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Abstract— Field studies indicate that European starlings in
a flock coordinate utilizing a nearest neighbors approach. This
model of communication is known in the biological swarm liter-
ature as the topological model. Each starling coordinates with a
fixed number of nearest neighbors, and this number is referred
to as the topological distance. The presented research evaluates
the topological model in the context of a swarm robotics task,
where a simulated artificial swarm is tasked to search for and
go to a goal in the environment. Specifically, experiments are
conducted on a high–fidelity, multi-robot simulator to analyze
the performance of the tasked swarm as the topological distance
is varied. Connections are drawn between the topological model
based on starlings and the Delta–disk model, which is widely
used in the robotics community to model agent interaction
zones. Using graph measures, conditions under which the two
models generate comparable networks are presented.

I. INTRODUCTION

European starlings, Sturnus vulgaris, display remarkable
coordination while flocking and a single flock can contain
up to tens of thousands of individual birds. Ballerini et al.
[1] analyzed data on the 3D positions of starling flocks and
report that each individual bird coordinates, on average, with
its nearest 6–7 neighbors. This communication model, where
individuals interact with a fixed number of nearest neighbors,
is referred to as the topological model, and the number of
nearest neighbors is known as the topological distance [1, 2].

A “central challenge” in the study of collective behavior of
animals is revealing how information flows within the group
[3]. A number of communication models have been proposed
in the biological swarm literature to describe interactions
between individuals, including the metric and visual models.
The metric model is directly based on spatial proximity: two
individuals interact if they are within a metric range from
each other (e.g., [4]). Strandburg–Peshkin et al. [3] define
the visual model, where an individual only coordinates with
swarm members that are within its visual field.

Consider a remotely deployed artificial swarm, capable
of implementing the biologically inspired topological com-
munication model. While it is known that starlings interact
with their nearest 6–7 neighbors, it is unclear what the
“right” topological distance is for a tasked artificial swarm.
The distance can depend on the swarm’s size, and to this
end, experiments were conducted with a simulated artificial
swarm searching for a goal area. The first contribution of this
paper is to present the swarm’s performance for all possible
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topological distances. Maintaining communication links is
computationally costly; therefore, an important application of
the reported research is to conserve computational resources
by automatically tailoring a distance to a given task.

Each of the prescribed biologically-inspired communica-
tion models results in an interaction network, where nodes
are swarm agents. One question that arises is how to relate
communication models to each other by analyzing their
resulting interaction networks. The second contribution of
this work lays the foundations of relating the topological
model to the metric model. Certain graph measures, such as
the clustering coefficient, are used to determine similarity,
and for each of the measures, an expression for the topo-
logical distance is produced in terms of the metric range to
show the relationship between these two model parameters.
Continuing with the remotely deployed swarm example, if
the swarm is capable of selecting between the topological
and metric models, and the swarm is stationary, the derived
expressions can allow setting the model parameters, when
switching from one communication model to the other,
without affecting the network, in terms of the measures.

The paper is organized as follows: Section II provides
related work. The search for a goal experiments are presented
in Section III. Section IV investigates conditions under which
the topological and metric models generate comparable
networks in terms of certain graph measures. Concluding
remarks are drawn in Section V.

II. RELATED WORK

Haque et al. [5] compared the performances of metric,
topological, and visual models for simulated artificial swarms
searching for a goal. The experimental topological distance
was restricted to the range 5–8 in order to mimic what is
observed in starlings. The main performance metric was the
percentage of agents reaching goal, and for the topological
model, no statistically significant difference was found across
the four topological distances. The reported search for a goal
experiments in this paper focus solely on the topological
model and present the performance of simulated swarms for
the entire range of feasible topological distances, given a
particular size of the swarm. Differences in the experimental
design between the two experiments are discussed.

The influence of the topological distance has been studied
using both graph- and system-theoretic frameworks. Ko-
mareji and Bouffanais [6] studied the relationship between
group size and the topological distance for a simulated
swarm. The authors showed that there exists a minimum
topological distance, dependent on the swarm’s size, that
is necessary to maintain the connectedness of the resulting
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Fig. 1. Simulation of a swarm searching for a goal area using the Robotarium simulator. The center of the large circle denotes the location of the goal and
black dots denote obstacles. This particular trial used the following parameter settings: N = 10, Nobs = 2, rr = 0.18, ro = 0.36, ra = 0.54, nT = 9.

interaction network. Shang and Bouffanais [7] proved that
irrespective of the swarm’s size, the rate of convergence
of the consensus on agents’ headings using a topological
distance of 10 yields results close to the all-to-all communi-
cation case. System-theoretic analysis has further shown that
the topological distance that optimizes a swarm’s robustness
does not depend on the swarm’s size [8]. Robustness was
formulated as the swarm’s ability to reach a consensus
on agent headings in the presence of uncertainty, and it
was shown that the optimal topological distance needed to
maximize robustness was 7.

