
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 482 | P a g e

Implementation of Strictly Binary Tree to Calculate Factor

of an Integer
Vikas J Magar1, Rajivkumar .S Mente2

1
 Research Student,

Department of Computer Science,

School of Computational Sciences,

 Solapur University, Solapur

(Email: Magarvjresearch@gmail.com)

2
 Head of Department,

Department of Computer Science,

School of Computational Sciences,

Solapur University, Solapur

(Email: Rajivmente@rediffmail.com)

Abstract— A Binary tree is a non-linear data structure. It

has several applications. Here research article represents how

to evaluate the prime factor of an integer using a binary tree.

To perform this task strictly binary tree is applied. An

algorithm is intended to calculate the factor of an integer. By

applying an algorithm each leaf node of the strictly binary tree

represents the prime factor of an integer.

Keywords— Strictly binary tree, a factor of an integer,

prime factor

I. INTRODUCTION

A binary tree is a finite set of elements that are either empty or

is partitioned into three displace subsets. The first subset

contains a single element called the root of the tree [1]. The

other two subsets are themselves binary trees, called left &

right subtree of the original tree. Left or right subtree may be

empty. Each element of the binary tree is called node of the

tree.

A binary tree is an acyclic graph G (V, E) where V is a non-

empty set of vertices & E is set of edges. A binary tree has

only one root and it has at most two children. It has maximum

2L children at level L. subsequent diagram represent the binary

tree.

Fig.1 Binary Tree.

In fig.1, A is the root of binary tree and B is the root of its left

subtree, then A is said to be the father of B and B is the left

son of A. A node that has no sons (such as D, E, and F) is

called leaf nodes. Two nodes are brothers if they are left &

right sons of the same father [4].

The level of a node in the binary tree is defined as follows: the

root of the tree has level 0, and the level of any other node in

the tree is one more than its father. Maximum level of any leaf

in the tree is called depth of binary tree. This equals the

longest path from the root to any node [5].

 In the binary tree at Level 0 maximum number of children is

20 =1. At level 1 the maximum number of children is 21= 2.

Same way at level n there are 2n children’s [6]. Maximum

number children at level L are= 2L+1-1.

If every non-leaf node in a binary tree has non-empty left and

right subtrees, then a tree is termed as a strictly binary tree.

The tree in fig.2 is a strictly binary tree. Root A has two

children. Node B has also two children D and E. Node C, D

and E are leaf nodes.

Fig. 2 Strictly Binary Tree

1.1 Dynamic representation: Fig.3 represents the dynamic

structure of a binary tree where N represents NULL.

A

C

E F

Level 0

Level 1

Level 2

B

D

A

B C

D E

Level 0
Level 1

Level 2

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 483 | P a g e

Fig.3 Dynamic Representation

1.2 Data Structure for the tree:

struct node

 {

 struct node *lchild;

 int data;

 struct node *rchild;

}

The factor of an Integer is the product of prime numbers that

treat the given number. Number theory represents, prime

factorization or integer factorization is the disintegration of a

composite number into smaller non-trivial divisors, which

when multiplied together equal the original integer. For

example, consider an integer 96.

96 = 2 * 48

 = 2 * 2 * 24

 = 2 * 2 * 2 * 12

 = 2 * 2 * 2 * 2 * 6

 = 2 * 2 * 2 * 2 * 2 * 3

Thus factors of an integer 96 are

 2, 2, 2, 2, 2, 3.

II. METHODOLOGY

Given an integer n (throughout this article, n refers to "the

integer to be factored"), the trial division consists of

systematically testing whether n is divisible by any smaller

number. Obviously, it is only meaningful to test candidate

factors less than n and in order from two upwards because an

arbitrary n is more likely to be divisible by two then by three,

and so on. With this ordering, there is no point in testing for

divisibility by four if the number has already been determined

not divisible by two, and so on for three and any multiple of

three, etc. Therefore, the effort can be reduced by selecting

only prime numbers as candidate factors. Furthermore, the

trial factors need not go to further. If n is divisible by some

number p, then n = p × q and if q is smaller than p, n would

have earlier been detected as being prime factor of q or

divisible by q. In this research article, trial-division method is

implemented on the strictly binary tree. Following algorithm

explains how a strictly binary tree is used to evaluate the

factor of an integer.

III. TRAIL DIVISION METHOD

Trail division is a method which uses prime numbers to divide

an integer. The movement will be in ascending order to

decompose an integer. The set will contain divisor number as

shown below.

Prime numbers= {2, 3, 5, 7, 11, 13, 17, 19, 23 and so on}.

I. ALGORITHM

Step 1: Input an Integer.

