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Abstract—Two fundamental problems in computational game
theory are computing a Nash equilibrium and learning to
exploit opponents given observations of their play (opponent
exploitation). The latter is perhaps even more important than the
former: Nash equilibrium does not have a compelling theoretical
justification in game classes other than two-player zero-sum,
and for all games one can potentially do better by exploiting
perceived weaknesses of the opponent than by following a static
equilibrium strategy throughout the match. The natural setting
for opponent exploitation is the Bayesian setting where we have
a prior model that is integrated with observations to create a
posterior opponent model that we respond to. The most natural,
and a well-studied prior distribution is the Dirichlet distribution.
An exact polynomial-time algorithm is known for best-responding
to the posterior distribution for an opponent assuming a Dirichlet
prior with multinomial sampling in normal-form games; however,
for imperfect-information games the best known algorithm is
based on approximating an infinite integral without theoretical
guarantees. We present the first exact algorithm for a natural
class of imperfect-information games. We demonstrate that our
algorithm runs quickly in practice and outperforms the best prior
approaches. We also present an algorithm for a uniform prior.

I. INTRODUCTION

Imagine you are playing a game repeatedly against one or
more opponents. What algorithm should you use to maximize
your performance? The classic “solution concept” in game
theory is the Nash equilibrium. In a Nash equilibrium σ, each
player is simultaneously maximizing his payoff assuming the
opponents all follow their components of σ. So should we just
find a Nash equilibrium strategy for ourselves and play it in
all the game iterations?

Unfortunately, there are some complications. First, there
can exist many Nash equilibria, and if the opponents are
not following the same one that we have found (or are
not following one at all), then our strategy would have no
performance guarantees. Second, finding a Nash equilibrium
is challenging computationally: it is PPAD-hard and is widely
conjectured that no polynomial-time algorithms exist [1].
These challenges apply to both extensive-form games (of both
perfect and imperfect information) and strategic-form games,

for games with more than two players and non-zero-sum
games. While a particular Nash equilibrium may happen to
perform well in practice,1 there is no theoretically compelling
justification for why computing one and playing it repeatedly
is a good approach. Two-player zero-sum games do not face
these challenges: there exist polynomial-time algorithms for
computing an equilibrium [3], and there exists a game value
that is guaranteed in expectation in the worst case by all
equilibrium strategies regardless of the strategy played by the
opponent (and this value is the best worst-case guaranteed
payoff for any of our strategies). However, even for this game
class it would be desirable to deviate from equilibrium to
learn and exploit perceived weaknesses of the opponent; for
instance, if the opponent has played Rock in each of the first
500 iterations of rock-paper-scissors, it seems desirable to put
additional weight on paper beyond the equilibrium value of 1

3 .

Thus, learning to exploit opponents’ weaknesses is desirable
in all game classes. One approach would be to construct an
opponent model consisting of a single mixed strategy that
we believe the opponent is playing given our observations of
his play and a prior distribution (perhaps computed from a
database of historical play). This approach has been success-
fully applied to exploit weak agents in limit Texas hold ’em
poker, a large imperfect-information game [4].2 A drawback
is that it is potentially not robust. It is very unlikely that the
opponent’s strategy matches this point estimate exactly, and we
could perform poorly if our model is incorrect. A more robust
approach, which is the natural one to use in this setting, is to
use a Bayesian model, where the prior and posterior are full
distributions over mixed strategies of the opponent, not single
mixed strategies. A natural prior distribution, which has been

1An agent for 3-player limit Texas hold ’em computed by the counterfactual
regret minimization algorithm (which converges to Nash equilibrium in certain
games) performed well in practice despite a lack of theoretical justification [2].

2This approach used an approximate Nash equilibrium strategy as the
prior and is applicable even when historical data is not available, though
if additional data were available a more informed prior that capitalizes on the
data would be preferable.



studied and applied in this context, is the Dirichlet distribution.
The pdf of the Dirichlet distribution is the belief that the
probabilities of K rival events are xi given that each event
has been observed αi − 1 times: f(x, α) = 1

B(α)

∏
xαi−1
i .3

Some notable properties are that the mean is E[Xi] =
αi∑
k αk

and that, assuming multinomial sampling, the posterior after
including new observations is also Dirichlet, with parameters
updated based on the new observations.

Prior work has presented an efficient algorithm for optimally
exploiting an opponent in normal-form games in the Bayesian
setting with a Dirichlet prior [5], which is essentially the
fictitious play rule [6]. Given prior counts αi for each opponent
action, the algorithm increments the counter for an action
by one each time it is observed, and then best responds to
a model for the opponent where he plays each strategy in
proportion to the counters. This algorithm would also extend
directly to sequential games of perfect information, where
we maintain independent counters at each opponent decision
node; this would also work for games of imperfect information
where the opponent’s private information is observed after
each round (so that we would know exactly what information
set he took the observed action from). For all of these game
classes the algorithm would apply to both zero and general-
sum games, for any number of players. However, it would
not apply to imperfect-information games where opponents’
private information is not observed after play.

