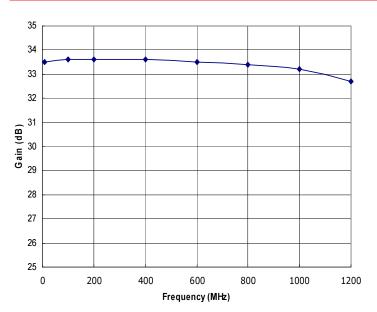
RFM10-1200-0.02 RFM10-1200MHz 13dBm Power Technology 10-1200MHz 13dBm High Performance LNA 10-1200MHz utra-broadband 2.4dB typical noise figure 10-1200MHz utra-broadband 33dB typical gain +/- 0.5dB typical gain flatness 50 ohms input/output Available with disable function RFM10-1200-0.02

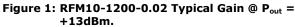
The RFM10-1200-0.02 is a Class A high performance LNA module. It was designed specifically for low noise SATCOM and related communication systems that require bandwidth from HF to microwave frequencies, in a single compact package. Its power supply is internally regulated for maximum performance and consistency.

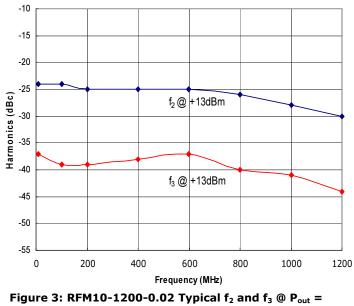
Specifications $V_{sup} = +15VDC, I_{DQ} = 85mA, P_{out} = +13dBm, T_{base} = 25^{\circ}C, Z_{load} = 50\Omega$					
Parameter	Min	Тур	Max	Units	
Freq. Range	10		1200	MHz	
P _{1dB}	13	15		dBm	
Input Power		-20	-17	dBm	
Gain	30	33		dB	
Gain Flatness		+/-0.5	+/-1.0	dB	
Noise Figure		2.4	3.0	dB	
Supply Current		85	90	mA	
VSWR (Input)		1.2	1.5	:1	
VSWR (Output)		1.2	1.5	:1	
f ₂ (See Figs. 2 & 3)		-29	-24	dBc	
f ₃ (See Figs. 2 & 3)		-44	-35	dBc	
Dimensions	2.55 X 1.32 X 0.75 (64.77 X 33.53 X 19.05)			inch (mm)	

Maximum Ratings Operation beyond these ratings may damage amplifier.				
Parameter	Value			
V _{supply}	+15VDC, +/-10%			
Bias Current	90mA			
Supply Current	95mA			
Load Mismatch*	5:1			
Housing Base Temperature	75°C			
Storage Temp.	-40°C to 85°C			

*All phase angles, +13dBm forward power, current limited to 95mA.


Option Ordering Info		
Disable (TTL, active high)	RFM10-1200-0.02-DIS	




RFM10-1200-0.02

10-1200MHz 13dBm High Performance LNA

+13dBm.

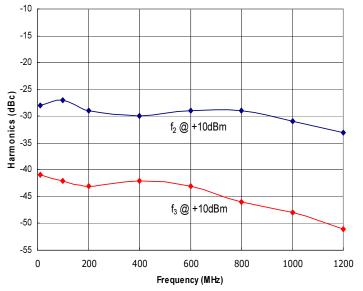


Figure 2: RFM10-1200-0.02 Typical f_2 and $f_3 @ P_{out} = +10dBm$.

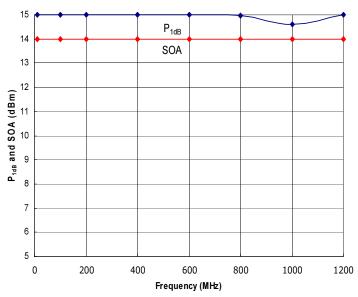
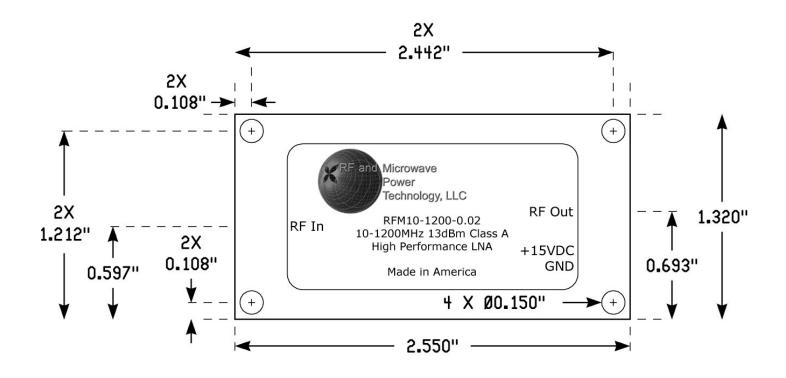


Figure 4: RFM10-1200-0.02 Typical P_{1dB} and Safe Operating Area (SOA). Do not exceed the SOA without first contacting RFMPT to discuss your application.



RFM10-1200-0.02

10-1200MHz 13dBm High Performance LNA

Amplifier Mounting Hole and RF Locations

RFM10-1200-0.02

10-1200MHz 13dBm High Performance LNA

Instructions for Amplifier Use

- 1) The total power dissipated by the RFM10-1200-0.02 is less than 1.5W. Therefore, formal heatsinking is not required as long as airflow is provided around the amplifier housing. If the use of a heatsink is desired, apply a layer of high quality thermal grease (Wakefield Type 120 or equivalent) to the underside of the amplifier housing. Thinner is better, but ensure that when mounted to your heatsink, contact across the entire housing base is made. Use four #6-32 screws to mount the amplifier to your heatsink.
- 2) Guarantee sufficient airflow through the heatsink fins to keep the maximum housing base temperature at or less than that specified in the Maximum Ratings section. Contact RFMPT for details on how to qualify your heatsink's performance, if needed.
- 3) Connect a proper signal source to the RF IN connector, and desired load to the RF OUT connector. Torque connectors to industry standards for the type supplied with the amplifier.
- 4) Connect DC V_{supply} and Ground wires to the terminals provided. Ensure that the connections are of proper polarity, and within the voltage range in the Maximum Ratings section.
- 5) Apply DC power, then sufficient RF drive to achieve desired output level. Ensure that the Safe Operating Area (SOA) power level indicated in Figure 4 is not exceeded, or amplifier damage may occur, and will void the warranty.
- 6) To disconnect the amplifier, first remove the RF drive, then DC power, then the RF connections.

Contact the factory at <u>sales@rfmpt.com</u> with any questions, or for special options, testing requirements, and/or operating conditions not specified in this document.

Document Control

Revision	Date	Notes
А	7-17-2016	Initial release.

