Thermoelectric Network UK Meeting 14/02/2018

Eco-Friendly Cu-S based Thermoelectric materials

Ruizhi Zhang, Taichao Su, Kan Chen, Baoli Du, Michael J. Reece *Queen Mary University of London*

Cono Di Paola, Nicola Bonini, Cedric Weber King's College London

Matej Balaz, Peter Balaz Slovak Academy of Sciences

Cu-S based minerals for thermoelectrics

- Advantages of Cu-S based Thermoelectric Materials
 - Potential high thermoelectric performance
 - low cost, some are minerals
 - Environmentally friendly, compared to Bi₂Te₃
 - Large variance of composition (~1000 compounds in ICSD)

[1] Lu & Morelli, Chem Mater, 2015 [2] Suekuni, Appl Phys Lett, 2014
[3] He & L. Chen, Adv Mater, 2014 [4] Liu & L. Chen, Appl Phys Lett, 2009
[5] Li & L. Chen, J Appl Phys, 2014 [6] Qiu & L. Chen, Energy Environ Sci, 2014

Collaboration for research on Cu-S compounds

DEFCOM: Designing Eco-Friendly and COst-efficient energy Materials

Density functional theory modeling

Ball mill + spark plasma sintering Linsies & Netzsch

Synthesis & Characterization

High throughput screening

Structural relationships of identified 104 compounds

Example: derivative tetrahedrite from ZnS

Group 3 compounds

Group	ICSD Number	ICSD formula	Mineral name	Reported zT _{Max}	Notes
(a). Sb(As)-S ₃ pyramid	25707	Cu ₁₂ S ₁₃ Sb ₄	Tetrahedrite	1.13@575K ^[1]	RF* Cu ₁₁ MnSb ₄ S ₁₃
	33588	As ₄ Cu ₁₂ S ₁₂	Tennantite		
	236895	As ₈ Cu ₁₂ S ₁₈	Sinnerite		
(b). Unusual sulphur coordination	40047	Cu ₆ Fe ₂ S ₈ Sn ₁	Mawsonite		
	41894	Cu ₁₆ Fe _{4.3} S ₂₄ Sn ₄ Zn _{1.7}	Stannoidite		
	64787	Cu ₁₃ Fe ₂ Ge ₂ S ₁₆	Germanite	0.17@575K ^[2]	RF Cu ₂₂ Fe ₈ Ge ₄ S ₃₂
	156238	Cu ₆ Ge ₁ S ₈ W ₁	Catamarcaite		
	610353	$As_3Cu_{13}S_{16}V_1$	Colusite	0.73@663K ^[3]	RF Cu ₁₃ VGe ₃ S ₁₆

Red: compounds for further experiments

Orange: compounds have been reported as thermoelectrics

* RF= reported formula

Ref: [1] Morelli, ChemMater 2015; [2] Guilmeau, Inorg Chem 2017; [3] Suekuni, APL 2014

Thermoelectric properties of identified compounds

Improved synthesis routine and properties

Mawsonite, Cu₆Fe₂SnS₈

Group 1: make it complex

Atomic structure model of FCC CoCrFeMnNi

- High Entropy Alloys, by Professors Brian Cantor and Jien-Wei Yeh, 2004
 - Solid solution high entropy mixtures of several (>4) different alloying elements in near-equal amounts
 - Structural order, chemical disorder
- Single or two-phase solid solutions can be formed => "Entropy stabilised"

 $\Delta G = \Delta H - T\Delta S$

High entropy (or multi-component) sulfides

Selection criteria

- Reduce enthalpy of formation
 - Only compounds forming zinc blende or wurtzite derived structure were considered

- Importance of Cu₃SnS₄
 - Known metallic compounds with zinc blende derived structure
 - Several existing thermoelectric containing Cu₃SnS₄

Composition	Breakdown	Reference
$\mathrm{Cu_3Sn_{0.1}Sb_{0.9}S_4}$	$0.9Cu_3SbS_4$ + $0.1Cu_3SnS_4$	zT~0.7@623K, Kan, to be published
$\mathrm{Cu}_{2.1}\mathrm{Zn}_{0.9}\mathrm{SnS}_4$	$0.9Cu_2ZnSnS_4+0.1Cu_3SnS_4$	zT~0.3@623K, Liu & L. Chen, APL, 2009
$\mathrm{Cu}_{2.15}\mathrm{Co}_{0.85}\mathrm{SnS}_4$	0.85Cu ₂ CoSnS ₄ + 0.15 Cu ₃ SnS ₄	zT~0.6@773K, Qinghui, Nano energy 2017
$\mathrm{Cu}_{2}\mathrm{Sn}_{0.9}\mathrm{Zn}_{0.1}\mathrm{S}_{3}$	$0.7 Cu_2 SnS_3 + 0.2 Cu_3 SnS_4 + 0.1 ZnS$	zT~0.6@723K, Wang , Scitific report, 2016