An algorithm exists for approximating a Bayesian best
response in imperfect-information games, which uses im-
portance sampling to approximate an infinite integral. This
algorithm has been successfully applied to limit Texas hold
’em poker [7]. 4 However, it is only a heuristic approach with
no guarantees. The authors state,

“Computing the integral over opponent strategies
depends on the form of the prior but is difficult
in any event. For Dirichlet priors, it is possible to
compute the posterior exactly but the calculation is
expensive except for small games with relatively few
observations. This makes the exact BBR an ideal
goal rather than a practical approach. For real play,
we must consider approximations to BBR.”

However, we see no justification for the claim that it is possible
to compute the posterior exactly in prior work, and there could
easily be no closed-form solution. In this paper we present a
solution for this problem, leading to the first exact optimal
algorithm for performing Bayesian opponent exploitation in
imperfect-information games. While the claim is correct that
the computation is expensive for large games, we show that in
a small yet realistic game it outperforms all prior approaches.
Furthermore, we show that the computation can run extremely
quickly even for large number of observations (though it can

3B(α) is the beta function B(α) =
∏

Γ(αi)

Γ(
∑
i αi)

, where Γ(n) = (n − 1)!

is the gamma function.
4In addition to Bayesian Best Response, the paper also considers heuristic

approaches for approximating several other response functions: Max A
Posteriori Response and Thompson’s Response.

run into numerical instability), contradicting the second claim.
We also present general theory and an algorithm for another
natural prior distribution (uniform over a polyhedron).

II. META-ALGORITHM

The problem of developing efficient algorithms for opti-
mizing against a posterior distribution, which is a probability
distribution over mixed strategies for the opponent (which are
themselves distributions over pure strategies) seems daunting.
We need to be able to compactly represent the posterior
distribution and efficiently compute a best response to it.
Fortunately, we show that our payoff of playing any strategy σi
against a probability distribution over mixed strategies for the
opponent equals our payoff of playing σi against the mean of
the distribution. Thus, we need only represent and respond
to the single strategy that is the mean of the distribution,
and not to the full distribution. While this result was likely
known previously, we have not seen it stated explicitly, and it
is important enough to be highlighted so that it is on the radar
of the AI community.

Suppose the opponent is playing mixed strategy σ−i where
σ−i(s−j) is the probability that he plays pure strategy
s−j ∈ S−j . By definition of expected utility, ui(σi, σ−i) =∑
s−j∈S−j

σ−i(s−j)ui(σi, s−j). We can generalize this natu-
rally to the case where the opponent is playing according to
a probability distribution with pdf f−i over mixed strategies:
ui(σi, f−i) =

∫
σ−i∈Σ−i

[f−i(σ−i) · ui(σi, σ−i)] . Let f−i de-
note the mean of f−i. That is, f−i is the mixed strategy that
selects s−j with probability

∫
σ−i∈Σ−i

[σ−i(s−j) · f−i(σ−i)] .
Then we have the following:

Theorem 1.
ui(σi, f−i) = ui(σi, f−i).

That is, the payoff against the mean of a strategy distribution
equals the payoff against the full distribution.

Proof.

ui(σi, f−i)

=
∑

s−j∈S−j

[
ui(σi, s−j)

∫
σ−i∈Σ−i

[σ−i(s−j) · f−i(σ−i)]

]

=
∑

s−j∈S−j

[∫
σ−i∈Σ−i

[ui(σi, s−j) · σ−i(s−j) · f−i(σ−i)]

]

=

∫
σ−i∈Σ−i

 ∑
j∈S−j

[ui(σi, s−j) · σ−i(s−j) · f−i(σ−i)]


=

∫
σ−i∈Σ−i

[ui(σi, σ−i) · f−i(σ−i)]

= ui(σi, f−i)

Theorem 1 applies to normal and extensive-form games
(with perfect or imperfect information), for any number of
players (σ−i could be a joint strategy profile for all opponents).

Now suppose the opponent is playing according a prior
distribution p(σ−i), and let p(σ−i|x) denote the posterior



probability given observations x. Let p(σ−i|x) denote the
mean of p(σ−i|x). As an immediate consequence of Theo-
rem 1, we have the following corollary.

Corollary 1. ui(σi, p(σ−i|x)) = ui(σi, p(σ−i|x)).

