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General Background 

 

The history of slope stability analyses in Geotechnical Engineering is well documented in 

the textbook by Duncan, Wright and Brandon (2014) and elsewhere.  The procedures for 

slope stability analysis started out as hand or graphical methods but, while these are still 

sometimes used, with the introduction of limit equilibrium methods of analysis most 

calculations became computerized. Many engineers seem to believe that these 

computer programs automatically give the correct answer, but, in addition to the 

“garbage in – garbage out” rule still holding, these analyses are simplified and thus 

approximate at best and there are also specific features of the common methods of 

analysis that may limit their usefulness in various ways. 

 

These limitations include unrealistic solutions where the line of thrust goes outside the 

assumed potential sliding mass, the possibility of developing unreal interslice tensile 

forces, the failure to compute local factors of safety which might indicate progressive 

failure, the failure to include seepage forces and the failure to consider 3D effects. While 

there is some published literature on the difference between 2D and 3D slope stability 

analyses, the truth is that, lacking suitable tools for routinely conducting 3D analyses, no-

one really has known in the past how great the difference between 2D and 3D analyses 

might be.  The same is true of the inclusion of seepage forces. As it turns out, their 

inclusion does not make much of a difference in many problems, but you don’t know 

unless you check. 

 

The ways that applied loads, including tie-back forces, and internal reinforcement are 

modelled, and the effect of that on stability calculations, is also unclear in the 

documentation for many computer programs. 

 

This paper seeks to clarify these issues making use of a new, inherently 3D computer 

program called TSLOPE (TAGAsoft, 2016) to make comparisons of the results obtained 

using two representative methods of analysis.  The paper is confined to the use of the 

method of slices (or columns in 3D). The vast majority of all evaluations of slope stability 
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to date have been carried out using one variation or another of the method of slices and 

this is likely to continue.  The limitations of attempting what might be considered more 

complete analyses using finite element or finite difference techniques are discussed at 

the end of the paper. 

 

Implications of the definition of the factor of safety 

 

There are two ways that the factor of safety has been defined in the analysis of slope 

stability using the method of slices or columns. 

 

The first is the simple definition that the factor of safety is the sum of the resisting forces 

around the failure plane divided by the sum of the driving forces.  This was used in early 

analyses using the method of slices and many geotechnical engineers appear to still 

believe that this is the way the factor of safety is calculated. 

 

However, most modern computer programs define the factor of safety differently.  It is 

that factor by which the specified shear strength has to be reduced in order that the 

sums of the driving and resisting forces are equal.  A common argument in support of 

this definition is that the shear strengths around the failure plane are the greatest source 

of uncertainty in the analysis, so that it makes sense to factor the shear strengths.  That 

is in fact questionable.  In practice, most geotechnical engineers adopt conservative 

values for the shear strengths or shear strength parameters, so that the uncertainty in 

these values is already taken into account.  A better, related argument is that the 

methods that define the factor of safety this way force the factor of safety to be the 

same at the base of each slice and obscure the fact that some parts of the potential slip 

surface may be overstressed, even if the overall factor of safety is above 1.0.  That is a 

good argument for normally requiring an overall factor of safety of 1.5 in practice.  If the 

factor of safety is 1.5 or greater, then the local factors of safety are less likely to fall 

below 1.0 and the risk of progressive failure should be diminished. 

 

Using the second definition of the factor of safety, the sums of the driving and resisting 

forces are made equal, therefore the methods of analysis that use it are called “limit 

equilibrium analyses”.  Some methods of analysis, such as Bishop’s Simplified Method, 

are limit equilibrium analyses but they do not “fully satisfy equilibrium”, meaning that 

force and moment equilibrium is not satisfied for each slice or column and thus for the 

potential sliding mass as a whole.  Methods which do “fully satisfy equilibrium” such as 

those of Morgenstern and Price (1965) or Spencer (1967) are now generally preferred by 

both academics and practitioners. 

 

The principal direct implication of how the factor of safety is defined is that with the 

simple definition one can calculate “local factors of safety” for each slice or column 

whereas in limit equilibrium analyses, the factor of safety at the base of each slice or 
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column is by definition the same.  Equations of equilibrium are set up and then solved 

for two unknowns – the factor of safety and a second unknown which usually has to do 

with the assumptions made regarding side forces acting on the slices of columns.  In 

Spencer’s Method this unknown is the angle of inclination of the side forces, which is 

assumed to be constant for all slices or columns. In the Morgenstern and Price method is 

it a scale factor for the side forces whose varying angles of inclination are assumed and 

specified by the user.   

 

With the second definition of the factor of safety there is only one factor of safety and it 

applies to each slice or column as well as the overall potential sliding mass.   

Not only does this obscure the fact that some segments of the potential slip surface are 

likely closer to failure than others, but it also forces an artificial distribution of the 

normal and shear forces around the potential slip surface which will impact the shear 

strengths calculated for non-cohesive materials, that is, materials for which the strength 

is at least in part specified to be a function of the normal stress on the potential slip 

surface.  

 

It is important to note that it is wrong to say that the factor of safety computed using 

one of these methods of defining the factor of safety is more or less conservative than 

the factor of safety obtained using the other.  The numbers may be greater or smaller, 

but basically they are on different scales.  Some examples of the differences that may be 

obtained are given below. 

