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Jacksonville ñScrambleò
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Milestones
Å Opponent Modelling in Poker, Billings et.al., ó98 

Å Abstraction Methods for Game-Theoretic Poker, Shi/Littman, ó00 

Å Approximating Game-Theoretic Optimal Strategies for Full-scale Poker, 

Billings et.al., ó03

Å Optimal Rhode Island Poker, Gilpin/Sandholm, ó05

Å Annual Computer Poker Competition ó06-Present

Å EGT/automated abstraction algorithms, Gilpin/Sandholmó06-ó08

Å Regret Minimization in Games with Incomplete Information, Zinkevichet.al., 

ó07

Å Man vs. Machine limit Texas hold óemcompetitions ó08-ô09

Å Computer Poker & Imperfect Information Symposium/Workshop ó12-Present

Å Heads-up Limit Hold'emPoker is Solved, Bowling et.al., ó15

Å Brains vs. AI no-limit Texas hold óemcompetition ô15

Å First Computer Poker Tutorial ó16

Å DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker ô17

Å Second Brains vs. AI no-limit Texas hold óemcompetition ó17
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Scope and applicability of game theory

ÅStrategic multiagentinteractions occur in all fields

ïEconomics and business: bidding in auctions, offers in 

negotiations

ïPolitical science/law: fair division of resources, e.g., divorce 

settlements

ïBiology/medicine: robust diabetes management (robustness 

against ñadversarialò selection of parameters in MDP)

ïComputer science: theory, AI, PL, systems; national security 

(e.g., deploying officers to protect ports), cybersecurity (e.g., 

determining optimal thresholds against phishing attacks), 

internet phenomena (e.g., ad auctions)
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Game theory background

ÅPlayers

ÅActions (aka pure strategies)

ÅStrategy profile: e.g., (R,p)

ÅUtility function: e.g., u1(R,p) = -1, u2(R,p) = 1

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Zero-sum game

ÅSum of payoffs is zero at each strategy profile: 

e.g., u1(R,p) + u2(R,p) = 0

ÅModels purely adversarial settings

rock paper scissors

Rock 0,0 -1, 1 1, -1

Paper 1,-1 0, 0 -1,1

Scissors -1,1 1,-1 0,0
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Mixed strategies

ÅProbability distributions over pure strategies

ÅE.g., R with prob. 0.6, P with prob. 0.3, S with 

prob. 0.1
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Best response (aka nemesis)

ÅAny strategy that maximizes payoff against 

opponentôs strategy

ÅIf P2 plays (0.6, 0.3, 0.1) for r,p,s, then a best 

response for P1 is to play P with probability 1
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Nash equilibrium

ÅStrategy profile where all players 

simultaneously play a best response

ÅStandard solution concept in game theory

ïGuaranteed to always exist in finite games [Nash 

1950]

ÅIn Rock-Paper-Scissors, the unique equilibrium 

is for both players to select each pure strategy 

with probability 1/3 
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Minimax Theorem

ÅMinimax theorem: For every two-player zero-sum 

game, there exists a value v* and a mixed strategy 

profile ů* such that:

a. P1 guarantees a payoff of at least v* in the worst case by 

playing ů* 1 

b. P2 guarantees a payoff of at least -v* in the worst case by 

playing ů* 2 

Å v* (= v1) is the valueof the game 

Å All equilibrium strategies for player i guarantee at 

least vi in the worst case

Å For RPS, v* = 0
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Exploitability

ÅExploitability of a strategy is difference 

between value of the game and performance 

against a best response

ïEvery equilibrium has zero exploitability

ÅAlways playing rock has exploitability 1

ïBest response is to play paper with probability 1
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Nash equilibria in two-player zero-

sum games

ÅZero exploitability ïñunbeatableò

ÅExchangeable

ïIf (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

ÅCan be computed in polynomial time by a linear 

programming (LP) formulation
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Nash equilibria in multiplayer and 

non-zero-sum games
ÅNone of the two-player zero-sum results hold

ÅThere can exist multiple equilibria, each with different 

payoffs to the players

ÅIf one player follows one equilibrium while other 

players follow a different equilibrium, overall profile is 

not guaranteed to be an equilibrium

ÅIf one player plays an equilibrium, he could do worse if 

the opponents deviate from that equilibrium

ÅComputing an equilibrium is PPAD-hard
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Imperfect information

ÅIn many important games, there is information 

that is private to only some agents and not 

available to other agents

ïIn auctions, each bidder may know his own 

valuation and only know the distribution from which 

other agentsô valuations are drawn

ïIn poker, players may not know private cards held 

by other players
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Extensive-form representation
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Extensive-form games