III. SEARCH FOR A GOAL

The simulated artificial swarm’s objective for this exper-
iment is to discover a goal area in the environment. This
task was one of the two tasks evaluated by Haque et al.
[5] to compare the performances of the metric, topological
(with topological distances around 7), and visual models of
biological swarm communication. The current focus is to
study the influence of the topological distance on the swarm’s
performance on this task.

A. Experimental design

The MATLAB-based Robotarium simulator [9] was used
to conduct the experiments. The use of this simulator marks
a departure from the prior experiment [5], and is motivated
by the fact that simulator code can be directly deployed
onto the Robotarium, a remote, multi-robot testbed consisting
of GRITSBots [9]. The simulator, shown in Fig. 1, closely
approximates the actual testbed and behavior of the GRITS-
Bots. The simulator’s environment is 1.20 × 0.70 and the
dimension of the agents are 0.06× 0.06.

The primary independent variable is the topological dis-
tance (nT ) and the performance metric measures the number
of agents that have reached goal as a percentage of the
swarm’s size (N ). The environment includes a number of
obstacles, denoted by Nobs.

Swarming is achieved in a two-step process [5]. At each
iteration t, the topological model assigns nT neighbors to
all the agents, and each agent interacts with those neighbors
based on Reynold’s repulsion-orientation-attraction rules for
boids [10]: 1) veer away from neighbors that are within the
repulsion range (rr), 2) align headings with neighbors that

TABLE I
EXPERIMENTAL DESIGN.

Parameter Values Explored

Number of agents (N) {10, 20, 40}
Number of obstacles (Nobs) {0, 0.1N, 0.2N}

Radius of repulsion (rr) {0.06, 0.12, 0.18}
Radius of orientation (ro) {1.1rr, 1.5rr, 2rr}
Radius of attraction (ra) {1.1ro, 1.5ro, 2ro}

Topological distance (nT ) {0, 1, . . . , N − 1}

are between the repulsion range and the orientation range
(ro), and 3) head toward the centroid of neighbors that are
between the orientation range and the attraction range (ra).

Table I summarizes the independent and dependent vari-
ables. An experiment is defined as a particular setting of
the tuple (N , Nobs, rr, ro, ra, nT ). A simulation run of
750 iterations in t is referred to as a trial. Twenty-five
trials were completed for each experiment. The number of
trials for the N = 10, N = 20, and N = 40 cases were
1×3×3×3×3×10×25 = 20250, 1×3×3×3×3×20×25 =
42525, 1× 3× 3× 3× 3× 40× 25 = 81000, respectively;
thus, the total number of trials was 143775.

Various coordinated movement patterns [11] are simulated
for the swarm through the use of the different repulsion-
orientation-attraction configurations. Individual agents are
not intelligent, in the sense that they are not using any
intricate search technique to locate the goal area. Instead,
an agent swarms with its neighbors and senses the goal area
if it is within ra from goal’s center. An agent can also be
informed of the goal’s location by an informed neighbor.
An agent’s effort to beeline toward goal’s location is equally
weighed with the effort to swarm based on the swarming
rules, as was used by Couzin et al. [4].

Hypothesis HT1 is that the mean performance will in-
crease in the topological distance and plateau beyond a
critical value of nT . HT1 is based on the fact that Komareji
and Bouffanais [6] proved that for a swarm where agents
move by aligning headings with neighbors, there exists a
minimum topological distance necessary to maintain the
swarm’s connectedness. The dynamics of the swarm sim-
ulated in this work are based on a more involved interaction
scheme of repulsion, orientation, and attraction. Moreover,
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Fig. 2. The performance data for the three swarm sizes. The horizontal line inside a box plot represents the median and the cross represents the mean.

TABLE II
VALUES OF n?

T AND n′
T BY THE NUMBER OF SWARM AGENTS.

N n?
T n′

T

10 8 (0.800N ) 4 (0.40N )
20 5 (0.250N ) 3 (0.15N )
40 3 (0.075N ) 2 (0.05N )

informed agents do not break from the swarm and dart
toward the goal’s location. The results presented in the next
section demonstrate whether a critical distance also exists for
the search for a goal task, where agent-agent interactions go
beyond striving for a consensus on headings.

Hypothesis HT2 is that the critical distance for the de-
signed experiment’s performance measure (percentage of
agents reaching goal), if it exists, will not be an absolute
value like the one identified for robustness [8], but will
depend on the swarm’s size [6].

B. Results

The results of Anderson-Darling tests indicated that the
performance was normally distributed for N = 10 (A =
288.59, p-value < 0.001), N = 20 (A = 382.46, p-value <
0.001), and N = 40 (A = 424.89, p-value < 0.001).