Step 2: Make entered integer as root of tree.

Step 3:

If the entered integer is prime then print

root. Go to step 6

Step 4:

Now apply trial division method and try

to divide number by smallest prime

number. If the number is divisible then

decompose it otherwise, go to step 6.

Arrange the smallest integer as left child

and largest as the right child.

Step 5:

Now consider right child and apply step

4.

Step 6: Print all leaf nodes.

Step 7: Stop

IV. IMPLEMENTATION

Step 1: Enter an integer 24

Step 2: Make entered integer as root. The tree

will become,

Step 3: 24 is not prime. So continue to step 4

Step 4:

Apply trial division method. A number

will become 24= 2*12

Now consider decomposed integer 2,

12. Smallest integer is 2. Make it as left

child and 12 as of the right child. Tree

will become

A

N

B N C N

N D N E N

24

24

2 12

http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Composite_number
http://en.wikipedia.org/wiki/Triviality_(mathematics)
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Prime_number

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 484 | P a g e

Now consider right child 12 which is

not prime. Decompose 12. 12= 2* 6

smallest number is 2 make it left child

and 6 as of the right child.

 Now consider right child 6 which is not

prime. Decompose 6.

6= 2*3 smallest number is 2 make it

left child and 3 as for the right child.

Now consider right child 3 which is

prime. So it cannot be decomposed.

Step 6:

Now consider all leaf nodes of the

above tree. All leaf nodes are the factor

of root 24.

V. CONCLUSION:

From above algorithm hereby conclude that strictly binary tree

is can be used to calculate the factor of an integer. It can be

easily extended to the negative integer also. This is one more

application of binary tree to calculate factors.

[1] Suri Pushpa, Prasad Vinod, “Binary Search Tree

Balancing Methods: A Critical Study,” IJCSNS

International Journal of Computer Science and

Network Security, VOL.7 No.8, August 2007

[2] B. Deepa, Reshmi. S, Kirthika. B, “A Survey On

Different Method of Balancing A Binary Search

Tree,” International Journal of Advance

Engineering and Research Development Volume

4, Issue 10, October -2017

[3] Jon L. Bentley, “ Multidimensional Binary Search

Trees in Database Applications,” IEEE

transactions on software engineering, vol. sec-5,

no. 4, July 1979

[4] Nishant Doshi, Tarun Sureja, Bhavesh Akbari,

Hiren Savalia, Viraj Daxini, “Width of a Binary

Tree,” International Journal of Computer

Applications (0975 – 8887) Volume 9– No.2,

November 2010

[5] Vinod George, “An adaptive indexed binary

search tree for efficient homographic coercion

resistant voting System,” The international journal

of managing information Technology vol.2 No.1

Feb 2010.

[6] Suri Pushpa, “Insertion and Deletion on Binary

Search Tree using Modified Insert Delete Pair: An

Empirical Study,” IJCSNS International Journal of

Computer Science and Network Security, VOL.7

No.12, December 2007

[7]

Vinod, P. Suri, P., and Maple, C. “Maintaining a

Binary Search Tree Dynamically,” Proceedings of

the 10th International Conference on Information

Visualization. London, UK. 5-7 th July 2006. PP

483-488.

 Stout, F. and Bette, L. W. “Tree rebalancing in

24

2 12

2 6

24

2 12

2 6

3 2

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 485 | P a g e

[8] Optimal Time and Space,” Communication Of the

ACM. 29, 1986. PP 902-908.

[9] Yi-Ying Zhang, Wen-Cheng Yang, Kee-Bum

Kim, Myong-Soon Park, "An AVL Tree-Based

Dynamic Key

Management in Hierarchical Wireless Sensor

Network," International Conference on Intelligent

Information Hiding and Multimedia Signal

Processing, pp.298-303, 2008

[10] T.H.Cormen, C.E. Leiserson, R. L. Rivest, C.

Stein, “Introduction to algorithms”, second

edition, McGraw-Hill publication, 2002.

Author Profile:

.
Vikas J Magar is research student in school of
Computational Sciences, Solapur University,
Solapur under the guidance of Dr. Rajivkumar
Mente. Artificial Intelligence, Data Structure,
Data Mining is his Research interest. He has
participated in various national and
international level conferences.

Dr. Rajivkumar Mente is working as Assistant
Professor in Department of Computer Science,
Solapur University, Solapur, Maharashtra, India.
He is having 23 years of teaching experience.
His areas of interest are Digital Image
Processing, Data Structure, DBMS,
Programming Languages, CBIR etc. He has
published 30 research papers in various
international and national journals. He has
participated and presented research papers in
14 national and international conferences

