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Applications

The study of n~-persch EaEes for which the sccopted sthics of falr

play imply non=cooperative playing s, of course, an obvious directlon

in which to apply this theorys And poker is the most obvious targete

The sahalysis of a more realistic poker pgasme than our very simple model

should be quite an interesting alfalrs
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Scope and applicability of game theory

A Strategiomultiagentinteractions occur in all fields

I Economics and business: bidding in auctions, offers in
negotiations

I Political science/law: fair division of resources, e.g., divorce
settlements

I Biology/medicine: robust diabetes management (robustnes
against nadversarial o sel e

I Computer science: theory, Al, PL, systems; national securi
(e.g., deploying officers to protect ports), cybersecurity (e.c
determining optimal thresholds against phishing attacks),
Internet phenomena (e.g., ad auctions)

10



Game theory background

rock paper SCISSors
Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1
ScCISSsors -1.1 1-1 0,0

A Players

A Actions (aka pure strategies)

A Strategy profile: e.g.R,p)

A Utility function: e.g., y(R,p) =-1, u(R,p) = 1

11



Zero-sum game

rock paper SCISSOrs
Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1
ScCISSsors -1.1 1-1 0,0

A Sum of payoffs is zero at each strategy profile
e.g., YR,p + U(R,p) =0
A Models purely adversarial settings

12



Mixed strategies

A Probability distributions over pure strategies

A E.g., R with prob. 0.6, P with prob. 0.3, S with
prob. 0.1

13



Best response (aka nemesis)

A Any strategy that maximizes payoff against
opponent o0os strategy

A If P2 plays (0.6, 0.3, 0.1) fayp,s then a best
response for P1 is to play P with probability 1

14



Nash equilibrium

A Strategy profile where all players
simultaneously play a best response

A Standard solution concept in game theory

I Guaranteed to always exist In finite games [Nash
1950]
A In RockPaperScissors, the unique equilibrium
IS for both players to select each pure strategy
with probability 1/3

15



Minimax Theorem

A Minimax theorem: For every twplayer zeresum

game, there exists a value v* and a mixed strategy
profile U* such that:

a. P1 guarantees a payoff of at least v* in the worst case by
playing u*

b. P2 guarantees a payoff of at leagtin the worst case by
playing 0%,

A v* (= v,) is thevalueof the game

A All equilibrium strategies for playerguarantee at
least vin the worst case

A For RPS, v* =0
16



Exploitability

A Exploitability of a strategy is difference
between value of the game and performance
against a best response

I Every equilibrium has zero exploitability
A Always playing rock has exploitability 1
| Best response is to play paper with probability 1

17



Nashequilibria in two-player zero
sum games

A Zero exploitabilityi iunbeat abl eo

A Exchangeable
I If (a,p and €,d) are NE, thend,d and €,b) are too

A Can be computed in polynomial time by a linee
programming (LP) formulation

18



Nashequilibria in multiplayer and
non-zero-sum games

A None of the tweplayer zeresum results hold

A There can exist multiplequilibria, each with different
payoffs to the players

A If one player follows one equilibrium while other
nlayers follow a different equilibrium, overall profile Is
not guaranteed to be an equilibrium

A If one player plays an equilibrium, he could do worse
the opponents deviate from that equilibrium

A Computing an equilibrium is PPADBard

19



Imperfect information

A In many important games, there is information

that Is private to only some agents and not
available to other agents

I In auctions, each bidder may know his own
valuation and only know the distribution from whict
ot her agentso valwuati ol

I In poker, players may not know private cards held
by other players

20



Extensiveform representation




Extensiveform games

A Two-player zeresum EFGs can be solved in
polynomial time by linear programming
I Scales to games with up to®Hiates

A lterative algorithms (CFR and EGT) have been
developed for computing dsequilibrium that scale to
games with 19 states

I CFR also applies to multiplayer and general sum games,
though no significant guarantees in those classes

I (MC)CFR is selplay algorithm that samples actions down
tree and updates regrets and average strategies stored at
every information set

22



Standard paradigm for solving large
iImperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibriumfinding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
23



Texas empmoked 06

A Huge game of imperfect information

I Most studied imgnfo game in Al community since 2006
due to AAAI computer poker competition

I Most attention on-player variants (player zeresum)

I Multi-bi1 I I 1 on dol |l ar 1T ndustry
ALi mi t T eemafxed battingdksized

I ~10'" nodes in game tree

ANo Li mit @&nexrdimitechbetlsize 0
I ~10'%Snodes in game tree
I Most active domain in last several years
I Most popular variant for humans

24



No-l 1 mi t T eemnpoker h

A Two players have stack and pay blinds (ante)
A Each player dealt two private cards