The distribution of performance data using box plots is

shown in Fig. 2. The highest mean performance for the three
cases were 85.78% for N = 10, 86.87% for N = 20, and
83.29% for N = 40. The topological distance that achieved
the highest mean is denoted by n?

T , as presented in Table II.
An analysis of variance (ANOVA) determined that

nT had a significant impact on performance for
N = 10 (F (9,20241)=575.10, p<0.001), N = 20
(F (19,42506)=654.20, p<0.001), and N = 40
(F (39,80961)=95.01, p<0.001). Further, Fisher’s LSD
tests found that for each case there exists a critical
topological distance, denoted by n′

T , such that there is no
statistically significant difference between the performances
achieved by nT,1 and nT,2, if nT,1, nT,2 ≥ nT ′. Table II
shows the values n′

T for each of the three cases.
The median performances for N = 10 is 100% for all

nT ≥ 4, as shown in Fig. 2(a). The value of n′
T is also

4 for this case (see Table II). This result indicates that the
median performance follows a pattern similar to the mean,
and generates similar performances for all nT ≥ n′

T .
The interquartile ranges of the performance data, the

range of values between the first and third quartile, are
also similar for all nT ≥ n′

T . The third quartiles of the
performance data for the case of N = 20 (see Fig. 2(b))
have a value of 100% (i.e., all the swarm agents are reaching
goal) for all topological distances greater than 3, which is



also the value of the critical topological distance.

C. Discussion

Hypothesis HT1 was supported: There exists a critical
topological distance, beyond which, communication with
more neighbors does not yield any statistically significant
improvement in the percentage of agents reaching goal.
Thus, the notion of a critical topological distance described
by Komareji and Bouffanais [6], where agents align their
headings with neighbors, exists for the search for a goal
setting as well, with a more complex movement law de-
scribed by a repulsion-orientation-attraction scheme. The
implication of finding the critical topological distances for
a swarm robotics tasks allows artificial swarms to conserve
computational resources by only maintaining links to the
nearest n′

T neighbors.
A critical topological distance does not depend on the

swarm’s size in terms of coordination [1], rate of con-
vergence, [7], and robustness [8]. The critical topological
distance reported in this work for the percentage of agents
reaching goal depends on the swarm’s size, and as such,
HT2 was supported. The results suggest that the critical
distance’s value is exponentially decreasing in N . The critical
topological distances (n′

T = 2 for N = 40) help explain
why there was no statistically significant difference in per-
formance across the topological distances of 5− 8 explored
for 50, 100, and 200 swarm agents [5].

There are task-specific conditions where the use of the
topological model is preferred over the metric model [5].
However, the metric model, which is known in the multi-
agent robotics community as the ∆-disk model (e.g., see
[12]), is widely used due to its ability to characterize sensor
range limitations. An open research question is how can
the two models be compared at a more fundamental level?
What is the relationship between the two model parameters,
namely, the metric range and the topological distance? An
analysis of these parameters, presented in the next sec-
tion, guides the selection of a topological distance, given
a metric range, or vice versa, in a way that both model
parameters produce interaction networks comparable to each
other. The results are based on simulated static agents (or
nodes) in an attempt to find a relationship between the two
model parameters. Understanding the relationship between
the model parameters for dynamic swarm agents remains an
open research question.

IV. COMPARISONS OF MODELS

There can be multiple approaches for comparing the
metric and topological models. A graph-theoretic approach
is adopted, in which the values of the metric range (rM ) and
the topological distance (nT ) are identified for which the
corresponding graphs provide an identical value for a partic-
ular graph measure. Three graph measures are considered:
size of the minimum dominating set, edge-connectivity, and
clustering coefficient. The three measures are widely used to
indicate centrality, connectedness, and clustering.

Numerical evaluations are based on the simulation of N
nodes distributed uniformly at random in a 10 × 10 area.
The values of the graph measures are obtained for different
values of rM and nT . Each point on the plots in Figs. 3, 4,
and 5 is an average of fifty randomly generated instances.

A. Minimum dominating set

A central issue in monitoring, controlling, or spreading
information within a network is determining a small subset of
nodes through which every node can be accessed in the most
efficient manner. Thus, the goal is to find the most influential
or dominating nodes within the network. Along with many
other centrality notions, the concept of a dominating set of
nodes captures this idea.

Definition 4.1: (Dominating set) In a network modeled
by a graph G(V,E), a subset of nodes D ⊆ V is a
dominating set if every node in V is either included in a
dominating set, or is adjacent to a node in a dominating set.

The significance of dominating sets of nodes within net-
works has been exploited in many different contexts, includ-
ing network controllability, optimal resource allocation, and
social influence propagation (e.g., see [13]–[15]). The goal
is to determine a dominating set of nodes of the minimum
cardinality, which is an NP-hard problem. Efficient approxi-
mation algorithms can compute the minimal dominating sets
in a distributed manner [16].