 

 

Limitations of limit equilibrium methods of analysis 

 

Given the previous discussion, one might then ask “why do people generally prefer 

methods that fully satisfy equilibrium?”  The basic answer to this question seems to be 

that engineers are taught in undergraduate classes that any analysis of the stresses in a 

rigid body should “fully satisfy equilibrium”, and it certainly looks more elegant or 

sophisticated to do this.  But is it correct for a potential sliding mass that is deformable 

and can’t take tension? 

 

The second definition of the factor of safety and the quest to fully satisfy equilibrium 

implies that the potential sliding mass acts as a rigid body.  Leaving aside for the moment 

whether this is reasonable or not for real slopes, this forces the factor of safety to be the 

same for all slices, thus forcing an artificial distribution of the normal and shear stresses 

around the potential slip surface, and has other implications as well. These implications 

have to do with the development of tensile interslice forces and the calculated line of 

thrust, and also whether or not the solution converges and, further, whether or not it 

converges to the correct solution. 
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Solutions that “fully satisfy equilibrium” will tend to develop negative interslice forces 

wherever there is a hump in the potential slip surface and at the upper end of a shallow 

potential slip surface.  The computed factors of safety in these cases may be quite 

unconservative because the assumed rigid body gets hung up. Thus the user needs to 

insert tension cracks as necessary to eliminate any tensile interslice forces, since soil and 

rock masses generally have no tensile capacity.  The user then has to decide whether a 

model with perhaps artificially deep tension cracks is real or not. 

 

More attention in the literature has been applied to the line of thrust, that is the locus of 

the points of application of the interslice forces, and this has generally been the principal 

recommended test for whether a solution is reasonable or not.  Ideally the line of thrust 

should be located at something like the third point of the slices or columns but it should 

never travel outside the boundaries of the potential sliding mass, as it commonly does in 

problems with tensile interslice forces and sometimes does in pseudo-static seismic 

analyses.  

 

Figure 1 illustrates both of these conditions for a simple dam embankment analysed 

using Spencer’s Method.  In Figure 1(a) the development of tensile interslice forces, 

indicated by slices coloured red, causes the line of thrust, shown as a red line, to swing 

outside the potential sliding mass.  In Figure 1(b) the, tensile interslice forces have been 

eliminated by inserting a tension crack that is partially filled with water in the dam crest. 

 

 
 

Figure 1(a) – No Tension Crack 

 

 
 

Figure 1(b) – With Tension Crack 
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Figure 1(c) – With Seismic Coefficient of 0.15g 

 

 
 

Figure 1(d) – With Seismic Coefficient of 0.6g 

 

In Figure 1(c), the application of a modest horizontal seismic coefficient of 0.15g has 

moved the line of thrust up in the potential sliding mass, but the result is still acceptable.  

In Figure 1(d), the application of an unrealistically high seismic coefficient of 0.6g has 

resulted in renewed tension at the top of the potential sliding mass.  The line of thrust 

remains within the potential sliding mass in Figure 1d but in certain conditions 

application of a seismic coefficient can cause the line of thrust to pop out of the face of 

the slope. 

 

This question of the reasonableness of the results of slope stability analyses obtained 

using the various forms of the method of slices has been repeatedly addressed in the 

literature but, sadly, it is often ignored in practice.  Morgenstern and Price (1965), in 

their very elegant paper which introduced the concept of a user-specified distribution of 

the angle of inclination, emphasized that there were multiple possible solutions and that 

the user should vary the assumed distribution of the angle of inclination so that a 

reasonable line of thrust was achieved, if possible. Whitman and Bailey (1967), who 

correctly took Morgenstern and Price to be the gold standard for analyses that fully 

satisfy equilibrium, said “the use of the Morgenstern-Price approach together with a 

computer does not free the engineer from making a judgment concerning the 

reasonableness of a solution.”  Chin and Fredland (1983) noted some difficulties with 
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methods that fully satisfy equilibrium, including the fact that they sometimes have 

trouble converging to a solution, and suggest some possible workarounds. Krahn (2003) 

discussed the limits of limit equilibrium analyses including convergence issues and 

difficulties with applying external forces.  He suggested that the latter can best be 

addressed using a hybrid finite element - limit equilibrium analysis but that seems 

unwieldy for routine use. Wright (2013), in a “must watch” lecture, included several case 

histories that illustrate various problems with methods that fully satisfy equilibrium.  

Wright emphasized that there is no absolutely correct solution, and suggested that the 

engineer should always use at least two computer programs for any critical problem, in 

part because computer programs may include hidden assumptions and also may not 

show the intermediate results that are necessary to judge the reasonableness of the 

final result. 

 

A further limitation of methods that fully satisfy equilibrium is that, to the surprise of 

many users, they do not include seepage forces under non-hydrostatic conditions.  This 

can easily be checked by running an analysis of a cohesive slope with varying phreatic 

surfaces, as illustrated subsequently.  However steep the phreatic surface it will make no 

difference to the computed factor of safety.  The reason that a cohesive slope, or a slope 

in which all the strengths are specified as fixed quantities, as with undrained shear 

strengths, must be used is that the strength of frictional material will vary with the 

normal effective stress so that changing the phreatic surface will make a difference, but 

it does not make a difference to the limit equilibrium problem. 