Corollary 1 implies the meta-procedure for optimizing per-
formance against an opponent using p:

Algorithm 1 Meta-algorithm for Bayesian opponent exploitation
Inputs: Prior distribution p0, response functions rt
M0 ← p0(σ−i)
R0 ← r0(M0)
Play according to R0

for t = 1 to T do
xt ← observations of opponent’s play at time step t
pt ← posterior distribution of opponent’s strategy given

prior pt−1 and observations xt
Mt ← mean of pt
Rt ← rt(Mt)
Play according to Rt

There are several challenges for applying Algorithm 1. First,
it assumes that we can compactly represent the prior and
posterior distributions pt, which have infinite domain (the set
of opponents’ mixed strategy profiles). Second, it requires a
procedure to efficiently compute the posterior distributions
given the prior and the observations, which requires updating
potentially infinitely many strategies. Third, it requires an
efficient procedure to compute the mean of pt. And fourth, it
requires that the full posterior distribution from one round be
compactly represented to be used as the prior in the next round.
We can address the fourth challenge by using a modified
update step:

pt ← posterior distribution of opponent’s strategy given
prior p0 and observations x1, . . . , xt.

We will be using this new rule in our main algorithm.
The response functions rt (which return a strategy for

ourselves that performs well against input opponents’ strate-
gies) could be standard best response, for which linear-time
algorithms exist in games of imperfect information (and a
recent approach has enabled efficient computation in extremely
large games [8]). They could also be a more robust response,
e.g., one that places a limit on the exploitability of our
own strategy, perhaps one that varies over time based on
performance (or a lower-variance estimator) [9], [10], [11]. In
particular, the restricted Nash response has been demonstrated
to outperform best response against agents in limit Texas hold
’em whose actual strategy may differ substantially from the
exact model [9].

III. ROBUSTNESS OF THE APPROACH

It has been pointed out that, empirically, the approach
described is not robust: if we play a full best response to
a point estimate of the opponent’s strategy we can have very

high exploitability ourselves, and could perform very poorly
if in fact we are wrong about our model [9]. This could
happen for several reasons. Our modeling algorithm could
be incorrect: it could make an incorrect assumption about
the prior and form of the opponent’s distribution. This could
happen for several reasons. One reason is that the opponent
could actually be changing his strategy over time (possibly
either by improving his own play or by adapting to our play),
in which case a model that assumes a static opponent could
be predicting a strategy that the opponent is no longer using.
The opponent could also have modified his play strategically
in an attempt to deceive us by playing one way initially
and then counter-exploiting us as we attempt to exploit the
model we have formed from his initial strategy (e.g., the
opponent initially starts off playing extremely conservatively,
then switches to a more aggressive style as he suspects we will
start to exploit his extreme conservatism). His initial strategy
need not arise from deception: it is also possible that simply
due to chance events (either due to his own randomization in
his strategy or due to the states of private information selected
by chance) the opponent has appeared to be playing in a certain
way (e.g., very conservatively), and as he becomes aware of
this conservative “image,” naturally it occurs to him to modify
his play by becoming more aggressive.

A second reason that we could be wrong in our opponent
model other than our algorithm incorrectly modeling the
opponents’ dynamic approach is that our observations of
his play are very noisy (due to both randomization in the
opponent’s strategy and to the private information selected
by chance), particularly over a small sample. Even if our
approach is correct and the opponent is in fact playing a static
strategy according to the distribution assumed by the modeling
algorithm, it is very unlikely that our actual perception of his
strategy is precisely correct.

A third reason, of course, is that the opponent may be
following a static strategy that does not exactly conform to our
model for the prior and/or sampling method used to generate
the posterior.

We would like an approach that is robust in the event that
our model of the opponent’s strategy is incorrect, whichever
the cause may be. Prior work has considered a model where
the opponent plays according to a model x−i with probability
p and with probability 1−p plays a nemesis to our strategy [9].
For carefully selected values of p (typically 0.95 or 0.99),
they show that this can achieve a relatively high level of
exploitation (similar to a full best response) with a significantly
smaller worst-case exploitability. We note that, as described in
Section II, Algorithm 1 can be integrated with any response
function, not necessarily a full best response, and so rt could
be selected to be the Restricted Nash Response from prior
work [9]. However, it seems excessively conservative to give
the opponent credit for playing a full nemesis to our strategy;
if we are relatively confident in our opponent model, then
a more reasonable robustness criterion would be to explore
performance as we allow the opponent’s strategy to differ by
a small amount from the predicted strategy (i.e., the opponent



is playing a strategy that is very close to our model, and not
necessarily putting weight on a full nemesis).

Suppose we believe the opponent is playing x−i, while he is
actually playing x′−i. Let M be the maximum absolute value
of a utility to player i, and let N be the maximum number of
actions available to a player. Let ε > 0 be arbitrary. Then, if
|x−i(j)− x′−i(j)| < δ for all j, where δ = ε

MN ,

|ui(σ∗, x−i)− ui(σ∗, x′−i)|

=

∣∣∣∣∣∣
∑
j

(x−i(j)− x′−i(j))ui(σ∗, s−j)

∣∣∣∣∣∣
<=

∑
j

∣∣(x−i(j)− x′−i(j))ui(σ∗, s−j)∣∣
<=

∑
j

(∣∣x−i(j)− x′−i(j)∣∣ · |ui(σ∗, s−j)|)
<=

∑
j

(
|x−i(j)− x′−i(j)| ·M

)
< M

∑
j

δ <=MNδ =MN · ε

MN
= ε

This same analysis can be applied directly to show that our
payoff is continuous in the opponent’s strategy for many
popular distance functions (i.e., for any distance function
where one strategy can get arbitrarily close to another as
the components get arbitrarily close). For instance this would
apply to L1, L2, and earth mover’s distance, which have been
applied previously to compute distances been strategies within
opponent exploitation algorithms [4]. Thus, if we are slightly
off in our model of the opponent’s strategy, even if we are
doing a full best response we will do only slightly worse.