ÅTwo-player zero-sum EFGs can be solved in 

polynomial time by linear programming

ïScales to games with up to 108 states

ÅIterative algorithms (CFR and EGT) have been 

developed for computing an Ů-equilibrium that scale to 

games with 1017 states

ïCFR also applies to multiplayer and general sum games, 

though no significant guarantees in those classes

ï(MC)CFR is self-play algorithm that samples actions down 

tree and updates regrets and average strategies stored at 

every information set 



23

Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Texas hold óempoker

ÅHuge game of imperfect information

ïMost studied imp-info game in AI community since 2006 

due to AAAI computer poker competition

ïMost attention on 2-player variants (2-player zero-sum)

ïMulti -billion dollar industry (not ñfrivolousò)

ÅLimit Texas hold óemïfixed betting size 

ï~1017 nodes in game tree

ÅNo Limit Texas hold óemïunlimited bet size

ï~10165 nodes in game tree

ïMost active domain in last several years

ïMost popular variant for humans
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No-limit Texas hold óempoker

ÅTwo players have stack and pay blinds (ante)

ÅEach player dealt two private cards

ÅRound of betting (preflop)

ïPlayers can fold, call, bet (any amount up to stack)

ÅThree public cards dealt (flop) and a second round of 

betting

ÅOne more public card and round of betting (turn)

ÅFinal card and round of betting (river)

ÅShowdown
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Game abstraction

ÅNecessary for solving large games

ï2-player no-limit Texas hold óemhas 10165 game states, 

while best solvers ñonlyò scale to games with 1017 states

ÅInformation abstraction: grouping information sets 

together

ÅAction abstraction: discretizing action space

ïE.g., limit bids to be multiples of $10 or $100
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Information abstraction
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Potential-aware abstraction with EMD
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Potential-aware abstraction with EMD

ÅEquity distributions on the turn. Each point is EHS for given 

turn card assuming uniform random river and opponent hand

ÅEMD is 4.519 (vs. 0.559 using comparable units to river EMD)
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Algorithm for potential -aware imperfect-

recall abstraction with EMD

ÅBottom-up pass of the information tree (assume an abstraction for 

final rounds has already been computed using arbitrary approach)

ÅFor each round n

ïLet mn+1
i denote mean of cluster i in An+1

ïFor each pair of round n+1 clusters (i,j ), compute distance dn
i,j

between mn+1
i and mn+1

j using dn+1

ïFor each point xn, create histogram over clusters from An+1

ïCompute abstraction An using EMD with dn
i,j as ground 

distance function

ÅDeveloped fast custom heuristic for approximating EMD in our 

multidimensional setting

ÅBest commercially-available algorithm was far too slow to compute 

abstractions in poker
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Standard paradigm for solving large 

extensive-form games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Hierarchical abstraction to enable 

distributed equilibrium computation
ÅOn distributed architectures and supercomputers with 

high inter-blade memory access latency, 

straightforward MCCFR parallelization approaches 

lead to impractically slow runtimes 

ïWhen a core does an update at an information set it needs to 

read and write memory with high latency

ïDifferent cores working on same information set may need to 

lock memory, wait for each other, possibly over-write each 

others' parallel work, and work on out-of-sync inputs

ÅOur approach solves the former problem and also helps 

mitigate the latter issue
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High-level approach

ÅTo obtain these benefits, our algorithm creates an 

information abstraction that allows us to assign disjoint 

components of the game tree to different blades so the 

trajectory of each sample only accesses information 

sets located on the same blade.

ïFirst cluster public information at some early point in the 

game (public flop cards in poker), then cluster private 

information separately for each public cluster.

ÅRun modified version of external-sampling MCCFR

ïSamples one pair of preflophands per iteration. For the later 

betting rounds, each blade samples public cards from its 

public cluster and performs MCCFR within each cluster. 
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Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Action translation

ÅfA,B(x) ſ probability we map x to A 

ïWill also denote as just f(x)

$
A

x

B

[Ganzfried & SandholmIJCAI-13]
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A natural approach

ÅIf x < , then map x to A; otherwise, map x to B

ÅCalled the deterministic arithmetic mapping
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ÅSuppose pot is 1, stacks are 100

ÅSuppose we are using the {fold, call, pot, all-in} action 

abstraction

ïñprevious expert knowledge [has] dictated that if only a 

single bet size [in addition to all-in] is used everywhere, it 

should be pot sizedò [Hawkinet al., AAAI 2012]

ÅSuppose opponent bets x in (1,100)

ïSo A = 1, B = 100
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ÅSuppose we call a bet of 1 with probability ½ with a 

medium-strength hand

ÅSuppose the opponent has a very strong hand

ÅHis expected payoff of betting 1 will be:

(1 ɇ½) + (2 ɇ½) = 1.5

ÅIf instead he bets 50, his expected payoff will be:

(1 ɇ½) + (51 ɇ½) = 26

ÅHe gains $24.50 by exploiting our translation mapping!