A Round of bettingdreflop)
I Players can fold, call, bet (any amount up to stack)

A Three public cards dealt (flop) and a second round of
betting

A One more public card and round of betting (turn)
A Final card and round of betting (river)
A Showdown

25



Game abstraction

A Necessary for solving large games

i 2-playernel i mi t T emhasl@°hganhedtates,
whil e best sol ver s fostatesy 0O

A Information abstraction: grouping information sets
together

A Action abstraction: discretizing action space
i E.g., limit bids to be multiples of $10 or $100

26
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Potential-aware abstraction with EMD

Equity distribution for Equity distribution for
TcQd-7h9hQh on river 5c9d3d5d7d on river
(final round) (final round)
EHS: 0.683 EHS: 0.679
0.2 0.2
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= @
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0 e
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Equity interval
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Potential-aware abstraction with EMD

A Equity distributions on the turn. Each point is EHS for given
turn card assuming uniform random river and opponent hand

A EMD is 4.519 (vs. 0.559 using comparable units to river EMD)

0.4 0.4
i 0.35 " 0.35
é 0.3 é 0.3
2\0.25 30.25
= 0.2 = 0.2

2 2
8 0.15 8 0.15
b= 0.1 £ 0.1
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O ||||||||||||||||||||||||| l |||||| O

O A N ML © N~ 0 O
OO0 OO0 O0O oo o 0 0.10.20.30.40.50.60.70.80.91

Equity interval Equity intervaé 9



Algorithm for potential -aware imperfect
recall abstraction with EMD

A Bottomrup pass of the information tree (assume an abstraction 1
final rounds has already been computed using arbitrary approa

A For each round n
i Let m"% denote mean of clustem An*!

I For each pair of round n+1 clusters)( compute distancd;;
between it and nt*% using d*!

I For each poink", create histogram over clusters frorftA

I Compute abstraction"Aising EMD withd";; as ground
distance function

A Developed fast custom heuristic for approximating EMD in our
multidimensional setting

A Best commercialhavailable algorithm was far too slow to compute

abstractions in poker
10



Standard paradigm for solving large
extensiveform games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibriumfinding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
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Hierarchical abstraction to enable

distributed equilibrium computation

A On distributed architectures and supercomputers witl
high interblade memory access latency,
straightforward MCCFR parallelization approaches
lead to impractically slow runtimes

I When a core does an update at an information set it needs
read and write memory with high latency

I Different cores working on same information set may need
lock memory, walit for each other, possibly cwarte each
others' parallel work, and work on eaftsync inputs

A Our approach solves the former problem and also he
mitigate the latter issue

32



High-level approach

A To obtain these benefits, our algorithm creates an
Information abstraction that allows us to assign disjol
components of the game tree to different blades so tl
trajectory of each sample only accesses information
sets located on the same blade.

I First cluster public information at some early point in the
game (public flop cards in poker), then cluster private
Information separately for each public cluster.

A Run modified version of exterraampling MCCFR

I Samples one pair gireflophands per iteration. For the later
betting rounds, each blade samples public cards from its

public cluster and performs MCCFR within each cluster.
33



Standard paradigm for solving large
iImperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibriumfinding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
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Action translation

>
$
Afag() [ probability we marg
I Wil also denote as justi]
35

[Ganzfried &SandholmJCAI-13]



A natural approach

A If x < —, then map x to A; otherwise, map x to B

A Called thedeterministic arithmetic mapping

36



A Suppose pot is 1, stacks are 100

A Suppose we are using the {fold, call, pot;ia}l action
abstraction

I nprevious expert knowl edge
single bet size [in addition to ah] is used everywhere, it
shoul d b eHaplonketals AAAE2G1R] |

A Suppose opponent bets x in (1,100)
I SOA=1,B =100

37



A Suppose we call a bet of 1 with probability ¥ with a
mediumstrength hand

A Suppose the opponent has a very strong hand
A His expected payoff of betting 1 will be:
(1 %) + (2¢%:) = 1.5
A If instead he bets 50, his expected payoff will be:
(1 ¢1%) + (51¢Y%) = 26
A He gains $24.50 by exploiting our translation mappin

ATartanianl | ost to an ac
cards in 2007 ACPC using this mapping!

38



An Improvement

A What if we randomize and map x to A with probability
—7

A Suppose opponent bets 50.5, and we call ain &kt
with probability— with a mediocre hand

A Then his expected payoff is $13.875
A An improvement, but still way too high
A Called therandomized arithmetic mapping

39



Other prior approaches

A Deterministic geometric: H >—, map x to A;

otherwise, map x to B
I Used by Tartanian2 in 2008

A Randomized geometric 1

. _ A(BT x)
)= AT BT X1 A)
I Used by Alberta 2009resent

A Randomized geometric 2
. _A(B+x) (BT x)
=BT YA B)

i Used by CMU 201011

40



Problem with prior approaches?