IV. EXPLOITATION ALGORITHM FOR DIRICHLET PRIOR

As described in Section I the Dirichlet distribution is the
conjugate prior for the multinomial distribution, and there-
fore the posterior is also a Dirichlet distribution, with the
parameters αi updated to reflect the new observations. Thus,
the mean of the posterior can be computed efficiently by
computing the strategy for the opponent in which he plays each
strategy in proportion to the updated weight, and Algorithm 1
yields an exact efficient algorithm for computing the Bayesian
best response in normal-form games with a Dirichlet prior.
However, the algorithm does not apply to games of imperfect
information since we do not observe the private information
held by the opponent, and therefore do not know which of
his action counters we should increment. In this section we
will present a new algorithm for this setting. We present it
in the context of a representative motivating game where the
opponent is dealt a state of private information and then takes
publicly-observable action, and present the algorithm for the
general setting in Section IV-C.

We are interested in studying the following two-player game
setting. Player 1 is given private information state xi (accord-
ing to a probability distribution). Then he takes a publicly

observable action ai. Player 2 then takes an action after
observing player 1’s action (but not his private information),
and both players receive a payoff. We are interested in player’s
2’s problem of inferring the (assumed stationary) strategy of
player 1 after repeated observations of the public action taken
(but not the private information). Note that this setting is very
general. For example, in poker xi could denote the opponent’s
private card(s) and ai denote the amount he bets, and in an ad
auction xi could denote his valuation (e.g., high or low), and
ai could denote the amount he bids [12].

A. Motivating game and algorithm

For concreteness and motivation, consider the following
poker game instantiation of this setting, where we play the
role of player 2. Let’s assume that in this two-player game,
player 1 is dealt a King (K) and Jack (J) with probability 1

2 ,
while player 2 is always dealt a Queen. Player 1 is allowed to
make a big bet of $10 (b) or a small bet of $1 (s), and player
2 is allowed to call or fold. If player 2 folds, then player 1
wins the $2 pot (for a profit of $1); if player 1 bets and player
2 calls then the player with the higher card wins the $2 pot
plus the size of the bet.

Fig. 1. Chance deals player 1 king or jack with probability 1
2

at the green
node. Then player 1 selects big or small bet at a red node. Then player 2
chooses call or fold at a blue node.

If we observe player 1’s card after each hand, then we
can apply the approach described above, where we maintain
a counter for player 1 choosing each action with each card
that is incremented for the selected action. However, if we do
not observe player 1’s card after the hand (e.g., if we fold),
then we would not know whether to increment the counter
for the king or the jack. To simplify analysis, we will assume
that we never observe the opponent’s private card after the
hand (which is not realistic since we would observe his card
if he bets and we call); we can assume that we do not observe
our payoff either until all game iterations are complete, since
that could allow us to draw inferences about the opponent’s
card. There are no known algorithms even for the simplified
case of fully unobservable opponent’s private information. We
suspect that an algorithm for the case when the opponent’s
private information is sometimes observed can be constructed
based on our algorithm, and we plan to study this problem in
future work.



From analysis in the accompanying tech report [13], we are
able to compute a closed-form expression for the expectation
of the posterior probability that the opponent takes action b
with a Jack given that we have just observed him take action
b (the other quantities can be computed analogously), which
is denoted by P (b|O, J).

B(αKb + 1, αKs)B(αJb + 1, αJs) + B(αKb, αKs)B(αJb + 2, αJs)

Z
(1)

where the denominator Z is equal to

B(αKb + 1, αKs)B(αJb + 1, αJs) + B(αKb, αKs)B(αJb + 2, αJs)

+B(αKb + 1, αKs)B(αJb, αJs + 1) + B(αKb, αKs)B(αJb + 1, αJs + 1).

Note that the algorithm we have presented applies for the
case where we play one more game iteration and collect
one additional observation. However, it is problematic for the
general case we are interested in where we play many game
iterations, since the posterior distribution is not Dirichlet, and
therefore we cannot just apply the same procedure in the next
iteration using the computed posterior as the new prior. We
will need to derive a new expression for P (b|O, J) for this
setting. Suppose that we have observed the opponent play
action b for θb times and s θs times (in addition to the number
of fictitious observations reflected in the prior α), though we
do not observe his card. Then P (b|O, J) equals

∑θb
i=0

∑θs
j=0 B(αKb + i, αKs + j)B(αJb + θb − i+ 1, αJs + θs − j)

Z
(2)

The normalization term is

Z =
∑
i

∑
j

[B(αKb+ i, αKs+ j)B(αJb+θb− i+1, αJs+θs− j)

+B(αKb + i, αKs + j)B(αJb + θb − i, αJs + θs − j + 1)].

