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Abstract: Our cardiovascular system weakens and is more 

prone to arrhythmia as we age. An arrhythmia is an abnormal 

heartbeat rhythm which can be life-threatening. Atrial 

fibrillation (A-Fib), atrial flutter (AFL), and ventricular 

fibrillation (V-Fib) are the recurring life-threatening 

arrhythmias that affect the elderly population. An 

electrocardiogram (ECG) is the principal diagnostic tool 

employed to record and interpret ECG signals. These signals 

contain information about the different types of arrhythmias. 

However, due to the complexity and non-linearity of ECG 

signals, it is difficult to manually analyze these signals. 

Moreover, the interpretation of ECG signals is subjective and 

might vary between the experts. Hence, a computer-aided 

diagnosis (CAD) system is proposed. A CAD system will 

ensure that the assessment of ECG signals is objective and 

accurate. In this work, we present a convolutional neural 

network (CNN) technique to automatically detect the different 

ECG segments. Our algorithm consists of an eleven-layer 

deep CNN with the output layer of four neurons, each 

representing the normal (NSR), A-Fib, AFL, and V-Fib ECG 

class. Further, no feature extraction or selection is performed 

in this work. Hence, our proposed algorithm can accurately 

detect the unknown ECG signals even with noise. So, this 

system can be introduced in clinical settings to aid the 

clinicians in the diagnosis of MI. 

Keywords:  Electrocardiogram (ECG), myocardial infarction 

(MI), deep convolutional neural network (DCNN) 

I. INTRODUCTION 

Cognitive Myocardial infarction (MI) is caused when 

the blood flow to a segment of the myocardium is disrupted 

[1-2]. Coronary arteries are the arteries that supply oxygen-

rich blood to the heart muscle. However, if there is a blockage 

of the coronary artery due to the buildup of plaques, it reduces 

the blood flow to the heart muscle. That segment of the heart 

muscle will start to die if blood flow is not restored in time 

[3]. Fig. 1 illustrates the myocardial infarction due to the 

blockage of a coronary artery. This artery gets blocked with 

blood clots also known as a thrombus. These blood clots are 

formed due to the plaque build-up in the artery. The complete 

blockage of blood flow results in a heart attack as a part of the 

heart muscle is damaged [4].  

Furthermore, MI is also often referred to as the silent 

heart attack. It is because patients are not aware that they are 

suffering from MI until a heart attack occurs. According to the 

American Health Association, it is estimated that 750,000 

Americans have a heart attack every year. Out of these 

750,000 Americans, 210,000 of them have a recurrent heart 

attack. 

 
Fig. 1. An illustration of myocardial infarction. 
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Hence, approximately 72% of the heart attacks are 

silent. In other words, 72% of the patients’ heart muscles are 

damaged but they are not aware of it. As a result, the mortality 

rate of MI is very high.  

Therefore, an early diagnosis of MI will help patients 

to get timely treatment, and hence decreasing the prevalence 

of mortality [5]. The death of the heart muscles is irreversible 

hence, it is essential to get diagnosed early. The early 

diagnosis of MI can be conducted with an electrocardiogram 

(ECG). The ECG is the noninvasive economical primary tool 

which can be used to diagnose the cardiac abnormalities. Fig. 

2 shows the samples of normal and MI ECG signals with and 

without the removal of noise.  

However, the ECG signals are having a very small 

amplitude (mV) and small duration (sec). Hence, the 

interpretation of these long duration of signals may lead to 

inter and intra-observer variabilities. Moreover, it is time-

consuming and strenuous to analyze the ECG signals.  

The limitation of manual inspection of ECG signals 

can be overcome by using computer-aided diagnosis system. 

A computer-aided diagnosis (CAD) system is preferred due to 

its fast, objective, and reliable analysis. Many works have 

been conducted on the development of CAD for MI.  

The studies presented in Table 6 have denoised their 

ECG signals before performing any feature extraction. 

Nevertheless, denoising is not required in our proposed 

algorithm. Our algorithm can detect MI ECG signal without 

filtering any noise present in the ECG signal. Various features 

extraction techniques have been proposed to automatically 

detect MI using ECG signals. However, the process of 

choosing a set of optimal features to classify normal and MI 

ECG signals is very difficult.  

