

IEEE Dallas Circuits and Systems Conference, 2015 Southern Methodist University October 12-13, 2015

A Low-Power Switched-Capacitor Passive Sigma-Delta Modulator

Angsuman Roy and R. Jacob Baker

University of Nevada, Las Vegas

A Brief Roadmap

- Motivation for Low-Power SC $\Sigma\text{-}\Delta$ Modulators
- Review of Basic Σ - Δ Modulators
- Proposed Topology
- Integrated Circuit Design
- Test Results

Motivation for This Work

- IoT and Mobile Devices
- $\sum -\Delta$ ADCs on the Newest Processes May Need to be Passive

Support for Older CMOS Processes

- This \sum - Δ Modulator is Implemented in 500 nm CMOS
- Still Room for Improvement in Older Processes
- Older Processes are Popular for Medical and Automotive Applications

Review of Basic Σ - Δ Modulators

Generally, $\sum \Delta$ modulators use an active integrator to keep the voltage swing on the integrator's input to a minimum (ideally zero).

Simplest 1st Order Σ-Δ Modulator

Proposed 2nd Order Σ-Δ **Topology**

Integrated Circuit Implementation Block Diagram

Low Power Comparator Design

Design of Non-Overlapping Clock Generator

Switched Capacitor Filter

Transmission Gates Used as Switches

NMOS and PMOS Devices are Minimum Size

•
$$^{W}/_{L} = \frac{1.8u}{0.6u}$$

Design is Parasitic Sensitive

- Slight Gain Error Introduced
- Trade Off for Lower Power

Fabricated Chip in 500 nm C5 Process

Chips were Fabricated with the MOSIS Service

Test Results

Comparison to Other Works

Parameter	Proposed 2 nd -Order SC ∑-∆ Modulator (this work)	2 nd -Order SC ∑-∆ Modulator in [4]	3 rd -Order SC ∑-∆ Modulator in [5]
Process	500 nm	90 nm	130 nm
Resolution (ENOB)	9.3 bits	10.48 bits	12.3 bits
Signal Bandwidth	3 KHz	10 KHz	20 KHz
Clock Frequency	1.024 MHz	1.28 MHz	3.2 MHz
Power	6.75 µW @	17.14 µW	63 µW @
Consumption	2.5 V	@ 1 V	0.4 V
FOM	1.78 pJ/step	0.60 pJ/step	0.31 pJ/step

[4] Hsu, C. H., Tang, K. T., "A 1V Low Power Second-Order Delta-Sigma Modulator for Biomedical Signal Application," *Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp.2008-2011,*, July 2013

[5] Yoon, Y., Choi, D., Roh, J., " A 0.4-V 63-µW 76.1-dB SNDR 20-kHz Bandwidth Delta-Sigma Modulator Using a Hybrid Switching Integrator," *IEEE Journal of Solid-State Circuits, vol. no.99, pp.1-12*