Details of the derivation are in the tech report.
Thus the algorithm for responding to the opponent is the

following. We start with the prior counters on each private
information-action combination, αKb, αKs, etc. We keep sep-
arate counters θb, θs for the number of times we have observed
each action during play. Then we combine these counters
according to Equation 2 in order to compute the strategy for
the opponent that is the mean of the posterior given the prior
and observations, and we best respond to this strategy, which
gives us the same payoff as best responding to the full posterior
distribution according to Theorem 1. There are only O(n2)
terms in the expression given by Equation 2, so this algorithm
is efficient.

B. Example

Suppose the prior is that the opponent played b with K 10
times, played s with K 3 times, played b with J 4 times, and
played s with J 9 times. Thus αKb = 10, αKs = 3, αJb =
4, αJs = 9. Now suppose we observe him play b at the next
iteration. Applying our algorithm using Equation 1 gives

p(b|O, J) =
B(11, 3)B(5, 9) +B(10, 3)(6, 9)

Z
=

2.65209525e−7

Z

p(s|O, J) =
B(11, 3)B(4, 10) +B(10, 3)(5, 10)

Z
=

5.5888056e−7

Z

−→ p(b|O, J) =
2.65209525e−7

2.65209525e−7 + 5.5888056e−7
= 0.3218210361.

So we think that with a jack he is playing a strategy that bets
big with probability 0.322 and small with probability 0.678.
Notice that previously we thought his probability of betting
big with a jack was 4

13 = 0.308, and had we been in the
setting where we always observe his card after gameplay and
observed that he had a jack, the posterior probability would
be 5

14 = 0.357.
An alternative “naı̈ve” (and incorrect) approach would be to

increment αJb by αJb
αJb+αKb

, the ratio of the prior probability
that he bets big given J to the total prior probability that he bets
big. This gives a posterior probability of him betting big with J
of 4+ 4

13

14 = 0.308, which differs significantly from the correct
value. It turns out that this approach is actually equivalent to
just using the prior:

x+ x
x+y

x+ y + 1
· x+ y

x+ y
=

x(x+ y) + x

(x+ y + 1)(x+ y)
=

x

x+ y

C. Algorithm for general setting

We now consider the general setting where the opponent
can have n different states of private information according to
an arbitrary distribution π and can take m different actions.
Assume he is given private information xi with probability πi,
for i = 1, . . . , n, and can take action ki, for i = 1, . . . ,m.
Assume the prior is Dirichlet with parameters αij for the
number of times action j was played with private information
i (so the mean of the prior has the player selecting action
kj at state xi with probability αij∑

j αij
). Assume that action

kj∗ was observed in a new time step, while the opponent’s
private information was not observed. We now compute the
expectation for the posterior probability that the opponent
plays kj∗ with private information xi∗ .

P (A = kj∗ |O,C = xi∗)

=

∫ [
qk∗j |x∗

i

∑n
i=1

[
πiqkj∗ |xi

∏m
h=1

∏n
j=1 q

αjh−1

kh|xj

]]
p(O)

∏n
i=1B(αi1, . . . , αim)

=

∑
i

[
πi
∏
j B(γ1j , . . . , γnj)

]
Z

,

where γij = αij + 2 if i = i∗ and j = j∗, γij = αij + 1 if
j = j∗ and i 6= i∗, and γij = αij otherwise. If we denote
the numerator by τi∗j∗ then Z =

∑
i∗ τi∗j∗ . Notice that the

product is over n terms, and therefore the total number of
terms will be exponential in n (it is O(m · 2n)).

For the case of multiple observed actions, the posterior is
not Dirichlet and cannot be used directly as the prior for the
next iteration. Suppose we have observed action kj θj times
(in addition to the number of fictitious times indicated by the
prior counts αij). We compute P (q|O) analogously as



P (q|O) =

∑n
i=1

[
πi
∑
{ρab}

∏m
h=1

∏n
j=1 q

αjh−1+ρjh
kh|xj

]
p(O)

∏n
i=1B(αi1, . . . , αim)

,

where the
∑
{ρab} is over all values 0 ≤ ρab ≤ θb with∑

a ρab = θb for each b, for 1 ≤ a ≤ n, 1 ≤ b ≤ m:

∑
{ρab}

=

θb∑
ρ1b=0

θb−ρ1b∑
ρ2b=0

. . .

θb−
∑n−2
r=0 ρrb∑

ρn−1,b=0

θb−
∑n−1
r=0 ρrb∑

ρnb=θb−
∑n−2
r=0 ρrb

.