Therefore, deep learning technique is introduced in 

this work to overcome the challenges faced by conventional 

automated systems. Recently, deep learning techniques have 

been used by many companies namely Adobe, Apple, Baidu, 

Facebook, Google, IBM, Microsoft, NEC, Netflix, and 

NVIDIA. In our work, we have used an eleven layer deep 

CNN for the classification.  

Deep learning is a representation based learning 

which consists of an input layer, hidden layers, and an output 

layer. A representation based learning is a set of systematic 

procedures that provides a network to be fed with raw data 

and automatically learns the necessary representations for 

classification. The term deep describes the multiple stages in 

the learning process of the network structure. The deep 

learning neural network is trained using the backpropagation 

algorithm. The CNN is one of the most popular neural 

network techniques. 

CNN has been successfully utilized in computer 

vision since the early 21st century. It performed well in 

recognizing handwritten digits, detecting objects, and speech 

recognition. It has been used in the medical research field such 

as analyzing health informatics, and medical images using 

computed tomography (CT) images, fundus images, 

histopathological images, magnetic resonance (MR) images, 

and X-ray images as well. It is also noted that researchers in 

the medical analysis field are moving into CNN and obtaining 

desirable results. Furthermore, we applied CNN in our 

previous work. Our proposed system achieved the highest 

accuracy of 92.50% and 94.90% in the detection of 

arrhythmias with two- and five-seconds ECG signal. Hence, 

the CNN has performed well in the biomedical signal and 

image processing domain. So, in this work, we employed it 

for the automated diagnosis of MI using ECG signals with and 

without noise. 

 

 
Fig. 2. Sample normal and MI ECG beat with and 

without noise removal. 

 

II. LITERATURE SURVEY 

 

Faust. O. et.al (2012) [6], in their paper used chaotic 

behavior of electrocardiogram (ECG) signal to differentiate 

myocardial and non-myocardial infarctions using neuro-GA 

approach, incorporating heuristically chosen phase space 

fractal dimension (PSFD) of ECG data. A remarkable 

improvement of diagnostic efficiency, sensitivity and 

specificity was observed in case study. 

 M. Roffi et.al (2017) [7], in their paper present 

automatic detection and localization of myocardial infarction 

(MI) using K-nearest neighbor (KNN) classifier. Time domain 
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features of each beat in the ECG signal such as T wave 

amplitude, Q wave and ST level deviation, which are 

indicative of MI, are extracted from 12 leads ECG. Detection 

of MI aims to classify normal subjects without myocardial 

infarction and subjects suffering from Myocardial Infarction. 

For further investigation, Localization of MI is done to specify 

the region of infarction of the heart. Total 20,160 ECG beats 

from PTB database available on Physio-bank is used to 

investigate the performance of extracted features with KNN 

classifier. In the case of MI detection, sensitivity and 

specificity of KNN is found to be 99.9% using half of the 

randomly selected beats as training set and rest of the beats for 

testing.  

F. A. Masoudi, et.al, (2006) [8] stated in their paper 

that electrocardiogram (ECG) is a biophysical electric signal 

generated by the heart muscle, and is one of the major 

measurements of how well a heart functions. Automatic ECG 

analysis algorithms usually extract the geometric or 

frequency-domain features of the ECG signals and have 

already significantly facilitated automatic ECG-based cardiac 

disease diagnosis. Hence, they proposed a novel ECG feature 

by fitting a given ECG signal with a 20th order polynomial 

function, defined as PolyECG-S. The PolyECG-S feature is 

almost identical to the fitted ECG curve, measured by the 

Akaike information criterion (AIC), and achieved a 94.4% 

accuracy in detecting the Myocardial Infarction (MI) on the 

test dataset. Currently ST segment elongation is one of the 

major ways to detect MI (ST-elevation myocardial infarction, 

STEMI). However, many ECG signals have weak or even 

undetectable ST segments. Since PolyECG-S does not rely on 

the information of ST waves, it can be used as a 

complementary MI detection algorithm with the STEMI 

strategy. Overall, their results suggest that the PolyECG-S 

feature may satisfactorily reconstruct the fitted ECG curve, 

and is complementary to the existing ECG features for 

automatic cardiac function analysis. 