A High exploitability in simplified games
A Purely heuristic and not based on any
theoretical justification

A Fail to satisfy natural theoretical properties

41



Our new mapp

INg

A We propose a new mapping, called the pseudo
harmonic mapping, which is the only mapping
consistent with the equilibrium of a simplified poker

game:
I f(x) =

A This mapping has significantly lower exploitability

than the prior ones in several sim
A Significantly outperforms the ranc

nlifled poker games
omizgeometric

mappings in ngimit Texash o | ¢

oem

42



Bw N

o1

Action translation desiderata

Boundary constraints: f(A) = 1, f(B) =0
Monotonicity

. Scale invariance

,Actil on robustness: s
lead to large change in f
Boundary robustness: small change in A or B

doesnot | ead to | arg

43



Theoretical results

A Randomized geometric mappings violate
boundary robustness. If we allow A = 0 they at
discontinuous Iin A. Otherwise, they are
Lipschitzdiscontinuous in A.

A Only randomizeehrithmetic and randomized
pseudenarmonic satisfy all the desiderata

44



Standard paradigm for solving large
iImperfect-information games

Original game

Abstracted game

Automated abstraction i E

Custom
equilibriumfinding

algorithm

Reverse mapping

Nash equilibrium Nash equilibrium
45



Purification and thresholding

A Thresholdinground action probabilities below ¢ down
to O (then renormalize)

A Purificationis extreme case where we play maximal
probability action with probability 1

46



Experimentsonnael | mi t T eerma

A Purification outperforms using a threshold of
0.15

I Does better than it against all but one 2010
competitor, beats it head-head, and won bankroll
competition

47



Worst-case exploitability

A We also comparedorstcaseexploitabilitiesof several variants
submitted to the 2010two | ay er | I mentdividioa X a S

I Using algorithm of Johansaat al. IJCAI-11

Exploitability | Exploitability
Threshold of GS6 of Hyperborean
None 463.591 235.209
0.05 326.119 243.705
0.15 318.465 258.53
0.25 335.048 277.841
Purified 349.873 437.242

Table 4: Results for full-game worst-case exploitabilities of
several strategies in two-player limit Texas Hold’'em. Re-
sults are in milli big blinds per hand. Bolded values indicate
the lowest exploitability achieved for each strategy.




Purification and thresholding

A 4x4 two-player zeresum matrix games with payoffs
uniformly at random from-[L,1]

A Compute eo
A Compute eg

last row anc

uili
uili
CO

orium F in full game
orium A In abstracted game that omits

umn

ifessentially Arandomo abstr

A Compare YA, F,) to u(pur(A,), F,)

49



Purification and thresholding

Purified average payoff -0.050987 +0.00042
Unpurified average payoff -0.054905 +0.00044

# games where purification led to 261569 (17.440)
Improved performance

# games where purification led to 172164 (11.48%)
worse performance

# games where purification led to 1066267 (71.08 %)
no change in performance

A Some conditions when they perform identically:
1. The abstract equilibrium A is a pure strategy profile
2. The support of Ais a subset of the support of F

50



Purification and thresholding

A Results depend crucially on the support of the full equilibrium

A If we only consider the set of games that have an equilibiium
with a given support, purification improves performance for
each class except for the following, where the performance is
statistically indistinguishable:

i Uis the pure strategy profile in which each player plays his
fourth pure strategy

iUis a mixed strategy profile
contains his fourth pure st.i
not contain his fourth pure strategy

51



New family of postprocessing
technigues

A 2 main ideas:
I Bundle similar actions
I Add preference for conservative actions

AFirst separate actions |
I If probability of folding exceeds a threshold parameter, fold

with prob. 1

I El se, follow purificat- on
actiono of nAbet. o

i1 f Abeto I s selected, then

specific bet actions.

A Many variations: threshold parameter, bucketing of
actionsthresholdingralue among buckets, etg,



Postprocessing experiments

Hyperborean.iro Slumbot Average Min
No Thresholding +30+ 32 +10+ 27 +20 +10
Purification +55+ 27 +19+ 22 +37 +19
Thresholding0.15 +35+ 30 +19+ 25 +27 +19
New-0.2 +39+ 26 +103+ 21 +71 +39

53



1 B BRAINS VS. ARTIFICIAL INTELLIGENCE

#BrainsvsAl

dougpolk2 364 / 750

Player Balance

Doug Polk ¥ @DougPolkPoker

TUOMAS SANDHOLM'S
ELECTRONIC
MARKETPLACES
LABORATORY

Carnegie Mellon University

RIVERS CASINO

GAMBLING PROBLEM? CALL 1-800-GAMELER
S 4
om Microsoft |etam

94



Brains vs. Artificial Intelligence

A April 24-May 8, 2015 at Rivers Casino in
Pittsburgh, PA

I The competition was organized by Carnegie Mellon
University ProfessofuomasSandholm Collaborators
wereTuomasSandholmand Noam Brown.