The expression for the full posterior distribution is

P (q|O) =

∑
i

[
πi

∑
{ρab}

∏
hB(α1h + ρ1h, . . . , αnh + ρnh)

]
Z

The total number of terms is O
((

(T+n)!
n!T !

)m)
, which is

exponential in the number of private information states and
actions, but polynomial in the number of iterations.

The following theorem shows an approach for computing
products of the beta function that leads to an exponential
improvement in the running time of the algorithm for one
observation, and reduces the dependence on m for the multiple
observation setting from exponential to linear, though the
complexity still remains exponential in n and T for the latter.
See tech report for full details [13].
Theorem 2. Define γj =

∑n
i=1 γij and the empirical probability

distribution P̂j(i) =
γij∑n
i=1 γij

=
γij
γj

. Define the Gamma function
Γ(x) =

∫∞
0
xz−1e−x dx, for integer x, Γ(x) = (x−1)!. Now define

the entropy of P̂i as E(P̂j) = −
∑n
i=1 P̂j(i) ln P̂j(i). Then we have∏m

j=1 B(γ1j , . . . , γnj) equals

exp

 m∑
j=1

(
−γjE(P̂j)−

1

2
(n− 1) ln(γj) +

n∑
i=1

ln(Pj(i)) + d

) .

Here d is a constant such that 1
2 ln(2π)n − 1 ≤ d ≤ n −

1
2 ln(2π), where ln(2π) ≈ 0.92.

V. ALGORITHM FOR UNIFORM PRIOR DISTRIBUTION

Another prior that has been studied previously is the uni-
form distribution over a polyhedron. This can model the
situation when we think the opponent is playing uniformly
within some region of a fixed strategy, such as a specific
Nash equilibrium or a “population mean” strategy based on
historical data. Prior work has used this model to generate a
class of opponents who are more sophisticated than opponents
who play uniformly at random over the entire space [11]). For
example, in rock-paper-scissors, we may think the opponent
is playing a strategy uniformly out of strategies that play
each action with probability within [0.31,0.35], as opposed
to completely random over [0,1].

Let vi,j denote the jth vertex for player i, where vertices
correspond to mixed strategies. Let p0 denote the prior distri-
bution over vertices, where p0

i,j is the probability that player i
plays the strategy corresponding to vertex vi,j . Let Vi denote
the number of vertices for player i. Algorithm 2 computes
the Bayesian best response in this setting. Correctness follows
straightforwardly by applying Corollary 1 with the formula for
the mean of the uniform distribution.

Algorithm 2 Algorithm for opponent exploitation with uni-
form prior distribution over polyhedron
Inputs: Prior distribution over vertices p0, response functions
rt for 0 ≤ t ≤ T
M0 ← strategy profile assuming opponent i plays each
vertex vi,j with probability p0

i,j =
1
Vi

R0 ← r0(M0)
Play according to R0

for t = 1 to T do
for i = 1 to N do

ai ← action taken by player i at time step t
for j = 1 to Vi do

pti,j ← pt−1
i,j · vi,j(ai)

Normalize the pti,j’s so they sum to 1

Mt ← strategy profile assuming opponent i plays each
vertex vi,j with probability pti,j

Rt ← rt(Mt)
Play according to Rt

VI. EXPERIMENTS

We ran experiments on the game described in Section IV-A.
For the beta function computations we used the Colt Java math
library.For our first set of experiments we tested our basic
algorithm which assumes that we observe a single opponent
action (Equation 1). We varied the Dirichlet prior parameters
to be uniform in {1,n} to explore the runtime as a function
of the size of the prior (since computing larger values of
the Beta function can be challenging). The results (Table I)
show that the computation is very fast even for large n, with
running time under 8 microseconds for n = 500. However,
we also observe frequent numerical instability for large n.
The second row shows the percentage of the trials for which
the algorithm produced a result of “NaN” (which typically
results from dividing zero by zero). This jumps from 0%
for n = 50 to 8.8% for n = 100 to 86.9% for n = 200.
This is due to instability of algorithms for computing the beta
function. We used the best publicly available beta function
solver, but perhaps there could be a different solver that leads
to better performance in our setting (e.g., it trades off runtime
for additional precision). Despite the cases of instability, the
results indicate that the algorithm runs extremely fast for
hundreds of prior observations, and since it is exact, it is
the best algorithm for the settings in which it produces a
valid output. Note that n = 100 corresponds to 400 prior
observations on average since there are four parameters, and
that the experiments in previous work used a horizon of 200
hands per match against an opponent [7].