 

This problem related to seepage forces was noted by King (1989) and is most simply 

explained by saying that if the seepage forces are pictured as boundary water pressures, 

the corresponding forces will be applied at the centre of the base of each slice and they 

make no difference to the standard equations of equilibrium.  They make no difference 

to the moment because the moment arm is zero and they are not included in the 

solution for force equilibrium parallel to the base of the slice. They make no difference 

to force equilibrium normal to the base of the slice because the force due to the weight 

of the slice is fixed and increasing the pore pressure simply reduces the effective stress, 

which may change the calculated shear strength, but doesn’t impact the solution of the 

equations of equilibrium.  As already noted, the shear strength will change if a frictional 

material is specified but it has no effect if the shear strength is specified as a fixed 

number.  The writer and his then colleagues learnt this the hard way some years ago 

when trying to include excess pore pressures generated by earthquake loading in a 

second stage analysis.  Once the programming was completed we found that it made no 

difference to the calculated factor of safety! King suggested a solution which involved 

calculating the distributed seepage forces and applying them at the appropriate height in 

each slice, but this is a little unwieldy and requires a companion seepage analysis, so that 

his proposed solution has never caught on. 
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The Ordinary Method of Columns as an Alternative 

 

Because of all these difficulties it is worth re-examining the Ordinary Method of Slices 

(OMS) in which interslice forces are neglected – which is similar to assuming a 

frictionless contact between adjacent slices.  The OMS does not require an iterative 

solution so that convergence and multiple solutions are no longer issues.  The OMS, as 

described for instance by Duncan, Wright and Brandon (2014), and also sometimes 

referred to as the Fellenius or Swedish Circle Method, uses moment equilibrium about 

the centre of a circular slip surface and the factor of safety is defined as the sum of the 

resisting moments divided by the sum of the driving moments.  A similar method can be 

extended to non-circular slip surfaces if the factor of safety is defined as the sum of the 

resisting forces around the failure plane divided by the sum of the driving forces. These 

driving and resisting forces are computed as stresses that are normal and parallel to the 

base of each slice.  The sums of these forces make no sense if they are added 

arithmetically but if they are added as vector sums, they do. In the early days of slope 

stability analyses such vector additions were done graphically but now they can be done 

by computer using modern programming languages. 

 

In addition to having the virtue of simplicity, the OMS also effectively accounts for the 

deformable nature of soil and rock masses and allowing the slices to slide up and down 

relative to each other, while not physically correct, is more consistent with reality than 

assuming that the entire potential sliding mass is a rigid body.  The assumption of a rigid 

body is really only realistic when the slip surface is either circular or a logarithmic spiral, 

but even then the potential sliding mass is likely deformable.  For non-circular slip 

surfaces, which are not kinematically admissible, the assumption of a rigid body is 

unrealistic and may often lead to overly conservative results.  Even wedges of rock mass, 

for which special analysis techniques have been developed in rock mechanics, and for 

which failures are kinematically admissible, are rarely if ever single unjointed and 

unfractured blocks of rock.  

 

The OMS has been criticized and largely fallen out of favour in recent times because of 

an example contained in the otherwise excellent paper by Whitman and Bailey (1967).  

This example consists of the analysis of the submerged upstream slope of an inclined 

core dam and is reproduced below.  Whitman and Bailey, and Duncan, Wright and 

Brandon (2014), and others before them, correctly pointed out a problem, that actually 

applies to all analyses by the Method of Slices, but can be seen more clearly in the OMS.  

If the normal effective stress on the failure plane is computed by taking the component 

of total weight of the slice and any water above it that is normal to the potential slip 
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surface and then subtracting the pore pressure that acts on the base of the slice, when 

either or both of the angle of inclination of the base of the slice and the pore pressure 

are large, the calculated normal effective stress can be less than zero.  The problem is 

illustrated and discussed in more detail by Pyke (2016).  However, Whitman and Bailey 

and Duncan, Wright and Brandon, and, again,  others before them, also suggested a 

solution to this problem which is to use the buoyant unit weight of the slice in calculating 

the weight of the slice and the component normal to the base of the slice.  Pyke (2016) 

explains that not only does this solve the problem but that it is the “more correct” 

solution, and that under non-hydrostatic conditions the buoyant unit weights need to be 

adjusted for any seepage forces in the vertical direction.  This can most easily be done in 

practice by going back to using the total unit weights but applying the water pressures in 

the vertical direction that act on the base and the top of the slice.  

 

The computer program TSLOPE offers only two methods of solution, the Ordinary 

Method of Columns (OMC), which collapses to the OMS in 2D, and a unique 3D solution 

for Spencer’s Method that is described by Wood (2016). The solution for Spencer’s 

method uses an optimization technique that almost always converges and the final 

imbalance in the moments and forces can be seen by the user.  The user can also view a 

surface that shows the variation in the factor of safety so that it can be confirmed that 

the minimum value has been found.  A not uncommon problem with other solutions of 

Spencer’s Method is that they might converge to a false minimum.  Spencer’s Method 

assumes that the angle of inclination of all the interslice forces is the same.  This is 

obviously not correct, but Spencer’s Method converges more reliably than the 

Morgenstern and Price Method, and even with the theoretically nicer Morgenstern and 

Price method, the user has to check that a valid line of thrust and a solution without 

tension is obtained, in addition to struggling with what distribution of interslice forces to 

use in the first place. Because the OMC provides a direct calculation of the factor of 

safety and has no convergence issues, even if Spencer’s method is specified, the 

program initially calculates the factor of safety using the OMC and then uses this value 

and the direction of sliding as the starting point for the calculation by Spencer’s Method. 