A 20,000 hands of twplayer nelimit Texas
holeshb ®t w€laudican and Don
Jason Les, Bjorn Li, Doug Polk

I 80,000 hands In total

AUsed fAduplicated scor
55
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Brains

B 02-04-2015, 09:53 AM #1

Donger Kim Donger Kim to Nick Frame (TCfromUB) HU Challenge
enthusiast
s up nlhe regular on PokerStars w ' . There's
gi=ly h'En'L'—I_Jp ra [_. tic mi rame,
I"-,-'Euj qluf ; rer. I respect his game and it

I’r' ahead of me, I'd like to have a chance to play him in a challenge-type format, 1
ce and something that would also be enjoyable for the El:lrrlrrll_lrlltg-.

ar sauce, [
ould be able to

hen you'd like to begin, Ideally, I'd like to get started right av

o7



Brains

g Donger Kim wins heads-up challenge against
p)
TCfromUB
Poker News G+l p ] fj n khare

ong "Donger Kim" Kim won $103.992 from Nick "TCfromUB" Frame in the 15,000 hand
heads-up challenge, which not only earned him the respect of the high stakes community, but
also an additional $15,000 from the sidebets for the challenge.

.

L U 2 © RN

Nar
e X

A

myr
|3 LIV ERE
Rl & U

A R
,...un"
- W .
ASRETEE T
. & B IRRE
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Results

A Humans won by 732,713 chips, which
corresponds to 9.16 big blinds per 100 hands
(BB/100) (SB =50, BB = 100)

I Statistically significant at 90% confidence level, bu
not 95% level

A Dong Kim beat Nick Frame by 13.87 BB/100
I $103,992 over 15,000 hands with-28 blinds

A Doug Polk beat BeBulskyby 24.67 BB/100
I $740,000 over 15,000 hands with 1200 blinds

59



Payoffs

A Prize pool of $100,000 distributed to the
humans depending on their individual profits.

I — T4

$10.000 - %60.000 —4m8 ——M
Tr1+ T2 + T3 — 314

Iro — T4

r1+ Ira + Iy — 311"'.1

S10. 000 + $60. 000
T3 — T4

$10,000 + 860,000 —MM
T+ Tg + Ty — ATy

10,000

o = pa = py = $25, 000
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| Limp!

AALi mpi ng i.sSThisisthe mdstongpertans
fundamentain poker-- for every game, for every
tournament, every stake: If you are the first player to
voluntarily commit chips to the pot, open for a raise.
Limping Is inevitably a losing play. If you see a perso
at the table limping, you can be fairly sure he is a bac
player. Bottom line: If your hand is worth playing, It is
worth raisingo [Phil Gor

A Claudicolimps close to 10% of its hands
I Based on humanso anal ysi s

A Claudicomakes many other unconventional plays (e.
small bets of 10% pot and ail bets for 40 timgls pot)



Architecture

Original game

Abstracted game

Automated abstraction i j

iZustom
equilibrium-finding
algorithm

Reverse mapping

Nash equilibrium Nash equilibrium

A Offline abstraction and equilibrium computation
I EC used PBlackightsupercpompater with 961 cores

A Action translation
A Postprocessing
A Endgame solving N



Endgame solving

Strategies for entire game
computed offline

A

Endgame strategies
computed in real time to
greater degree of accuracy

63



(2,10) (1,0

Figure 5.2: A perfect-information game in extensive form.
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Cannot use backwards induction In
games of imperfect information




Endgame definition

A E is anendgameof a game G if:

1. Set of EOsSs nodes 1 s a s

2.1l f sO0 1s a chil d of s |
also anode in E

3.1l f s 1 s I n the same 1| nf
node 1 n E, t hhen sO0 I s a

66



Can endgame solving guarantee
equilibrium?

A Suppose that we computed an exact-daline)
equilibrium in the initial portion of the game
tree prior to the endgame (tlvenk ), and
computed an exact equilibrium in the endgame
Is the combined strategy an equilibrium of the
full game?

67



Can endgame solving guarantee
equilibrium?
A No!

A Several possible reasons this may fail:

I The game may have mamguilibria and we might
choose one for the trunk that does not match up
correctly with the one for the endgame

I We may computequilibriain different endgames
that do not balance appropriately with each other

68



Can endgame solving guarantee
equilibrium?