ÅTartanian1 lost to an agent that didnôt look at its private 

cards in 2007 ACPC using this mapping!
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An improvement

ÅWhat if we randomize and map x to A with probability 

? 

ÅSuppose opponent bets 50.5, and we call an all-in bet 

with probability with a mediocre hand

ÅThen his expected payoff is $13.875

ÅAn improvement, but still way too high

ÅCalled the randomized arithmetic mapping
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Other prior approaches

ÅDeterministic geometric: If > , map x to A; 

otherwise, map x to B

ïUsed by Tartanian2 in 2008

ÅRandomized geometric 1

ïf(x) = 
A(Bīx)

A(Bīx)+x(xīA)

ïUsed by Alberta 2009-present

ÅRandomized geometric 2

ïf(x) = 
A(B+x)(Bīx)
(BīA)(x2+AB)

ïUsed by CMU 2010-2011
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Problem with prior approaches?

ÅHigh exploitability in simplified games

ÅPurely heuristic and not based on any 

theoretical justification

ÅFail to satisfy natural theoretical properties
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Our new mapping

ÅWe propose a new mapping, called the pseudo-

harmonic mapping, which is the only mapping 

consistent with the equilibrium of a simplified poker 

game:

ïf(x) = 

ÅThis mapping has significantly lower exploitability 

than the prior ones in several simplified poker games

ÅSignificantly outperforms the randomized-geometric 

mappings in no-limit Texas holdôem
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Action translation desiderata

1. Boundary constraints: f(A) = 1, f(B) = 0

2. Monotonicity

3. Scale invariance

4. Action robustness: small change in x doesnôt 

lead to large change in f

5. Boundary robustness: small change in A or B 

doesnôt lead to large change in f
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Theoretical results

ÅRandomized geometric mappings violate 

boundary robustness. If we allow A = 0 they are 

discontinuous in A. Otherwise, they are 

Lipschitz-discontinuous in A.

ÅOnly randomized-arithmetic and randomized-

pseudo-harmonic satisfy all the desiderata
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Standard paradigm for solving large 

imperfect-information games

Nash equilibriumNash equilibrium

Original game

Abstracted game

Automated abstraction

Custom 

equilibrium-finding 

algorithm

Reverse mapping
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Purification and thresholding

ÅThresholding: round action probabilities below c down 

to 0 (then renormalize)

ÅPurification is extreme case where we play maximal-

probability action with probability 1
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Experiments on no-limit Texas hold óem

ÅPurification outperforms using a threshold of 

0.15

ïDoes better than it against all but one 2010 

competitor, beats it head-to-head, and won bankroll 

competition
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Worst-case exploitability

ÅWe also compared worst-case exploitabilitiesof several variants 

submitted to the 2010 two-player limit Texas hold óemdivision

ïUsing algorithm of Johanson et al. IJCAI-11
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Purification and thresholding

Å4x4 two-player zero-sum matrix games with payoffs 
uniformly at random from [-1,1]

ÅCompute equilibrium F in full game

ÅCompute equilibrium A in abstracted game that omits 
last row and column

ïessentially ñrandomò abstractions

ÅCompare u1(A1, F2) to u1(pur(A1), F2) 

ÅConclusion: Abstraction+purification outperforms 
just abstraction (against full equilibrium) at 95% 
confidence level
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Purification and thresholding

ÅSome conditions when they perform identically:

1. The abstract equilibrium A is a pure strategy profile

2. The support of A1 is a subset of the support of F1 

Purified average payoff -0.050987 +- 0.00042

Unpurifiedaverage payoff -0.054905 +- 0.00044

# games where purification led to 

improved performance

261569 (17.44%)

# games where purification led to 

worse performance

172164 (11.48%)

# games where purification led to 

no change in performance

1066267 (71.08 %)
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Purification and thresholding

ÅResults depend crucially on the support of the full equilibrium

Å If we only consider the set of games that have an equilibrium ů

with a given support, purification improves performance for 

each class except for the following, where the performance is 

statistically indistinguishable:

ïůis the pure strategy profile in which each player plays his 

fourth pure strategy

ïůis a mixed strategy profile in which player 1ôs support 

contains his fourth pure strategy, and player 2ôs support does 

not contain his fourth pure strategy
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New family of post-processing 

techniques
Å2 main ideas: 

ïBundle similar actions

ïAdd preference for conservative actions

ÅFirst separate actions into {fold, call, ñbetò}

ïIf probability of folding exceeds a threshold parameter, fold 

with prob. 1

ïElse, follow purification between fold, call, and ñmeta-

actionò of ñbet.ò

ïIf ñbetò is selected, then follow purification within the 

specific bet actions.