 

The OMC, as implemented in TSLOPE, is generally similar to the method for 3D analysis 

of slopes described by Hovland (1977) in which inter-column forces are neglected and 

driving and resisting forces are computed parallel to the bases of the slices or columns.  

The factor of safety in TSLOPE is defined as the vector sum of the resisting forces divided 

by the vector sum of the driving forces. The normal effective stresses on the potential 

failure plane are calculated as discussed above by using total unit weights, but applying 

the vertical water pressures on the bases, and where appropriate, the tops of each slice 

or column, before calculating the component that is normal to the base. 

 

The results obtained using TSLOPE for five variations of Whitman and Bailey’s Example 4, 

shown in their Figure 11, are shown in Figure 2 and Table 1.  The factors of safety by 
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Spencer’s Method are shown on the figure and the factors of safety by the OMC and 

Spencer’s Method are listed in Table 1.  Figure 2 has five parts.  Part (a) shows the 

original Whitman and Bailey problem with the pond level close to, but not quite at, the 

top of the core.  Part (b) has the pond level brought down to the top of the potential 

sliding mass.  In parts (a) and (b) the water pressure on the upstream face is not included 

in the analysis because the upstream shell is assumed to be quite pervious.  It can be 

seen from the figures that lowering the pond level makes no difference to the factor of 

safety computed by Spencer’s Method of 2.09, and in Table 1 it can be seen that the 

corresponding factors of safety by the OMC are only 8 percent lower at 1.93.  In TSLOPE 

tensile interslice forces are indicated by shading the affected slices but it can be seen in 

Figures 3(a) and (b) that in this case valid solutions are obtained by Spencer’s Method 

because there is an acceptable line of thrust and no tensile interslice forces. 

 

Whitman and Bailey obtained factors of safety ranging from 2.01 to 2.03 using the 

Morgenstern and Price method, which they considered to be the “most correct” 

solution.  These values are consistent with the answers from TSLOPE given that the 

details of the geometry that we have read from their figure may not be precisely correct. 

It might also be noted that these results may not be for the critical slip circle as we are 

just using the circle adopted by Whitman and Bailey.  For that circle, Whitman and Bailey 

obtained a factor of safety of 1.84 by the Fellenius Method, which is generally 

considered to be the same as the OMS, when using buoyant unit weights. This answer is 

not dissimilar to the answer given by TSLOPE and differs from their “most correct” 

solution by only 9 percent. 

 

If Whitman and Bailey had emphasized the point that this is the “more correct” way of 

conducting a Fellenius or OMS analysis, the OMS would have been cast in an entirely 

different light.  However, instead of doing that, they placed great emphasis on the factor 

of safety of 1.14 that they obtained using the Fellenius Method with total unit weights, 

which was only 57 percent of their “most correct” solution.  The details of their 

programming are unknown and we have not been able to reproduce that number, but 

that is not critical.  The critical point is that if Fellenius or the OMS is used with the 

“more correct” way of handing unit weights and pore pressures, it gives factors of safety 

that are not inconsistent with limit equilibrium methods, and that differ largely because 

of the different way that the factor of safety is defined in limit equilibrium analyses and 

the difference in the distribution of effective stresses around the slip surface which that 

definition imposes. 

 

Whitman and Bailey did not discuss possible application of the pond pressure on the 

upstream face, and it appears that they did not do this.  Nor is the pond pressure 

included in the analyses using TSLOPE that are shown in Figures 3(a) and (b), in effect 

assuming that the upstream shell is quite pervious. If the upstream face is treated  
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Figure 2(a) – Original Whitman and Bailey Example 4 

 

 

 

 
 

Figure 2(b) - Whitman and Bailey Example 4 with Lowered Pond 

 

 

 

Case OMC Factor of Safety Spencer Factor of Safety 

(a) Original problem 1.93 2.09 

(b) With lowered pond 1.93 2.09 

(c) Original with pond pressures   

(d) Lowered with pond pressures   

(e) Without pond 1.75 1.90 

 

Table 1 – Factors of Safety for Whitman and Bailey Example 4 
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as a more impervious surface, and the water pressure from the pond is applied to that 

face but the phreatic surface is still continued horizontally until it hits the core, the  

factors of safety obtained using TSLOPE are shown in parts (c) and (d) of Figure 2.  It may 

be seen from the figures and From Table 1 that …..   

 

Part (e) of Figure 2 shows the case where the pond is empty and the embankment is 

considered drained.  For this case the driving forces due to gravity increase but the shear 

strengths of the upstream shell also increase, and the result is that the calculated factors 

of safety go down, but not by much. This case assumes that the reservoir has been 

drained slowly and that there is no “rapid drawn-down” effect.  That condition is 

discussed subsequently. 

 

If the upstream face were totally impervious, as would be the case for instance with a 

concrete or asphalt-faced dam, the phreatic surface would disappear within the dam and 

different results again would be obtained, as shown in part (f) of Figure 2.  …….. 

 

 

 

The impact of seepage forces 

 

Failures are often said to be due to water, or rather the failure to recognize the correct 

water conditions, but …. 