Proposition: There exist games with a unique
equilibrium and a single endgame for which

endgame solving can produce a fsmuilibrium
strategy profile in the full game

69



Can endgame solving guarantee
equilibrium?

70



Endgame solving out of necessity for
| 1 miI t T eemagentsi2@0B@07

A The agent GS1 precomputed strategies only for the first two
rounds, using rough approximations for the payoffs at the lea\
of that trunk based on the (unrealistic) assumption that there \
no betting in future rounds. Then in real time, the relevant
endgame consisting of the final two rounds was solved using 1
LP algorithm [GilpinSandholmA AAIl 0606 ] .

A GS2 precomputed strategies for the first three rounds, using
simulations to estimate the payoffs at the leaves; it then solve
the endgames for the final two rounds in real time [Gilpin

SandhomA AMAS .00 7]

A At the time, these agents did not have scalable algorithms or
resources for capability to solve abstractions of full fimumd

game at once, SO a version
71
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Benefits of endgame solving

A Computation of exact (rather than approximate)
equilibrium strategies in the endgames

A Computation of equilibrium refinements (e.g.,
undominatedandUquasiperfect equilibrium)

A Better abstractions in the endgame that is reached
I Finergrained abstractions
I History-aware abstractions
I Strategybiased abstractions

ASol vi ngt n dve gindll e mo
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A Endgame solving had not been implemented by any competitive
agentsfornd i mit Temas hol d 0

A Prior approaches assume that the private hand distributions
leading into the endgame are independent, while they are actue
dependent and the full joint distribution should be computed.

A The prior approaches use a single petfectll card abstraction
that has been precomputed offline (which assumes a uniform
random distribution for the opponent's hand distributions). In
contrast, we use an imperfaeicall card abstraction that is
computed in real time In a finer granularity than the initial offline
abstraction and that is tailored specifically to the relevant
distribution of the opponent's hands at the given hand history.

A Furthermore, the prior approaches did not compare performanc
between endgame solving and not using it (since the base
strategies were not computed for the endgames), while we

provide such a comparison. -4



Is there any hope?

//az\
e e
G, G, G

Player 1 selects his actiap then the players play
iImperfectinformation games..

n
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Is there any hope?

A Endgame solving produces strategies with low
exploitability in games where the endgame is a
significant strategic portion of the full game.

I l.e., In games where any endgame strategy with high full
game exploitability can be exploited by the opponent by
modifying his strategy just within the endgame.

/6



Is there any hope?

A Proposition: If every strategy that has exploitability
strictly more tharUin the full game has exploitability
of strictly more tham within the endgame, then the
strategy output by a solver that computés a
equilibrium in the endgame induced by a trunk strate
t would constitute atequilibrium of the full game
when paired with t.
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Endgame property

A We can classify different games according to
property described by premise of proposition
I If premise Is satisfied, then we can say game

satisfies thel{ U)-endgame property

A Interesting quantity would be smallest valiiéll) such
that game satisfies thél {i)-endgame property for a
givenu.
A Game above hd$(U) =Ufor eachi>=0
A RPS has¥(l) =1 for eachi>=0
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Efficient algorithm for endgame-solving In
large imperfect-information games

A First step: compute joint input distribution of private
Il nf or mati on usi ng Bayesdc

A Naive approach requires iterating over all possible
private hand combinations and for each pair looking |
probability base strategy would take given sequence

I This requires O(#) lookups to the strategy table, where n is
the number of possible hands (n = 1081 for river in poker)

I Becomes bottleneck and makes @l endgame solving
computationally infeasible (takes > 1 min/hand)

I Our algorithm uses just O(n) strategy table lookups (takes
few seconds per hand)
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Algorithm for computing joint
private hand distributions

A In short, the algorithm first computes distributions
separately for each player (as done by the independe
approach), then multiplies the probabilities together fi
hands that do not share a common card (and sets the
joint probabillity to zero otherwise).

I Utilizes indexing schemes to compute private card hand
Index and fcard board

I Maps #card index to Zard index in main loop so we can
determine which hands share a common card

I Final loop is O(A), though main bottleneck loop is O(n)
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Main endgamesolving algorithm

A First compute joint hand distribution DI][]

A Next compute arrays,EE, of equitiesfor each hand
against opponent's distribution

I For P1, do this by adding Djjfh,] to E;[h,] for each hand h
with lower rank than that of,hand adding D[[j[h,]/2 for
each hand with equal rank

A Compute information (card) abstractiong A, by
clustering elements d&; into k; buckets

I ki=floor(T/b), where T Is parameter anpghonmber of action
seqguences in action abstraction

A Solve new abstracted game using an algorithm for

computing an equilibrium (or a refinement)
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Algorithm for computing endgame
Information abstractions

A Most prior work in poker usesikeans

I However, this can be problematic. Suppose there are many hands with €
0.7643, and also many hands with equity 0.7641. Thae&ns would likely
create separate clusters for these, and group hands with very different
equities (e.g., 0.2 and 0.3) together if few hands have those equities.

