 3×3 Toffoli gate. The input vector is   I (A, B, C) 

and the output vector is O (P, Q, and R). The outputs are defined 

by P=A, Q=B, R=AB⨁C. Quantum cost of a Toffoli gate is 5. 

 

 
Figure 3: Toffoli gate 

A B C P Q R 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 0 

1 1 0 1 1 1 

1 1 1 1 1 0 

Table 3: Truth table of Toffoli gate 

Fredkin Gate 

Fig. 4 shows a 3×3 Fredkin gate. The input vector is I (A, B, C) 

and the output vector is O (P, Q, and R). The output is defined 

by P=A, Q=A′B⨁AC and R=A′C⨁AB. Quantum cost of a 

Fredkin gate is 5. 

 

 
Figure 4: Fredkin Gate 

A B C P Q R 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 1 0 

1 1 0 1 0 1 

1 1 1 1 1 1 

Table 4: Truth table of fredkin gate 

Peres Gate 

Fig 5 shows a 3×3 Peres gate. The input vector is I (A, B, C) and 

the output vector is O (P, Q, and R). The output is defined by P 



IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018                    ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  140 | P a g e  
 

= A, Q = A⨁B and R=AB⨁C. Quantum cost of a Peres gate is 

4. In the proposed design Peres gate is used because of its lowest 

quantum cost. 

 

 
Figure 5: Peres Gate 

A B C P Q R 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 1 0 

1 0 1 1 1 1 

1 1 0 1 0 1 

1 1 1 1 0 0 

Table 5: Truth table of Peres gate 

III. COUNTER CIRCUIT 

For any computational unit the essential operation would be of 

High speed and an efficient method of adding multiple operands. 

The overall performance for a microprocessor depends on the 

speed and power efficiency of multiplier circuits [2][3]. The 

essential part for a multiplier circuit is an arithmetic logic unit or 

it could be a digital signal processor system to perform filtering 

and convolution. To get the final product in binary 

multiplication of integers or fixed point numbers the partial 

products must be added. To dominate the latency and power 
consumption the partial products must be added. The efficient 

way to combine the partial products, compression of columns is 

used generally. Lot of methods is there to modify the realization 

of the partial product summation [4][5]. All these methods use 

full adders which function as counters. By using carry-save 

adder tree the counters reduce groups of 3 bits having same 

weight to 2 bits having different weights in parallel. After 

passing through many layers of reduction process, the total 

summands are reduced to two, which are later added using a 

conventional adder circuit. To obtain higher efficiency, large 

number of bits having equal weights can be considered. The 
underlying methodology while handling large numbers of bits is 

the same, that is, bits of one column are counted, producing very 

few bits of different weights [6].  For example, a 7:3 counter 

circuits accepts 7 bits having equal weight and computes the 

number of “1” bits. This count goes to the output which uses 3 

bits of increasing weight. Fig 1 shows the construction of 7:3 

and 6:3 counter which uses full adder and half adder. 

 
(a) 

 
(b) 

Fig 6 (a-b): 7:3 counter and 6:3 counter constructed from 

full and half adders 

In brief, a counting method has been presented which uses bit 

stacking circuit followed by an innovative method that combines 

two small stacks to form a larger stack [7]. By using this method 

a 6:3 counter has been developed, which does not use XOR 

gates or multiplexers in its critical path [8]. The simulation 

results obtained by using our 6:3 counter shows that it is at least 
30% faster than the existing counter designs, this method also 

uses less power. Different simulation results were obtained after 

running the counter on multiplier designs having various sizes. 

The usage of the proposed counter circuit has improved the 

multiplier efficiency for larger circuits, generating 64 bit and 

128 bit multipliers which are fast and which consumes less 

power than other counter based Wallence (CBW) designs. 



IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018                    ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  141 | P a g e  
 

IV. EXPERIMENTAL RESULTS 

The Verilog implementation of the proposed circuits is 
implemented as per the circuits presented in the figures 7 and 8. 

 
(a) Full adder F1 

 
(b) Full adder F2 

 
(c) Half adder H1 

 
(a) Full adder F3 

Fig.7. Counter 6:3 circuit using Reversible logic gates 

The circuit depicted in figure 6(a) is the 6:3 counters is 

implemented using reversible logic gates, Peres gates to be 

precise. The figure 7 shows the half and full adders using peres 

gates and the intermediate connections. X1 to X5 are the inputs 

to the circuits. The garbage outputs are depicted using “g”. W1 

to W5 are the intermediate wires. S is the sum, C1 and C2 is the 

carry. 