 

 

 

The difference between 2D and 3D analyses 

 

The short answer to the question “what is the difference between 2D and 3D analyses of 

slope stability by the Method of Slices” is that it can be significant and varies in surprising 

ways.  The examples below illustrate some of the differences, but these are just the tip 

of the iceberg.  Results are given for analyses using both the OMC and Spencer’s Method 

so that these examples also illustrate the differences between results obtained by these 

two methods.  The conventional wisdom is that use of the Method of Slices using both 

the standard methods of defining the factor of safety, the simple method in the OMC 

and the factor on shear strength in limit equilibrium methods, will give the same result 

when the factor of safety is one, but will diverge when the factor of safety is greater than 

one. That may be true when the shear strengths are fixed numbers, but it is not true 

when the shear strength is a function of the normal effective stresses on the bases of the 

slices or columns because the normal effective stresses and hence the shear strengths 

may vary between the two methods.  This is illustrated in the first example below. 
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1. Hungr et al. Example No. 1 

 

This example, from the paper by Hungr, Salgado and Byrne (1989), has a spherical slip 

surface that cuts into a planar slope.  The original problem had a homogeneous 

frictionless soil with a value of cohesion that was reported to give a factor of safety of 

1.402 according to a “closed-form” solution.  The problem and the solution obtained 

using the OMC is shown in Figure 3(a). 

 

 
 

Figure 3(a) – Hungr et al. Problem - OMC Solution 

 

The factor of safety of 1.35 is slightly less than the theoretical factor of safety of 1.40 

because constant width columns that fit entirely within the spherical slip surface were 

used, leaving small patches of the spherical surface to which the cohesion was not 

applied.  A factor of safety of 1.30 was obtained using Spencer’s Method.  

 

In 2D both the OMC and Spencer give the same answer, as shown below in Figures 3(b) 

and (c), even though the computed stresses around the slip surface are different and the 

Spencer solution shows significant tension.  This occurs because the strength is specified 

only as a cohesion and the factor of safety is close to one.  But note the difference 

between the 2D and 3D answers.  The 3D solution gives a factor of safety that is some 25 

percent higher than the 2D solution.  This should not come as a surprise because it is 

entirely consistent with the well-known technical note by Baligh and Azzouz (1975) on 

end effects, but it probably does come as a surprise to many engineers who would 

assume that a 2D analysis through a slope with a constant cross section will provide the 

correct answer.  It turns out that it does not in all cases.  In particular, significant errors 

can arise when trying to compute soil properties by using back analyses 
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Figure 3(b) – 2D Solution by OMC 

 

 
 

Figure 3(c) – 2D Solution by Spencer’s Method 

 

 

of failures because a 2D solution may give back-calculated properties that are too high or 

too low.  Back-calculated properties can be even more in error if the failure has an 

aspect ratio of less the one, as is more typically the case, rather than being spherical. 

Figure 3(d) shows a top view of a family of three ellipsoids with the middle one being the 



Page 14 of 28 
 

 

 

same as the sphere in Figure 3(a) and the inner and outer ellipsoids having aspect ratios 

of 0.5 and 2.0 respectively. 

 

 
Figure 3(d) – Family of Ellipsoids 

 

 

Aspect Ratio OMC Factor of Safety Spencer Factor of Safety 

0.5 1.63 1.54 

1.0 1.35 1.30 

2.0 1.20 1.17 

2D 1.08 1.08 

 

Table 2 – Factors of Safety for Hungr et al. Example 1 

 

The computed factors of safety for these three ellipsoids along with the 2D case are 

shown in Table 2.  It may be seen that for an aspect ratio of 0.5, the 3D factor of safety is 

now 50 percent greater than the 2D solution.  As the aspect ratio increases, the “end 

effects” diminish and the factor of safety for an ellipsoid approaches the 2D factor of 

safety.  Many, or even most, natural landslides have aspect ratios of less than one being 

controlled by local weaknesses in structure, material properties or water conditions and 

accurate reconstruction or prediction of failures requires a 3D analysis. 

 

Going back to examine the 2D solutions in more detail, it can be seen that the interslice 

forces in the Spencer’s Method solution are in tension in the upper half of the potential 

sliding mass.  While not shown in these figures, in the OMC solution the local factors of 

safety are correspondingly less than one in the upper half of the potential sliding mass. 

The line of thrust in the solution by Spencer’s method of course is not tenable, but that is 
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of no great consequence in this limited instance.  However, if the material is assumed to 

be cohesionless and to have shear strengths that vary with the normal effective stress on 

the slip surface, the load redistribution that takes place in Spencer’s Method in order to 

force the factor of safety to be the same on the base of each slice, leads to a reasonable 

line of thrust but also a calculated factor of safety that diverges from that obtained by 

the OMC, as shown in Figures 3(e) and (f). The black arrows in these figures indicate the 

effective normal stresses on the base of each slice. 

 

 
 

Figure 3(e) – 2D Solution by OMC, c=0, φ=20 degrees 

 

 

 
 

Figure 3(f) – 2D Solution by Spencer’s Method, c=0, φ=20 degrees 
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It is not really possible to say which of the solutions shown in Figures 3(e) and (f) is the 

“more correct”.  If the potential sliding mass is more like a rigid body the Spencer’s 

solution, which is kinematically admissible in this case, may be “more correct” and if the 

potential sliding mass is deformable, if for instance it is composed of sand particles, the 

OMC solution may well be “more correct”. 

 

The differences between both 2D and 3D analyses with an aspect ratio of one and the 

two solution methods are further illustrated in Tables 3 and 4.  Table 3 shows the 

calculated factors of safety for three values of cohesion and Table 4 shows the calculated 

factors of safety for three values of the angle of friction. 