Y. LeCun, et.al, (2015) [9] in their paper stated that 

Myocardial infarction (MI), is commonly known as a heart 

attack, occurs when the blood supply to the portion of the 

heart is blocked causing some heart cells to die. This 

information is depicted in the elevated ST wave, increased Q 

wave amplitude and inverted T wave of the electrocardiogram 

(ECG) signal. ECG signals are prone to noise during 

acquisition due to electrode movement, muscle tremor, power 

line interference and baseline wander. Hence, it becomes 

difficult to decipher the information about the cardiac state 

from the morphological changes in the ECG signal. These 

signals can be analyzed using different signal processing 

techniques. They propsed using multiresolution properties of 

wavelet transformation because it is suitable tool for 

interpretation of subtle changes in the ECG signal. They 

analyzed the normal and MI ECG signals. ECG signal is 

decomposed into various resolution levels using the discrete 

wavelet transform (DWT) method. The entropy in the wavelet 

domain is computed and the energy–entropy characteristics 

are compared for 2282 normal and 718 MI beats. Their 

proposed method is able to detect the normal and MI ECG 

beat with more than 95% accuracy. 

A. Krizhevsky et.al, (2012) [10] in their paper stated 

that, the Electrocardiogram (ECG) is the P-QRS-T wave 

depicting the cardiac activity of the heart. The subtle changes 

in the electric potential patterns of repolarization and 

depolarization are indicative of the disease afflicting the 

patient. These clinical time domain features of the ECG 

waveform can be used in cardiac health diagnosis. Due to the 

presence of noise and minute morphological parameter values, 

it is very difficult to identify the ECG classes accurately by 

the naked eye. Various computer aided cardiac diagnosis 

(CACD) systems, analysis methods, challenges addressed and 

the future of cardiovascular disease screening are reviewed in 

this paper. Methods developed for time domain, frequency 

transform domain, and time-frequency domain analysis, such 

as the wavelet transform, cannot by themselves represent the 

inherent distinguishing features accurately. Hence, nonlinear 

methods which can capture the small variations in the ECG 

signal and provide improved accuracy in the presence of noise 

are discussed in greater detail in this review. A CACD system 

exploiting these nonlinear features can help clinicians to 

diagnose cardiovascular disease more accurately. 

C. Szegedy, et.al, (2015) [11] in their paper stated 

that, Cardiovascular diseases (CVDs) are the main cause of 

cardiac death worldwide. The Coronary Artery Disease 

(CAD) is one of the leading causes of these CVD deaths. 

CAD condition progresses rapidly, if not diagnosed and 

treated at an early stage may eventually lead to an irreversible 

state of heart muscle death called Myocardial Infarction (MI). 

Normally, the presence of these cardiac conditions is 

primarily reflected on the electrocardiogram (ECG) signal. 

However, it is challenging and requires rich experience to 

manually interpret the visual subtle changes occurring in the 

ECG waveforms. Thus, many automated diagnostic systems 

are developed to overcome these limitations. In this study, the 

performance of an automated diagnostic system developed for 

detection of CAD and MI using three methods such as 

Discrete Wavelet Transform (DWT), Empirical Mode 

Decomposition (EMD) and Discrete Cosine Transform (DCT) 

are compared. In this study, ECG signals are subjected to 

DCT, DWT and EMD to obtain respective coefficients. These 

coefficients are reduced using Locality Preserving Projection 

(LPP) data reduction method. Then, the LPP features are 

ranked using F-value. Finally, the highly ranked coefficients 

are fed into the K-Nearest Neighbor (KNN) classifier to 

achieve the best classification performance. Our proposed 

system yielded highest classification results of 98.5% 

accuracy, 99.7% sensitivity and 98.5% specificity using only 

seven features obtained using DCT technique. The screening 
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system can help the cardiologists in detecting the CAD and 

hence presents any possible MI by prescribing suitable 

medications. It can be employed in routine community 

screening, old age homes, polyclinics and hospitals. 