A Instead, we use percentile hand strength
I Break up the interval [0,1] intig regions of equal length
I Group hand hnto bucket floorg[hi] / ki)
I We use modification where we first add a special bucket just for hands w
E[h,] >= alpha
I Can result in significantly fewer thanbuckets, since may be zero hands

with E; within some intervals. We take this into account, and reduce numt
of buckets in the card abstraction accordingly before solving the endgam

I The abstractions may be very different for the two players (and have
different numbers of buckets) 82



Solving the abstracted endgame

A Solve the endgame with precomputed betting
abstractions and computed information abstractions |
applying an equilibriurfinding algorithm
i If endgame has 20r fewer states, can solve it exactly using

LP, as opposed to using an iterative algorithm like CFR tha
IS only guaranteed to approach equilibrium in the limit

I Can also apply algorithms that compute certain refinement

A While card abstractions are computed independently
we use the joint distribution for determining
probabilities that players are dealt hands from
respective buckets when constructing the endgame
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Experiments

A We tested our algorithm against the two strongest
agents for tweplayer nelimit TexasH o | d foom the
2013 poker competition. The base agent was a versit
the agent we submitted to the 2014 ACPC from short
before the competition.

A Endgame solver averaged around 8 seconds per har
(usingG u r o lbPisalver)
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Variance reduction

A Proposition: Let Aand A be two algorithms that
differ in play only for endgames. Then the difference |
performance looking at only the hands where both
make it to the same endgame is not an unbiased
estimator of the overall performance difference.

A Proposition: Let Aand A be two algorithms that
differ in play only for endgames. Then the difference |
performance looking at only the hands where both
make It to some (but not necessarily the same)
endgame Is an unbiased estimator of the overall
performance difference. 35



Experiments

A Statistically significant performance improvement
against both opponents: 866 vs. Hyperborean and
29+25 vs.Slumbot

I Results are from 100 duplicate matches against Hyperbore
and 155 agains$lumbot Since each match is 3000 hands,
this corresponds to 600,000/930,000 hands.

I Out of these hands, both versions of our agent made it to t|
river round on 173,568 hands against Hyperborean and on
318,700 hands againStumbot

I Results are from hands where both versions made it to the
river, using our varianee=duction technique (would not
have obtained statistical significance using prior duplicate
approach). 36



Experiments

A Base agent used purification for all actions except firs
preflopaction

I Was shown to be best in prior experiments and was our
standard setting for evaluating our base agent

A Endgame solver assumed that both agents used no
thresholdingvhen creating the input distributions

A Endgame solver did not do any rounding for the river
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Problematic hands

1. We had A4s and foldegareflopafter putting in over half of our stack
(human had 99).

i We only need to win 25% of ti me
call to be profitable (we win 33% of time against 99).

I Transl|l ation mapped opponent o6s r
look up strategy computed thinking that pot size was much smaller the
it was (7,000 vs. 10,000)

2. We had KT and folded to an aHl bet on turn after putting in % of our stack
despite having top pair and a flush draw

I Human raised slightly below smallest size in our abstraction and we
Interpreted it as a call

i Both 1 andt2eduprpbobl ambf

3. Largeali n bet of 19,000 i nto small P
I E.g., 3s2c better alh bluff hand than 3c2c on JsTs4sKcQh
I Endgame i nformation abstraction

Ancard removal o 88



Reflections on the First Man vs. Machine
No-L1T mi t T e rmGompgdttiond
[SigecomEx c hanges 015, Al Ma

A Two most important avenues for improvement
I Solvingt tdhe prodldl e mo

I Improved approach for information abstraction that better accounts for
card removal/ Aabl ockerso

A Improved theoretical understanding of endgame solving
I Works very well in practice despite lack of guarantees
I Newer decomposition approach with guarantees does worse

A Bridge abstraction gap
I Approaches with guarantees only scale to small games
I Larger abstractions work well de

A Diverse applications of equilibrium computation
A Theoretical questions for action translation/postcessyag



Two most important avenues for
Improvement

AfiThe first is to devel optred'n
problem where we make a mistake due to a misperception of
actual size of the pot after translating an action for the oppone
that is not in our action abstraction. We have outlined promisir
agendas for attacking this problem, including improved action
abstraction and translation algorithmsyel approaches for
real-time computation that address the portion of the game
prior to the final round , and entirely new approaches
specifically geared at solving the d@fee problem independently

of the other problems 0
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Two most important avenues for
Improvement

