



## Thermoelectric Properties of Non-Stoichiometric Bornite

Sebastian Long

Chemistry Department University of Reading









#### Bornite a Potential Thermoelectric

- State of the art thermoelectrics use rare-earth elements
- New class of thermoelectrics –Phonon Liquid Electron Crystals (PLEC)
  - Conduct electricity like a crystal
  - Exhibit a liquid-like sub lattice



$$\alpha - Cu_{2-x}S(M^+_{8-x}\Box_xS_4)$$

- Anti-Fluorite structure
- Copper ion conductivity  $\rightarrow$  Ultra-low thermal conductivity
- Very high thermoelectric performance. ZT<sub>max</sub>=1.6

Bornite-  $Cu_5FeS_4$  ( $M^+_{8-x-y}M^{3+}_x\Box_yS_4$ )

- Anti-Fluorite related structure at high temperature
- Copper ion mobility → Ultra-low thermal conductivity
- Poor electronic properties → Low ZT<sub>max</sub>≈0.4
- Shows a number of phase transitions







#### Phase Transitions in Cu<sub>5</sub>FeS<sub>4</sub>







#### Limit on Solid Solution Behaviour

 $Cu_{5-x}FeS_4$ 

 $Cu_{5+x}Fe_{1-x}S_4$ 

Copper Deficiency

Copper on Iron site substitution

- All samples made by ball milling then hot pressing
- Powder X-ray diffraction Data of the 2 series



## University of Cu<sub>5-x</sub>FeS<sub>4</sub> Reading Cu Deficiency – Electronic Transport Properties



- Resistivity decreases across the series
- Reduced by a factor 10 when x=0.16
- Behaves as a semi-conductor through entire composition range
- |S| decreases with increasing Cu deficiency
- p-type conduction throughout series
- Anomalies in properties arising from 4a→2a phase transitions
- Increased power factor across the series -from P.F.≈0.2 to P.F≈0.5 mW m<sup>-1</sup> K<sup>-2</sup>

## ISIS Cu<sub>5-x</sub>FeS<sub>4</sub> Cu Deficiency – Thermal Transport properties



- x=0.16 shows highest κ
   -BUT contains chalcopyrite
   (κ=6 W m<sup>-1</sup> K<sup>-1</sup>) impurity
  - $\kappa_{total}$  for samples where x  $\leq$  0.12 show little sensitivity to copper content
- Wiedemann-Franz law suggests reduced
   κ<sub>lattice</sub> values when x≤0.12
- ZT>0.6 between 0.06≤x≤0.12
   ZT<sub>max</sub>=0.65 for x= 0.06
   ZT<sub>max</sub> at 550 K / 277 °C

## $Cu_{5+x}Fe_{1-x}S_4$



### Cu Substitution – Electronic Transport Properties



€ISIS

- Significant reductions in resistivity
- Samples where x≥0.6 show ρ=0.1 mΩ m in 2a and a phases
- Seebeck coefficients lower than Cu deficient Series
- p-type conduction
- Progressive increases in the P.F. with copper substitution

# $\underbrace{SIS}_{\text{Cu}_{5+x}} Fe_{1-x}S_4$ $\underbrace{Substitution}_{\text{Cu}_{5+x}} Fe_{1-x}S_4$ $\underbrace{Substitution}_{\text{Cu}_{5+x}} Fe_{1-x}S_4$



- $\kappa_{\tau}$  increases with copper content
  - principally due to  $\kappa_{el}$
- κ<sub>lat</sub> decreases with increased Cu substitution
- $\kappa_{\tau}$  exhibits a minimum near the 2a $\rightarrow$ a phase transition
  - This moves to lower T with
  - increasing copper content
- Suggests there a composition/phase transition dependence
  - DSC data on mineral bornite

supports this

ZT≈0.6 samples x=0.04, 0.08





#### Series Comparison at 550 K

ZT



- Cu Deficiency series
   Cu<sup>I</sup><sub>5-x</sub>Cu<sup>II</sup><sub>x</sub>FeS<sub>4</sub>
- Cu Substitution Series
  - $\operatorname{Cu}_{5-x}^{I} \operatorname{Cu}_{2x}^{II} \operatorname{Fe}_{1-x}^{I} \operatorname{S}_{4}$
- Higher effective doping with Cu substitution
  - a given increment in x gives more Cu<sup>II</sup>
- Similar properties between series with nominal Cu<sup>II</sup> content
- Small deviations from ideal bornite stoichiometry significantly enhance





#### Thermal Cycling of Bornite



- Important to consider the stability of the material
- We wanted to check that these samples were stable
  - 8 cycles
  - 300 600 K
  - S &  $\rho$  recorded every 10 K
- Data suggests no significant degradation





#### Thermoelectric cell





a





### In-Situ Thermoelectric Diffraction Cell

#### Laboratory Measurement System - Linseis LSR-3



Measure: Seebeck and resistivity as a (Inside a furnace)

#### **Diffraction-Resistance Cell**



Measure: Resistivity and neutron diffraction as a function of temperature (Inside a furnace)

We plan to expand the capabilities of this device to also measure the Seebeck coefficient

T. Engin, Rev. Sci. Instrum. **79**, 095104, 2008





### In-Situ Thermoelectric Diffraction Cell



- Image of the prototype
- Aim to measure simultaneously:
  - Seebeck coefficient
  - Electrical resistivity
  - Neutron diffraction
- Glass Sheath Allows for an inert atmosphere or a vacuum
- Inserted into a Furnace
- Sample size (pellet)
  - Diameter: 10mm (Max)
  - Height: 10 15mm





#### In-Situ Thermoelectric Diffraction Cell



- Currently running off-line tests
- If you're interested in using this please get in touch:

sebastian.long@pgr.reading.ac.uk





#### Conclusions

- There is an upper limit of copper deficiency
- Thermal conductivity and electrical property data suggests that the phase transition temperature is composition dependent
- Relatively small changes in the stoichiometry of bornite give marked improvement in ZT
- In the near future simultaneous electronic transport and neutron diffraction measurements will allow us to develop new insights into structure property relationships of thermoelectrics

sebastian.long@pgr.reading.ac.uk





#### Acknowledgements

#### Funding

University of Reading ISIS Neutron Facility

ISIS Technical support Colin Offer Jon Bones Chris Goodway Paul McIntyre **Supervisors** 

Prof. Anthony Powell Dr. Paz Vaqueiro Dr. Stephen Hull (ISIS)

Reading University Solid State Chemistry Team John, Sarah, Jethro, Panos, Jesus & Gabin

Many more from the Electrical, Engineering, Pressure and Furnace & Sample Environments Teams

sebastian.long@pgr.reading.ac.uk