III. PROPOSED METHOD 

A. Pre-processing  

In this work, we validate our proposed method with two sets 

of ECG data. Both datasets consist of the same number of 

ECG beats. However, in one of the dataset, we denoised and 

removed the baseline wander from the ECG signal using 

Daubechies wavelet 6 mother wavelet function. But, in the 

other dataset, we retained the noises present in the ECG 

signals. Then, we carried out the R-peak detection on both 

datasets (with and without noise) using Pan Tompkins 

algorithm. All the ECG signals are segmented using the 

detected R-peaks without the inclusion of the first and last 

beat. Each segment is normalized with Z-score normalization 

to address the problem of amplitude scaling and eliminate the 

offset effect before f eeding the ECG segments into the 1 -

dimensional deep learning CNN for training and testing. Each 

ECG beat consists of 651 samples (250 samples before R-

peaks detection and 400 samples after R-peaks detection). 

Typical ECG beat with and without noise used in this study is 

shown in Fig. 2.  

B. The architecture  

The standard architecture of a CNN consists of four stages 

(i) Convolution, 

(ii) Rectified linear activation function,  

(iii) Pooling function, and 

(iv) Fully connected layer.  

Fig. 3 shows a graphical representation of the architecture of 

our proposed system. Table 2 summarizes the details of the 

CNN structure used in this work. 

(i) Convolution layer: 

 The convolution layer is the main building block of a CNN. 

This layer does most of the computational intensive lifting. 

The prime objective of convolution is to extract features from 

the input ECG signals. The convolution layers are arranged in 

feature maps (11 layers of feature maps in total). 

(ii) Rectified linear activation function: 

In general, rectified linear activation serves to map 

nonlinearity into the data. 

 In this work, the leaky rectifier linear unit (LeakyRelu) is 

used as an activation function for layers 1, 3, 5, 7, 9, and 10. 

Also, the softmax function is implemented for layer 11 (last 

layer). 

 

Fig. 4. The apportion of ECG beats used for training and 

testing the proposed algorithm. 

(iii) Pooling function:  

Pooling also referred to as down sampling which is an 

operation to condense features and computational complexity 

of the network. The max-pooling operation is employed in this 

work. Max-pooling outputs only the maximum number in 

each kernel, thus reducing the feature map size. Kernel size 

also refers to the size of the filter which convolves around the 

feature map while stride controls how the filter convolves 

around the feature map. The amount by which the filter slides 

is the stride. In this work, the stride is set at 1. Therefore, the 

filter convolves around the different layers of feature map by 

sliding one unit each time. 

(iv) Fully connected layer:  

The final layer of the fully-connected network is a softmax 

layer with an output of X dimensional vector where X is the 

number of classes that we desire to have. In this study, it is a 

two-class (normal and MI ECG signals) problem, hence, X is 

set at 2 in this work. The input layer (layer 0) is convolved 

with a kernel size of 102 to form the first layer (layer 1). After 

which, a max- pooling of size 2 is applied to every feature 

map (layer 2). After performing the max-pooling operation, 

the number of neurons reduces from 550 ×3 to 275 ×3. Then 

the feature map from layer 2 is convolved with a kernel (filter 

of size 24) to form layer 3. A max-pooling is again applied to 

every feature map (layer 4). After that, a feature map from 

layer 4 is convolved with a filter of size 11 to produce layer 5. 

A max-pooling of size 2 is applied to every feature map to 

reduce the number of neurons to 58 ×10 (layer 6). 

Subsequently, the feature map in layer 6 is convolved with a 

kernel (filter of size 9) to form layer 7. A max-pooling is once 

again performed (layer 8). Finally, in layer 8, the neurons are 

fully connected to 30 neurons in layer 9. Layer 9 is connected 

to 10 neurons in layer 10. Layer 10 is connected to the last 

layer with 2 output neurons. 

C. Training: 

 A standard backpropagation with a batch size of 10 is 

executed in this work. The regularization, momentum, and 

learning rate parameters are set to 0.2, 3 ×10 −4, and 0.7 



IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019)          ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  3575 | P a g e  

respectively. These parameters are tuned accordingly to obtain 

optimum performance. The function of these parameters are as 

follows: 

 a. Regularization: To prevent overfitting of the data. 

 b. Momentum: To control how fast or slow the network learn 

during training. 

 c. Learning rate: To help in the convergence of the data. 