We tested our generalized algorithm for different numbers of
observations, using a fixed Dirichlet prior with all parameters
equal to 2 as in prior work [7]. We observe (Table II) that
the algorithm runs quickly for large numbers of observations,
though again it runs into numerical instability for large values.
As one example, it takes 19ms for θb = 101, θs = 100.



n 10 20 50 100 200 500
Time 0.0005 0.0008 0.0018 0.0025 0.0034 0.0076
NaN 0 0 0 0.0883 0.8694 0.9966

TABLE I
RESULTS OF MODIFYING DIRICHLET PARAMETERS TO BE U{1,N}
OVER ONE MILLION SAMPLES. FIRST ROW IS AVERAGE RUNTIME
IN MILLISECONDS. SECOND ROW IS PERCENTAGE OF THE TRIALS

THAT OUTPUT “NAN.”

n 10 20 50 100 200 500 1000
Time 0.015 0.03 0.36 2.101 10.306 128.165 728.383
NaN 0 0 0 0 0.290 0.880 0.971

TABLE II
RESULTS USING DIRICHLET PRIOR WITH ALL PARAMETERS
EQUAL TO 2 AND θb , θs IN U{1,N} AVERAGED OVER 1,000

SAMPLES. FIRST ROW IS AVERAGE RUNTIME (MS), SECOND ROW
IS % OF TRIALS PRODUCING “NAN.”

We compared our algorithm against the three heuristics
described in previous work [7]. The first heuristic Bayesian
Best Response (BBR) approximates the opponent’s strategy
by sampling strategies according to the prior and computing
the mean of the posterior over these samples, then best-
responding to this mean strategy; Max A Posteriori Response
heuristic (MAP) samples strategies from the prior, computes
the posterior value for these strategies, and plays a best
response to the one with highest posterior value; Thompson’s
Response samples strategies from the prior, computes the
posterior values, then samples one strategy for the opponent
from these posteriors and plays a best response to it. For all
approaches we used a Dirichlet prior with the standard values
of 2 for all parameters. For all the sampling approaches we
sampled 1,000 strategies from the prior for each opponent and
used these strategies for all hands against that opponent (as
was done in prior work [7]). Note that one can draw samples
xi from a Dirichlet distribution by first drawing indepen-
dent samples yi from Gamma distributions each with density
Gamma(αi, 1) =

y
αi−1

i e−yi

Γ(αi)
and then setting xi =

yi∑
j yj

.We
also tested a best response strategy that knows the actual
mixed strategy of the opponent, not just a distribution over
his strategies, as well as the Nash equilibrium strategy.5 Note
that the game has a value to us of -0.75, so negative values
are not necessarily indicative of “losing.”

Table III shows that our exact Bayesian best response
algorithm (EBBR) outperforms the heuristic approaches, as
expected since it is optimal when the opponent’s strategy is
drawn from the prior. BBR performed best out of the sampling
approaches, which is not surprising because it is trying to
approximate the optimal approach while the others are op-
timizing a different objective. All of the sampling approaches
outperformed just following the Nash equilibrium, and as
expected all exploitation approaches performed worse than
playing a best response to the opponent’s actual strategy. Note
that, against an opponent drawn from a Dirichlet distribution

5Note that the Nash equilibrium for player 2 is to call a big bet with
probability 1

4
and a small bet with probability 1 (the equilibrium for player

1 is to always bet big with K and to bet big with probability 5
6

with J).

with all parameters equal to 2 and no further observations of
his play, our best response would be to always call, which
gives us expected payoff of zero. Thus for the initial column
the actual value for EBBR when averaged over all opponents
would be zero. Against this distribution the Nash equilibrium
has expected payoff −0.375.

Algorithm Initial 10 25
EBBR 0.0003 ± 0.0009 -0.0024 0.0012
BBR 0.0002 ± 0.0009 -0.0522 -0.138
MAP −0.2701 ± 0.0008 -0.2848 -0.2984

Thompson −0.2593 ± 0.0007 -0.2760 -0.3020
FullBR 0.4976 ± 0.0006 0.4956 0.4963
Nash −0.3750 ± 0.0001 -0.3751 -0.3745

TABLE III
COMPARISON WITH ALGORITHMS FROM PRIOR WORK, FULL BEST

RESPONSE, AND NASH EQUILIBRIUM USING DIRICHLET PRIOR WITH
PARAMETERS EQUAL TO 2. FOR INITIAL COLUMN WE SAMPLED TEN

MILLION OPPONENTS FROM THE PRIOR, FOR 10 ROUNDS WE SAMPLED
ONE MILLION, AND FOR 25 ROUNDS 100,000. RESULTS ARE AVERAGE

WINRATE PER HAND OVER ALL OPPONENTS. INITIAL COLUMN REPORTS
95% CONFIDENCE INTERVAL.

It is interesting that the exploitation approaches (particularly
EBBR and BBR) are able to exploit opponents and perform
significantly better than the Nash equilibrium strategy just
from knowing the prior distribution for the opponents (and
without any observations). Previous experiments had also
shown that when the sampling approaches are played against
opponents drawn from the prior distribution, the winning
rates converge, typically very quickly [7]. “The independent
Dirichlet prior is very broad, admitting a wide variety of
opponents. It is encouraging that the Bayesian approach is
able to exploit even this weak information to achieve a better
result.” For these experiments the performances of all the
approaches converged very quickly, and collecting additional
observations of the opponent’s public action did not seem to
lead to an additional improvement. This observation agrees
with the findings of the prior results in this setting.