The number of nodes in the minimal dominating sets are
plotted as functions of rM and nT for various network sizes
N (see Fig. 3). Then, to relate metric and topological models
in the context of minimal dominating sets, the values of rM
and nT that give the minimal dominating sets of the same
sizes in the corresponding graphs are calculated. The results
are illustrated in Fig. 3(c). Using extensive simulations, an
approximate relationship between rM and nT is found. Given
rM , the value of nT that produces the minimal dominating
set of same size, is approximately given by:

nT ≈ 2.95(N/A)(rM )1.85 (1)

Note that the above relation holds for the graphs obtained,
as per the metric and topological models by distributing N
nodes uniformly at random in an area A.

B. Edge-connectivity

Connectivity is a primary attribute of any networked
system. Various metrics have been proposed in litera-
ture to quantify the level of inter-connectedness between
nodes; however, the notions of edge-connectivity (or node-
connectivity) are widely used in this regard.

Definition 4.2: (Edge-connectivity) A graph G(V,E) is
k-edge-connected if there does not exist a set of k−1 edges
whose removal disconnects the graph. Edge-connectivity
is the maximum k for which the graph remains k-edge-
connected.

There exists a path between any two nodes, in a k-edge
connected graph, even if k − 1 edges are removed. A graph
with a higher edge-connectivity is more resilient to edge
failures or removals. The edge-connectivity as a function



of rM and nT is illustrated in Figs. 4(a)-(b). As with the
dominating sets, rM and nT are analyzed by fixing the edge
connectivity. Fig. 4(c) illustrates the relationship between rM
and nT given the same edge-connectivities. Using extensive
simulations, an empirical relationship is obtained:

nT ≈ 2.15(N/A)(rM )2 (2)

C. Clustering coefficient

Based on the network structure, nodes may tend to group
together. Clusters can arise such that nodes are densely
connected within the clusters and relatively few interactions
exist between different clusters. The clustering coefficient is a
widely-used measure to quantify clustering within a network
(e.g., see [17, 18]).

Definition 4.3: (Clustering coefficient) Let u be a node
within a network with Nu neighbors, and Eu be the number
of edges that exist between the neighbors of u. The clustering
coefficient of a node u, denoted by C(u), is

C(u) =
2Eu

Nu(Nu − 1)
(3)

The total number of possible edges that can exist between the
neighbors of u is Nu(Nu − 1)/2. The clustering coefficient
is the average of clustering coefficients of all the nodes, i.e.,

C(G) =
1

N

∑
u∈G

C(u). (4)

The clustering coefficient of a node with less than two
neighbors is considered to be 0. The directed nature of links
is not considered [3]. The clustering coefficient as a function
of rM and nT is shown in Fig. 5. Again, a relationship
between rM and nT is explored, i.e., for a given rM in
the metric model, what is the value of nT in the topological
model that results in the same clustering coefficient. The
approximate relationship between rM and nT is given by:

nT ≈ 3.5(N/A)(rM )1.5 (5)

D. Discussion

The rates at which the graph measures vary with the
respective model parameters are different for the metric and
topological communication models. Moreover, for each of
the three network properties – centrality, connectedness, and
clustering – there exist a relationship between the parameters
of the two models. The relationships for all three measures
are captured by a power function of the form nT = c(rM )p.
However, constants c and p are different for each of these
measures. As such, obtained relationships between rM and
nT remain specific to their associated network properties,
and only generalize in form.

V. CONCLUSIONS

Experiments were conducted using the Robotarium sim-
ulator where an artificial swarm, using the topological
communication model and a repulsion-orientation-attraction
interaction rule was tasked with searching for a goal area. It
is shown that there exists a topological distance, dependent

on the swarm’s size, beyond which no statistically significant
improvement is gained in the percentage of a swarm’s agents
reaching the goal.

Using extensive simulations of stationary nodes uniformly
distributed at random, networks formed by the topological
and metric models were compared to each other in terms of
three graph measures: the dominating set, edge-connectivity,
and clustering coefficient. Expressions were derived, one for
each measure, to tie the metric range and the topological
distance such that the two model parameters produced com-
parable networks.

Combined together, these two contributions serve to aid ar-
tificial swarm design by conserving computational resources
through the critical topological distance and guiding how to
set model parameters when selecting between the topological
model, based on European starlings, and the metric model,
which is widely used in the swarm-robotics community.
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Fig. 3. (a)-(b) The minimal dominating set as a function of rM and nT . (c) nT as a function of rM for minimal dominating sets of same cardinalities.
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Fig. 4. (a)-(b) Edge-connectivity as a function of rM and nT . (c) nT as a function of rM for the same connectivities.
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Fig. 5. (a)-(b) Clustering coefficient as a function of rM and nT . (c) nT as a function of rM for the same clustering coefficients.
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