Data driven – structure data from ICSD

Zinc blende-related(29)		Wurtzite-related(18)		
ICSD number	Formula	ICSD number	Formula	
2518	Cu ₁ Fe ₁ S ₂	16924	Cd ₁ Cu ₂ S ₄ Si ₁	
2857	Cu ₃ S ₄ Sb ₁	24132	Cu ₂ S ₃ Si ₁	
28742	Cu ₁ S ₂ Tl ₁	24530	Cu ₃ P ₁ S ₄	
30368	Cu ₃ S ₄ Sb ₁	26150	Cd ₁ Cu ₂ Ge ₁ S ₄	
42516	As ₁ Cu ₃ S ₄	31999	Cu ₅ S ₇ Si ₂	
47165	Cu ₂ Fe ₁ Ge ₁ S ₄	42672	Cu ₃ S ₄ Sb ₁	
85138	Cu ₂ Ge ₁ S ₃	70057	Cu ₂ S ₃ Si ₁	
88235	Cu ₂ S ₃ Si ₁	152762	Cu ₂ Ge ₁ Hg ₁ S ₄	
100778	Cu ₄ Ni ₁ S ₇ Si ₂	185597	$Cu_2S_4Sn_1Zn_1$	
107606	$Cu_2S_3Sn_1$	236248	Cu ₂ S ₄ Si ₁ Zn ₁	
152752	Cu ₂ Ge ₁ S ₄ Zn ₁	261367	Cu ₂ S ₄ Si ₁ Zn ₁	
156786	Cu ₁ Ga ₁ S ₂	415452	$Cu_2Mn_1S_4Si_1$	
165738	Al ₁ Cu ₁ S ₂	415453	Cu ₂ Ge ₁ Mn ₁ S ₄	
165739	Al ₁ Cu ₁ S ₂	425554	Cu ₂ Mg ₁ S ₄ Si ₁	
171978	Cu ₂ Fe ₁ S ₄ Sn ₁	425555	Cu ₂ Ge ₁ Mg ₁ S ₄	
181166	Cu ₂ Fe ₁ S ₄ Sn ₁	627355	Cu ₂ Fe ₁ S ₄ Si ₁	
186714	Cu ₁ In ₁ S ₂	627793	Cu ₂ Ge ₁ S ₄ Zn ₁	
187020	Cu ₂ Ge ₁ Hg ₁ S ₄	627928	Cu ₂ Hg ₁ S ₄ Si ₁	
189286	$Cu_2S_4Sn_1Zn_1$			
415454	Cu ₂ Mn ₁ S ₄ Sn ₁			
415927	Co ₁ Cu ₂ Ge ₁ S ₄			
619773	Cd ₁ Cu ₂ S ₄ Sn ₁			
622576	Co ₁ Cu ₂ S ₄ Si ₁			
622578	Co ₁ Cu ₂ S ₄ Sn ₁			
627755	Cu ₄ Ge ₂ Ni ₁ S ₇			
627779	Cu ₂ Ge ₁ S ₃			
627929	Cu ₂ Hg ₁ S ₄ Sn ₁			
	Cu ₂ Mg ₁ S ₄ Sn ₁			
	Cu ₂ Ni ₁ S ₄ Sn ₁			
	Cu ₃ S ₄ Sn ₁			
602043	Cu ₂ S ₄ Sn ₁ W ₁ (wrong structure)			
156413	B₁Cu₁S₂ (only HPHT)			

Analysis of bond length

Two compositions were designed

Metallic, $Cu_5Ge_1Zn_1Mg_1Sn_1S_8$ (Cu_3SnS_4 - Cu_2MgGeS_4 -ZnS) Semiconductor, $Cu_3Mg_1In_1Sn_1Zn_1S_9$ (Cu_2MgSnS_4 - $CuInS_4$ -ZnS)

Structures of multi-component sulfides

- Single phase upto 500 $^\circ\!\!\mathrm{C}$
- All the elements are distributed homogeneously at micro scale

Thermoelectric Cu₃Sn_{1.2}S₄-Cu₂MgGeS₄-ZnS

Conclusions

4. Add + Cleave (31)

Further work for textured ceramics of layer/chain compounds

1. Cation Mutation (47)

- Data driven multi-component sulfide design
- Single phase, homogenous ceramics
- zT ~ 0.6 @ 773K

2. Add/Remove atom (7) Synthesis problem: cannot get single phase or correct phase

3. Mutation + Add/Remove (8)

- Mawsonite and stannoidite were indentified as thermoelectric materials
- zT ~ 0.7 @ 673K for single phase mawsonite ceramics