 

 

Cohesion 2D 

OMC 

2D 

Spencer 

3D 

OMC 

3D 

Spencer 

0.1 1.08 1.08 1.35 1.30 

0.2 2.17 2.17 2.69 2.59 

0.3 3.25 3.25 4.04 3.89 

 

Table 3 – Factors of Safety for All Cohesion 

 

 

Angle of 

Friction 

2D 

OMC 

2D 

Spencer 

3D 

OMC 

3D 

Spencer 

10 0.73 0.90 0.67 0.93 

20 0.99 1.22 0.90 1.26 

30 1,58 1.94 1.42 2.00 

 

Table 4 – Factors of Safety for All Friction 

 

Several interesting things can be seen in these two tables. In Table 3 it can be seen that 

when the shear strengths are specified as fixed numbers, the OMC and Spencer’s 

method give essentially the same answer.  And, for this geometry, when the shear 

strengths are specified as fixed numbers, the 3D factor of safety is about 25 percent 

greater than the 2D factor of safety.  In Table 4 it can be seen that when the shear 

strengths are a function of the effective stresses on the bases of the slices or columns, 

the OMC gives a factor of safety that is about 25 percent less than Spencer’s method in 

2D analyses and 40 percent less in 3D analyses. 3D analyses give factors of safety by 

Spencer’s Method that are essentially the same as those from 2D analyses and the 3D 

factors of safety by the OMC are about 10 percent less than those computed in 2D 

analyses.  The reason for this last result is simply that the slices in the 2D section down 
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the centre of the spherical slip surface have higher effective stresses at the base than do 

the columns in the 3D analysis which shorten as they move out to the perimeter of the 

potential sliding mass. 

 

So, at least an interim conclusion that can be drawn from this example is that simple 

rules on the effects of different methods of analysis and 3D effects are likely to be 

misleading and the analyst both has to keep his or her wits about them and test 

alternate solutions to their particular problem.  If you don’t do that, you will never know 

what the possible errors might be. 

 

This example was confined to simple circular, spherical or ellipsoidal slip surfaces.  The 

next two examples illustrate the possible effects of natural and man-made 3D 

topography.  

 

 

2. Kettleman Hills Landfill Failure 

 

An early example of the analysis of 3D effects on real world problems was provided by 

the failure of the liner system at the Kettleman Hills hazardous waste landfill, reported 

by Mitchell et al. (1990) and Seed et al. (1990) and summarized and updated by Duncan, 

Wright and Brandon (2014, pp. 32 and 282). 

 

 
Figure 4(a) – 3D View of Kettleman Hills Landfill 

 

As may be seen in Figure 4(a), the initial landfill was placed against liners on one side and 

one end of what was to be a completely lined basin.  Because the liner had not been 

completed on the left hand side of the basin as seen in Figure 4(a), the landfill had a 

partially free face on that side, as well as on the front.   When the landfill had reached a 
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maximum height of 90 feet, a slope failure occurred with horizontal and vertical 

movement of up to 14 and 35 feet.  Subsequent investigations suggested that the basic 

failure occurred along a wetted HDPE liner compacted clay layer interface which resulted 

from the clay layer having been placed wet of optimum moisture content and then 

subsequent consolidation with drainage restricted by the HDPE liner.  The extent of this 

wetted interface condition was not clear, thus Seed et al. (1990) conducted stability 

analyses for both partial and full wetting of the base.  For a number of 2D cross sections, 

Seed et al. (1990) obtained factors of safety of 1.2 to 1.25 for the partial base wetting 

case and 1.10 to 1.15 for the full base wetting case.  For the diagonal 2D cross-section 

that is shown in Figures 4(a) and (b), drawn in the direction of movement indicated by a 

3D analysis, TSLOPE gives 2D factors of safety of 1.21 and 1.22 for the OMC and 

Spencer’s Method respectively, assuming full base wetting. 

 

 
Figure 4(b) – Analysis of 2D Section by Spencer’s Method  

 

 

 

Case OMC Factor of Safety Spencer Factor of Safety 

2D Section 1.21 1.22 

3D Problem 1.00 1.05 

 

Table 5 – Calculated Factors of Safety 

 

Seed et al. then explored 3D effects by conducting what they described as a “force-

equilibrium analysis” using five blocks and obtained 3D factors of safety of 1.08 and 1.01 

for the partial and full base wetting cases.  Assuming full base wetting TSLOPE gives 

factor of safety of 1.00 and 1.05 by the OMC and Spencer’s method respectively.  Thus, 

making normal judgments about the appropriate 2D section to analyse, the 3D factor of 

safety appears to be 10-20 percent below the 2D factor of safety.  
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Figure 4(c) – Analysis of 3D Problem Showing LFoS from OMC and FoS by Spencer  

 

The reason for the lower 3D factor of safety can be explained in either of several ways. 

One way is to say that because of the longer back slope relative to the base area, there is 

more “push” from the slope relative to the resistance provided by the base. Alternately, 

one can view this as a problem where the “end effects” are less than they would be in a 

long slope with a constant 2D cross section. 

 

The 10 to 20 percent difference may or may not be a big deal from the design point of 

view because the failure to recognize the lower wetted interface strengths was a larger 

problem, but, again, it is significant in back calculating properties from the failure and 

understanding the failure mechanism. 