 D. Testing: 

In this work, we ran a total of 60 epochs of training and 

testing rounds. At the end of every epoch, our proposed 

algorithm validates the CNN model. Out of the 9 10 training 

ECG beats, we used 7 10 to validate our proposed algorithm. 

Fig. 4 shows the apportioning of the total ECG beats for 

training and testing purposes.  

E. k-fold cross-validation: 

We have employed a 10 -fold cross-validation [8] strategy in 

this work. We separated our total ECG beats almost equally 

into 10 segments. 9 10 ECG beats are used in the training of 

CNN while the remainder (1 10) of the ECG beats are used to 

validate the performance of our proposed system. This 

approach is iterated 10 times by shifting the test data. The 

performances (accuracy, sensitivity, and specificity) are 

evaluated in each iteration. Finally, the performances recorded 

in all 10 iterations are averaged and considered as the overall 

performance of our proposed system. 

 

IV. RESULT 

In this study, we trained our algorithm on a workstation with 

two Intel Xeon 2.40 GHz (E5620) processor and a 24GB 

RAM. It typically took approximately 2151.055 s to complete 

an epoch of training for ECG beats data with noise and 

2025.178 s for ECG beats data without noise. The confusion 

matrix for ECG beats with noise and without noise are 

presented in Tables 3 and 4 respectively. It can be observed 

from Table 3 that, out of 10,546 normal ECG beats, 

approximately 7.17% of the ECG beats are wrongly classified 

as MI. Likewise, for MI, a total of 6.29% of ECG beats are 

wrongly classified as normal ECG beats. Similarly, in Table 4, 

94.19% of ECG beats are correctly classified as normal ECG 

beats and 4.51% are wrongly classified as normal ECG beats. 

Furthermore, the PPV values for each class (normal and MI) 

are recorded in Tables 3 and 4. In Table 3, the PPV in the 

normal class is 79.48% whereas the PPV in the MI class is 

98.03%. This shows that the probability of correctly detecting 

the MI ECG signals from the ECG signals is higher as 

compared to the correct detection of normal ECG signals. 

Similarly, in Table 4, the PPV in the normal and MI classes 

are 84.56% and 98.43% respectively. This also shows that the 

probability of identifying MI ECG signals is higher than the 

identification of normal ECG signals in the ECG signals with 

noise removal. The performance rate of both ECG beats with 

and without noise are summarized in Table 5. An average 

accuracy, sensitivity, and specificity of 93.53%, 93.71%, and 

92.83% are achieved using ECG beats with noise introduced 

respectively. Fur- thermore, the highest average accuracy of 

95.22% sensitivity of 95.49% and specificity of 94.19% is 

obtained for ECG beat without noise. 

V. CONCLUSION & FUTURE WORK 

The early diagnosis of MI can save life and can help to 

provide timely treatment. Thus, it is necessary to go for annual 

health checkups. The ECG is the primary tool to diagnose the 

electrical activity of the heart. Any abnormalities present in 

the heart activity is reflected in the ECG signals. However, it 

is challenging and time-consuming to visually assess the ECG 

signals. Therefore, implementing a CAD system in clinical 

settings will ensure an objective and fast diagnosis of MI. In 

this work, we proposed a novel method to automatically 

diagnose MI using 11 -layer deep CNN. We have used two 

different datasets (with and without noise) to evaluate the 

effectiveness of our proposed method. We have achieved an 

average ac- curacy, sensitivity, and specificity of 93.53%, 

93.71%, and 92.83% respectively for ECG beats with noise. 

Our proposed system attained high-performance results even 

though there are noises present in the ECG beats. This 

suggests that our system can recognize the class of the ECG 

signals even with the presence of noise in the signal. Also, we 

obtained an average accuracy, sensitivity, and specificity of 

95.22%, 95.49%, and 94.19% for ECG beats without noise. 
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This shows that the overall performance of our proposed 

system is good enough and hence, can be introduced in 

clinical settings. Our proposed system can assist doctors in 

their diagnosis. 
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