We also tested the effect of using only 10 samples of
the opponent’s strategy for the sampling approaches. The ap-
proaches would then have a noisier estimate of the opponent’s
strategy, and should achieve lower performance against the
actual strategy of the opponent.

Thompson and MAP performed very similarly using 10 vs.
1000 samples (these approaches essentially end up selecting
a single strategy from the set of samples to be used as
the model, and the results indicate that they are relatively
insensitive to the number of samples used), but BBR performs
significantly worse, achieving payoff around -0.14 with 10
samples vs. payoff close to 0 with 1000 samples. EBBR
outperforms BBR much more significantly in this case where
BBR uses fewer samples to construct the opponent model.
It appears that the sampling approaches actually hurt perfor-
mance over time when fewer samples are used. BBR, MAP,
and Thompson perform clearly worse after 100 game iterations
than with fewer iterations, while EBBR performs better as
more iterations are used, indicating that it is actually able to
perform successful learning in this setting. For the others, the



Algorithm Initial 10 25 100
EBBR 0.000002 ± 0.0009 0.0019 0.0080 0.0160
BBR −0.1409 ± 0.0008 -0.1415 -0.1396 -0.2254
MAP −0.2705 ± 0.0007 -0.2704 -0.2660 -0.3001

Thompson −0.2666 ± 0.0007 -0.2660 -0.2638 -0.3182
FullBR 0.4979 ± 0.0006 0.4980 0.5035 0.5143
Nash −0.3749 ± 0.0001 -0.3751 -0.3739 -0.3754

TABLE IV
COMPARISON OF OUR ALGORITHM WITH ALGORITHMS FROM PRIOR
WORK (BBR, MAP, THOMPSON), FULL BEST RESPONSE, AND NASH

EQUILIBRIUM USING DIRICHLET PRIOR WITH PARAMETERS EQUAL TO 2.
THE SAMPLING ALGORITHMS EACH USE 10 SAMPLES FROM THE

OPPONENT’S STRATEGY (AS OPPOSED TO 1000 SAMPLES FROM OUR
EARLIER ANALYSIS). FOR THE INITIAL COLUMN WE SAMPLED TEN

MILLION OPPONENTS FROM THE PRIOR, FOR 10 ROUNDS WE SAMPLED
ONE MILLION, FOR 25 ROUNDS 100,000, AND FOR 100 ROUNDS 1,000.

RESULTS ARE AVERAGE WINRATE PER HAND OVER ALL OPPONENTS.
INITIAL COLUMN REPORTS 95% CONFIDENCE INTERVAL.

noise from the samples outweighs the gains of learning from
additional observations.

VII. CONCLUSION

One of the most fundamental problems in game theory
is learning to play optimally against opponents who may
make mistakes. We presented the first exact algorithm for
performing exploitation in imperfect-information games in the
Bayesian setting using the most well-studied prior distribution
for this problem, the Dirichlet distribution. Previously an exact
algorithm had only been presented for normal-form games, and
the best previous algorithm was a heuristic with no guarantees.
We demonstrated experimentally that our algorithm can be
practical and that it outperforms the best prior approaches,
though it can run into numerical stability issues for large
numbers of observations.

We presented a general meta-algorithm and new theoretical
framework for studying opponent exploitation. Future work
can extend our analysis to many important settings. For ex-
ample, we would like to study the setting when the opponent’s
private information is only sometimes observed (we expect our
approach can be extended easily to this setting) and general
sequential games where the agents can take multiple actions
(which we expect to be hard, as indicated by the analysis in
the tech report). We would also like to extend analysis for any
number of agents. Our algorithm is not specialized for two-
player zero-sum games (it applies to general-sum games); if
we are able to compute the mean of the posterior strategy
against multiple opponent agents, then best responding to this
strategy profile is just a single agent optimization and can
be done in time linear in the size of the game regardless
of the number of opponents. While the Dirichlet is the most
natural prior for this problem, we would also like to study
other important distributions. We presented an algorithm for
the uniform prior distribution over a polyhedron, which could
model the situation where we think the opponent is playing
a strategy from a uniform distribution in a region around
a particular strategy, such as a specific equilibrium or a
“population mean” based on historical data.

Opponent exploitation is a fundamental problem, and our
algorithm and extensions could be applicable to many domains
that are modeled as an imperfect-information games. For
example, many security game models have imperfect infor-
mation, e.g., [14], [15], and opponent exploitation in security
games has been a very active area of study, e.g., [16], [17].
It has also been proposed recently that opponent exploitation
can be important in medical treatment [18].
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