 

Duncan et al. (2014) summarized subsequent studies which tended to play down the 

significance of the 3D effects pointing to other uncertainties and noting that it was 

possible to find 2D cross sections that showed factors of safety of less than one, 

suggesting that there might have been progressive failure. However, these cross sections 

had at least some “end effects” and could not fail on their own. And, at least some of the 

guess work can be eliminated by conducting a 3D analysis in the first place.  If this is 

done using the OMC, a single analysis can also calculate the local factors of safety, as 

shown in Figure 4(c) indicating locations where progressive failure might start, and 

repeat analyses can be conducted as desired to follow progressive failure. 

 

But the cases where 3D effects lead to lower factors of safety are not as dramatic and 

are probably limited in number compared to the cases where 3D effects increase the 

factor of safety. 
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3. Puente Hills Canyon 9 Design 

 

A graphic example of the positive effects of 3D geometry is provided by the Puente Hills 

Canyon 9 landfill of the Sanitation Districts of Los Angeles County, which happens to 

have triggered the development of the 3D approach used in the current version of 

TSLOPE.  Canyon 9 represented an expansion of an existing landfill so that one side of 

the expanded facility consisted of existing compacted municipal solid waste (MSW) that 

sat on natural ground without a liner.  However, new regulations required that both the 

floor and the slopes of the expansion be placed on a single HDPE liner. Over the floor the 

HDPE liner was placed on top of a compacted clay layer that had a lower strength than 

the interface of a roughened HDPE liner and the MSW, so that sliding along the floor was 

controlled by the undrained strength of the clay layer (c = 250 psf; φ = 13.5 degrees).  

However, on the slopes, a smooth HDPE liner was placed directly on the slopes 

excavated in the in situ soft rock and the weakest interface was judged to be the contact 

between the liner and the MSW (c = 0; φ = 10 degrees) because the liner was anchored 

into the in situ material on a number of benches.  Thus, there were three zones of the 

base of the landfill that had different strengths for the purpose of analysis, although 2D 

analyses of sections that passed through the mouth of the canyon, such as shown in 

Figures 5(a) and (b), suggested that the critical 2D section involved sliding only on the 

floor and the slopes and did not involve the existing MSW (assumed at the time to have 

a shear strength of c = 0; φ = 30 degrees). 

 

However, when construction was well advanced, a leading geotechnical consultant who 

was brought in to perform the analyses of slope stability that were required by 

regulators, found, not surprisingly, that the conventional 2D factor of safety of a section 

passing through the mouth of the canyon was only in the order of one – less than the 

required minimum – and, surprisingly, found that an early, commercially available 3D 

slope stability program gave similar results.   

 

 
 

Figure 5(a) – 2D Cross Section through Mouth of Canyon 
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Figure 5(b) – 3D View of Base of Canyon 

 

The owner, justifiably, threw a bullshit flag at this point because it was evident that in a 

“bottleneck” canyon like this, as shown in Figure 5(b), the 3D effects had to be significant 

with the mouth of a canyon acting like the abutments of a good arch dam site.  The 

upshot of this was that another geotechnical consultant brought in the writer to develop 

and use a program that more properly modelled the 3D geometry and its effects.  The 

original program, variously called TSLOPE3 or T3, used a horizontal force equilibrium 

solution which Los Angeles County had for some years required geotechnical consultants 

to perform by hand.  

 

 
 

Figure 5(c) – 3D View Showing Zones with Different Properties 
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The properties cited above were assigned over the basal surface as shown in Figure 5(c), 

where the red zone is the floor of the canyon, the green zone is slopes lined with HDPE, 

and the blue zone is the adjacent MSW.  Using the original program, a factor of safety of 

1.92 was obtained, more than satisfying the regulatory requirement of a factor of safety 

of 1.5.  The revised program gives a factor of safety or 1.70 using the OMC and, by 

chance, gives a factor of safety of 1.93 using Spencer’s Method.  

 

 

 
 

Figure 5(d) – Local Factors of Safety in 3D Analysis 

 

The fact that the Los Angeles County horizontal force equilibrium method and Spencer’s 

method give almost identically the same factor of safety for this problem is believed to 

be a fluke, rather than a an indication of a fundamental truth. The local factors of safety 

computed using the OMC are shown in Figure 5(d).  In this figure the blue colours 

indicate a negative factor of safety or, in other words, a reverse slope.  Basically the 

abutments and the floor of the canyon are holding the MSW up while it tries to slide 

down the back slope.  The 2D factors of safety for the section shown in Figure 5(a) are 

x.xx by the OMC and x.xx by Spencer’s Method, so that the 3D analyses show increases 

of xx percent and xx percent over the 2D analyses. 

 

The fact that there is a significant 3D effect for this problem, or for a dam in a narrow 

canyon, should come as no surprise, but, again, what turns out to be surprising is that 

there can also be significant 3D effects in real life problems where it would normally be 

thought that a 2D analysis of a slope with a constant cross section suffices.  But this can 

happen where a 2D potential failure surface dives under a wall or a revetment whereas 

in reality the failure has to cut through the wall or revetment, as shown in the following 

example. 
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4. Treasure Island 

 

Treasure Island, a man-made island in San Francisco Bay, was originally intended to serve 

as an airport, but, after the completion of the 1939 World’s Fair, the island was taken 

over by the US Navy. It is presently being redeveloped for civilian use.  The sand fill that 

was place to form the island will be densified to mitigate possible liquefaction and the 

final grades will be raised up to 5 feet to allow gravity flow of stormwater for the 

foreseeable future.  Prefabricated vertical drains and surcharging will be used to limit 

future settlement of the underlying young Bay Mud. The cross section below and the soil 

properties are taken from publically-released bid documents. 

