## Calculus 3 - Quadratic Surfaces

Today we consider a special class of surfaces called Quadratic Surfaces. They are a 3D version of the quadratic equations in 2D. In 2d these are of the form

$$
\begin{equation*}
a x^{2}+b x y+c y^{2}+d x+e y+f=0 \tag{1}
\end{equation*}
$$

where $a-f$ are constants. The four basic curves are the straight line, parabola, ellipse and hyperbola whose equations are:

$$
\begin{aligned}
\text { line } & a x+b y+c=0 \\
\text { parabola } & y=a x^{2} \\
\text { ellipse } & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
\text { hyperbola } & \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{aligned}
$$

the straight line, parabola, ellipse and hyperbola.



Figure 1: Line and Parabola.



Figure 2: Ellipse and Hyperbola.
So new we extend these to 3D and consider equations of the form

$$
\begin{equation*}
a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z+g x+h y+i z+j=0 \tag{2}
\end{equation*}
$$

where $a-j$ are constants. We omit the cross terms $x y, x z$ and $y z$ as they just represent rotation of the surface and will not change the picture. In total there are 10 basic surfaces

1. Plane

The equation is of the form

$$
\begin{equation*}
a x+b y+c z=d \tag{3}
\end{equation*}
$$



## 2. Parabolic Cyliner

The equation is of the form

$$
\begin{equation*}
y=a x^{2} \tag{4}
\end{equation*}
$$



## 3. Elliptic Cylinder

The equation is of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$



## 4. Hyperbolic Cylinder

The equation is of the form

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$



## 5. Ellipsoid

The equation is of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$



## 6. Hyperboloid of 1 Sheet

The equation is of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$


7. Hyperboloid of 2 Sheet

The equation is of the form

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$



## 8. Cone

The equation is of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$


9. Paraboloid

The equation is of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$


10. Saddle

The equation is of the form

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$