AARAnd the second is to devel
Information abstraction that better accounts for card

removal/  "blockers" (i.e., that accounts for the fact that us
having certain cards in our hand modifies the probability of the
opponent having certain handshis issue is most problematic
within the information abstraction algorithm for the

endgame, where the card removal effect is most significant
due to the distributions for us and the opponent being the
most well defined(i.e., there is no more potential remaining in
the hand due to uncertainty of public cards, and this relative
certainty will likely cause the distributions to put positive weigt
on fewer hands), and it limits our ability to utilize large bet
sizes, which have been demonstrated to be optimal in certain
settings. o 91



A New game decomposition approach (G&#rhas
theoretical guarantee but performs worse empirically

I Burch et al. AAAF14

A Recent approach for safer endgame solving that
maxi mi zes t he nendgame n

I Moravicet al. AAAI-16

A Doug Polk related to me in personal communication
after the competition that he thought the river strategy
of Claudicousing the endgame solver was the stronge
part of the agent.
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Second Brains vs. Al Competition

A Libratus +14.7 BB/100 over 120,000 hands ($200k ir
prizes)
i Claudico-9.16 BB/100 over 80,000 hands ($100k in prizes)
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1. Libratus 20-25 million core hours on supercomputer
I Claudica 2-3 million core hours on supercomputer
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2. Improved equilibriumrf 1 ndi ng al gor I
based pruningo which pr
early on in CFR so that the computation can elimina
| arge portions of the g
actions.

I Brown andSandholm Rdtluced Space and Faster
Convergence in Imperfectinformation Games via
RegretBased Pruning 8017 AAAI Workshop on
Computer Poker and Imperfect Information
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http://www.cs.cmu.edu/~noamb/papers/16-arXiv-Total-RBP.pdf

3. Improved endgame solver. Used supercomputer
resources in real time. Was able to solve full turn an
river endgames within around 20 seconds. Estimate
that it would take 10+ minutes on normal machine.

I Brown andSandholm Safie and Nested Endgame Solving
In_Imperfect-Information Games, 2017 AAAI Workshop
on Computer Poker and Imperfect Information

I Used CFR instead of LP for endgame solving (to better
capitalize on parallelization).
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http://www.cs.cmu.edu/~noamb/papers/17-AAAI-Refinement.pdf

4nStrategy | mprovero

NThat ' s andSandBainbuitma third
system. Each evening, Brown would run an
algorithm that could identify those patterns and
remove them. "It could compute this overnight an
have everything 1 n pl a
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5. Cl a u dmistake@AsLibratu®d st r en:
I e.g., card r e movareelprobiemnl
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DeepStack

A DeepStaclagent from Alberta beat human
Apr of es si on plhywrmelimitTexashold
emspecialists in 2016 for 49 bb/100.
i Libratus +14.7 BB/100
I Claudicao -9.16 BB/100

A It played 3000 hands per match against each human,
against ~35 humans. Used variance reduction
techniques for statistical significance.

APublished in AScience, 0
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AMi chael BeepStacknAdL Endgame
Sol ving!o

A Solves each round independently, assuming payoffs
that were trained using deep learning.

A DeepStaclacts very quickly in real time, but requires
~175 core years for the training, which is equivalent t
several hundred computd® severaimonths.

(0[0)



Small Game | Large Game

Base Strategy 0.128

Unsafe 39.68
Resolve
Maxmargin 0.9362 0.6121
Reach-Maxmargin

Table 1: Exploitability (evaluated in the game with no infor-
mation abstraction) of the endgame-solving techniques.
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Midgame solving
(Ganzfred& Hu | CTAI

Fig. 3. Midgame solving discards the strategies that were precomputed for the
midgames, then (re-)solves the relevant midgame that we have actually reached
in real time to a greater degree of accuracy than in the offline computation,
assuming a given payoff mapping for midgame terminal nodes.
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Computing Nash equilibria in games
with more than two players

A CFR can be run, but no significant guarantees other than that
cannot play an iteratively strictly dominated action.

A Developed new algorithms for computibgquilibrium
strategies in multiplayer imperfectformation stochastic games
I Models multiplayer poker tournament endgames [AAMASO08/IJCAIQ9]

A Most successful algorithm, called-PP, used a twdevel
iterative procedure
I Outer loop is variant of policy iteration
I Inner loop is an extension of fictitious play

A Proposition: If the sequence of strategies determined by
iterations of PAFP converges, then the final strategy profile is &
equilibrium.