 

 
 

Figure 6(a) - Section D-D’ 

 

The shoal materials which underlie the sand fill are clayey sands that generally contain 

from 15 to 30 percent fines.  These materials are not liquefiable in any conventional 

sense and they were very resistant to densification by vibratory loading in trials that 

were performed at the site.  Thus, with the young Bay Mud consolidated not only under 

the weight of the existing fill but under additional surcharge loads and the rock 

revetment is composed of free-draining, competent rock, there is no obvious concern 

about shoreline stability at this site, even given its proximity to the San Andreas and 

Hayward faults.   

 

Nonetheless, in the bid documents there were brief descriptions of work done by the 

project’s geotechnical consultant using simplified methods of analysis which indicated a 

potential shoreline stability problem.  This raised the question of whether there is any 

screening analysis that is appropriate for this site.  The short answer is yes, there is.  As 

explained by Harry Seed in his Rankine lecture (Seed, 1979), for materials that do not 

undergo a loss of strength and stiffness as a result of cyclic loading, pseudo-static 

analyses are not too bad.  And pseudo-static analyses are also required to compute the 
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yield acceleration (the seismic coefficient that reduces the factor of safety to unity – the 

factor of safety for a specified seismic coefficient can then be derived from this) for use 

in the various simplified methods to compute deformations. 

 

TSLOPE was used to compute the static factors of safety and the yield acceleration for 

both 2D and 3D slip surfaces.  For Section D-D’, when a circular slip circle is transformed 

to a spherical or ellipsoidal slip surface, two things happen.  One is that the slip surface 

now has to cut through the rock revetment, rather than diving under it – this will 

increase the factor of safety.  The other is that relatively more of the slip surface will be 

in the young Bay Mud – this might either reduce or increase the factor of safety, 

depending on the strength of the Bay Mud relative to the other materials that are 

involved. 

 

For the “seismic” loading case undrained strengths were used for all materials below the 

water table, except for the rockfill in the revetment.  These strengths were also 

corrected for rate of loading effects in order to represent the short rise time of an 

earthquake pulse.  The critical circular slip surfaces obtained using Spencer’s Method 

and the “static” and “seismic” properties are shown in Figures 6(b) and (c).  These are 

both for “static” analyses without the application of a seismic coefficient.  The critical 

circular slip surface obtained in the “static” analysis with “seismic” properties was then 

used in subsequent searches for the yield acceleration. 

 

 

 
 

Figure 6(b) - Section D-D’ Static Analysis 
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Figure 6(c) - Section D-D’ Static Analysis with “Seismic” Properties 

 

 

The critical 2D failure surface was also used as the basis for constructing three 3D failure 

surfaces, as shown in Figure 6(d).  The centre 3D slip surface is a sphere, which has an 

aspect ratio of 1.0. In addition there are two further ellipsoids that have aspect ratios of 

0.5 and 2.0.  The larger the aspect ratio, the more the 3D solution approaches the 2 D 

solution.   

 

 
 

Figure 6(d) – 3D Potential Failure Surfaces 

 

The results are shown in Table 6. Again, the reason that the 3D factors of safety are 

higher than the 2D is that in 3D you have to cut through the revetment, rather than 

diving under it as happens in 2D.  Of the four cases, the one with the aspect ratio of 0.5, 

which gives the highest factor of safety, is probably the most like a typical landslide. 
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As expected for a slope that has been stable for many years and would have been at 

greatest risk at the end of construction, the static factors of safety are healthy enough 

and the yield accelerations are great enough relative to the design peak ground 

acceleration of 0.46g to suggest any deformations under earthquake loadings would be 

quite small. 

 

OMC    Spencer 

Static analyses 

2.23       2.51       2D  FoS 

2.59       2.95       3D FoS aspect ratio = 2.0 

2.44       2.97       3D FoS aspect ratio = 1.0 

2.57       3.52       3D FoS aspect ratio = 0.5 

 

Seismic analyses 

0.22g     0.26g      2D yield acceleration  

0.27g     0.31g      3D yield acceleration – aspect ratio = 2.0 

0.29g     0.33g      3D yield acceleration – aspect ratio = 1.0 

0.35g     0.39g      3D yield acceleration – aspect ratio = 0.5 

 

Table 6 – 2D and 3D Factors of Safety and Yield Accelerations 

 

This example strongly suggests that simplified analyses using conventional procedures 

and 2D slope stability analyses can be unnecessarily conservative, and in this particular 

case suggested that there is a problem where no problem actually exists.  

 

 

 

Sections still to be added: 

 

 

The application of external loads (including pond pressures) 

 

 

 

Modelling of internal reinforcement 
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As horizontal forces applied to bases of slices of columns.  Lesser of tensile strength and 

pullout strength.  Users can apply conservatism as they wish.  FoS still calculated as sum 

of resisting forces divided by sum of driving forces in OMC.  Problematic with LEA. 

 

 

Wedge analyses 

 

 

Why not finite element or finite difference or discrete element analyses? 

 

Need reliable slip and gapping elements and some way to locate them.  Normally too 

hard to assign the necessary properties, but might be worth it for rapid draw-down and 

other cases where there are transient seepage forces. 

 

 

Conclusions 

 

Methods of analysis. 

 

Seepage forces and 3D effects.   

 

Tiebacks and pond pressures. 

 

FE or FD or DE for special situations only. 
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