 

 
(a) Full adder F1 

 
(b) Full adder F2 

 
(c) Full adder F3 

 
(d) Full adder F4 

Fig.8. Counter 7:3 circuit using Reversible logic gates. 

The circuit depicted in figure 6(a) is the 7:3 counter is 

implemented using reversible logic gates. The figure 8 shows 

the full adders F1 to F4 using peres gates. X1 to X5 are the 

inputs to the circuits. The garbage outputs are depicted using 

“g”. W1 to W5 are the intermediate wires. S is the sum; C1 and 

C2 are the carry generated. 

 

g Peres 

gate 

W

5 

0 

W

2 
W

4 

Peres 

gate 

g 

C1 

C2 

Peres 

gate 

X0 

0 

W

1 

g 
Peres 

gate 

W

3 

g 

S 

W5 

Peres 

gate 

X4 

0 

X5 

g 
Peres 

gate 

X6 

g 

W3 

W4 

g 

W1 

W2 

g Peres 

gate 

X1 

0 

X2 

Peres 

gate 

X3 

g Peres 

gate 

W

5 

0 

W

2 
W

4 

Peres 

gate 

g 

C1 

C2 

Peres gate W1 

0 

W3 

g 

s 

W5 

Peres 

gate 

X3 

0 

X4 

g 
Peres 

gate 

X5 

g 

W3 

W4 

g 

W1 

W2 

g Peres 

gate 

X0 

0 

X1 

Peres 

gate 

X2 



IJRECE VOL. 6 ISSUE 1 JAN.-MAR. 2018                    ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  142 | P a g e  
 

 
Fig. 9: Simulation results of proposed 6:3 counter using 

reversible logic gates. 

 
Fig.10: Simulation results of proposed 7:3 counter using 

reversible logic gates. 

V. CONCLUSION 

In this brief, a new binary counter based reversible logic is 

proposed. We showed that this counting method can be used to 

implement 6:3 and 7:3 counters, which can be used in any 

binary multiplier circuit to add the partial products. Heat 

dissipation is a major problem in the designing of a digital 

circuit. Rolf Landauer has proved that the information loss in a 

digital circuit is directly proportional to the energy dissipation. 
The mathematical formulation of the above statement is that if a 

bit is lost in a digital system, the amount of energy lost is either 

equal or greater than KTln2 joules in the form of heat. To 

provide a solution for this problem statement, reversible 

computing was introduced. The proposed 6:3 and 7:3 counters 

produced expected results and the addition of reversible logic 

formulation further increased the efficiency. 

VI. REFERENCES 
[1] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE 

Trans. Electron. Comput., vol. EC-13, no. 1, pp. 14–17, 

Feb. 1964. 

[2] L. Dadda, “Some schemes for parallel multipliers,” Alta 

Freq., vol. 34, pp. 349–356, May 1965. 

[3] Z. Wang, G. A. Jullien, and W. C. Miller, “A new design 

technique for column compression multipliers,” IEEE 

Trans. Comput., vol. 44, no. 8, pp. 962–970, Aug. 1995. 

[4] M. Mehta, V. Parmar, and E. Swartzlander, “High-speed 
multiplier design using multi-input counter and compressor 

circuits,” in Proc. 10thIEEE Symp. Comput. Arithmetic, Jun. 

1991, pp. 43–50. 

[5]  S. Asif and Y. Kong, “Design of an algorithmic wallace 

multiplier using high speed counters,” in Proc. IEEE 

Comput. Eng. Syst. (ICCES),Dec. 2015, pp. 133–138. 

[6]  S. Veeramachaneni, L. Avinash, M. Krishna, and M. B. 

Srinivas, “Novel architectures for efficient (m, n) parallel 

counters,” in Proc. 17th ACM Great Lakes Symp. VLSI, 

2007, pp. 188–191. 

[7]  S. Veeramachaneni, K. M. Krishna, L. Avinash, S. R. 

Puppala, and M. B. Srinivas, “Novel architectures for high-
speed and low-power 3-2, 4-2 and 5-2 compressors,” in 

Proc. 20th Int. Conf. VLSI Design Held Jointly 6th Int. 

Conf. Embedded Syst. (VLSID), Jan. 2007, pp. 324–329. 

[8]  V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for 

speed optimized partial product reduction and generation of 

fast parallel multipliers using an algorithmic approach,” 

IEEE Trans. Comput., vol. 45, no. 3, pp. 294–306, Mar. 

1996. 