A We verified that our algorithms did in fact convergduto
equilibrium strategies for very small



The need for opponent exploitation

A Gamesolving approach producesexploitablgi.e.,
Ansaf eo) st-player eegpsum gamesn t Vv
A But it has no guarantees in genesaim and
multiplayer games

A Furthermore, even in twplayer zeresum games, a
much higher payoff is achievable against weak
opponents by learning and exploiting their mistakes
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Opponent exploitation challenges

A Needs prohibitively many repetitions to learn in large
games (only 3000 hands per match in the poker
competition, so only have observations at a minuscule
fraction of information sets)

A Partialobservabilityof opponent ds pr

A Often, there is no historical data on the specific oppor
I Even If there is, it may benlabelledor semilabelled

A Recently, gamesolving approach has significantly
out performed expl ol tatemo
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Experiments on opponent exploitation

A Significantly outperforms gamemeorybased base strategy in 2
pl ayer | i1 menmagahg#g xas hol d 0
I trivial opponents (e.g., one that always calls and one that plays randoml
I weak opponents from AAAI computer poker competitions

ADondét have to turn this on a

OpponentAlways fold OpponentAlways raise  OpponentGUS2

WI n [a1=t]
ra te 058

1,000 3,000
#hands 106



Safeopponent exploitation

A Definition. Safestrategy achieves at least the
value of the (repeated) game In expectation

A Is safe exploitation possible (beyond selecting
among equilibrium strategies in the esl®ot
game)?
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Rock-Paper-Scissors

A Suppose the opponent has played Rock in each of th
first 10 iterations, while we have played the
equilibrium 0*

A Can we exploit him by playing pure strategy Paper in
the 11" iteration?

I Yes, but this would not be safe!

A By similar reasoning, any deviation fraim will be
unsafe

A So safe exploitation is not possible in Rd®&per
Scissors

108



Rock-Paper-ScissorsToaster

rock paper scissors toaster
Rock 0,0 -1, 1 1,-1 4,-4

Paper 1-1 0,0 -1,1 3,-3
Scissors  -1,1 1-1 0,0 3, -3

A tis strictly dominated

Is does strictly better 1t
A Suppose we play NE in the first round, and he plays t

I Expected payoff of 10/3

A Then we can play R in the second round and guarantee a
least 7/3 between the two rounds

A Safe exploitation is possible in RPST!
IBecause of presence g4 0



When can opponent be exploited safely?

A Oppeonent played an (iterated weakly) dominated strategy?
L | M
R is a gift Ul 3l
but not iteratively weakly dominated
D|2]|3
AOpponent played a strateegy t
: R : L
R isndét i n the supplor|lt |of any eq
but is also not a gift Uuio
D|-2

A Definition. We received gift if opponent played a strategy such that we hav:
an equili brium strategy for which

A Theorem. Safe exploitation is possibi# the game has gifts
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Exploitation algorithms

1¥R1 sk what youodove won so far

2PRi sk what youove won so far
randomization), i.e., risk the gifts received
i Assuming the opponent plays a ne.]

A Theorem.A strategy for a tweplayer zeresum game is safff it
never risks more than the gifts received according to #2

A Can be used to make any opponent model / exploitation algorit!
safe

A No prior (noned) opponent exploitation algorithms are safe
A We developed several new algorithms that are safe

I Present analogous results and algorithms for extefioe
games of perfect and imperfantormation
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RiI sk What Youodove \
(RWYWE)
ASet k=0

Afort=1to T do
I Set't to bek!-safe best response to M
I Play actioma; according to t
ifUpdate M with ©&ppone
I Setki=Kkt+u('t, a)r v*
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Game solving challenges

A Nash equilibrium lacks theoretical justification in
certain game classes

I E.g., games with more than two players

I Even in tweplayer zeresum games, certain refinements are
preferable

A Computing Nash equilibrium is PPAEmplete in
certain classes

A Even approximating NE in 2p zeBum games very
challenging In practice for many interesting games

I Huge state spaces
A Robust exploitation is preferable
113



Major future avenue: Beyond two agents

A Many components of the standard and the endgame paradign
are directly applicabldéo more agents.

A Direct; abstraction, translation, pgatcessing,
endgame/midgame solving, exploitation algorithms
I Endgame solving: would require only two agents remaining in the
endgame, which is common fpostflopin poker. For more than two
agents, would likely need CRipproximation.
A Equilibrium algorithms such as CFR can apply, but guarantee:
are limited.
I Improved theoretical understanding of existing approaches.
I New approaches with improved performance/theory.
I New solution concepts altogether, with efficient algorithms for them.

A Safe exploitation, but guarantees maximin instead of value
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