ÅMany variations: threshold parameter, bucketing of 

actions, thresholdingvalue among buckets, etc.
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Post-processing experiments

Hyperborean.iro Slumbot Average Min

No Thresholding +30± 32 +10± 27 +20 +10

Purification +55 ± 27 +19 ± 22 +37 +19

Thresholding-0.15 +35 ± 30 +19 ± 25 +27 +19

New-0.2 +39 ± 26 +103 ± 21 +71 +39
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Brains vs. Artificial Intelligence

ÅApril 24-May 8, 2015 at Rivers Casino in 

Pittsburgh, PA

ïThe competition was organized by Carnegie Mellon 

University Professor TuomasSandholm. Collaborators 

were TuomasSandholmand Noam Brown.

Å20,000 hands of two-player no-limit Texas 

hold óembetween ñClaudicoò and Dong Kim, 

Jason Les, Bjorn Li, Doug Polk

ï80,000 hands in total

ÅUsed ñduplicateò scoring
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Brains



57

Brains
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Brains
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Results

ÅHumans won by 732,713 chips, which 

corresponds to 9.16 big blinds per 100 hands 

(BB/100) (SB = 50, BB = 100)

ïStatistically significant at 90% confidence level, but 

not 95% level

ÅDong Kim beat Nick Frame by 13.87 BB/100 

ï$103,992 over 15,000 hands with 25-50 blinds

ÅDoug Polk beat Ben Sulskyby 24.67 BB/100

ï$740,000 over 15,000 hands with 100-200 blinds



60

Payoffs

ÅPrize pool of $100,000 distributed to the 

humans depending on their individual profits.
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I Limp!

ÅñLimping is for Losers. This is the most important 

fundamentalin poker -- for every game, for every 

tournament, every stake: If you are the first player to 

voluntarily commit chips to the pot, open for a raise. 

Limping is inevitably a losing play. If you see a person 

at the table limping, you can be fairly sure he is a bad 

player. Bottom line: If your hand is worth playing, it is 

worth raisingò [Phil Gordonôs Little Gold Book, 2011]

ÅClaudicolimps close to 10% of its hands

ïBased on humansô analysis it profited overall from the limps

ÅClaudicomakes many other unconventional plays (e.g., 

small bets of 10% pot and all-in bets for 40 times pot)
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Architecture

ÅOffline abstraction and equilibrium computation

ïEC used Pittsburghôs Blacklight supercomputer with 961 cores

ÅAction translation

ÅPost-processing

ÅEndgame solving
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Endgame solving

Strategies for entire game 

computed offline

Endgame strategies 

computed in real time to 

greater degree of accuracy
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Cannot use backwards induction in 

games of imperfect information
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Endgame definition

ÅE is an endgameof a game G if:

1. Set of Eôs nodes is a subset of set of Gôs nodes

2. If sô is a child of s in G and s is a node in E, then sô is 

also a node in E

3. If s is in the same information set as sô in G and s is a 

node in E, then sô is also a node in E
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Can endgame solving guarantee 

equilibrium?

ÅSuppose that we computed an exact (full-game) 

equilibrium in the initial portion of the game 

tree prior to the endgame (the trunk ), and 

computed an exact equilibrium in the endgame. 

Is the combined strategy an equilibrium of the 

full game?
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Can endgame solving guarantee 

equilibrium?

ÅNo!

ÅSeveral possible reasons this may fail:

ïThe game may have many equilibria, and we might 

choose one for the trunk that does not match up 

correctly with the one for the endgame

ïWe may compute equilibriain different endgames 

that do not balance appropriately with each other
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Can endgame solving guarantee 

equilibrium?

Proposition: There exist games with a unique 

equilibrium and a single endgame for which 

endgame solving can produce a non-equilibrium 

strategy profile in the full game
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Can endgame solving guarantee 

equilibrium?

0,0 -1,1 0,0 0,0-1,1 -1,11,-1 1,-1 1,-1
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Endgame solving out of necessity for 

limit Texas hold óemagents 2003-2007
ÅThe agent GS1 precomputed strategies only for the first two 

rounds, using rough approximations for the payoffs at the leaves 

of that trunk based on the (unrealistic) assumption that there was 

no betting in future rounds. Then in real time, the relevant 

endgame consisting of the final two rounds was solved using the 

LP algorithm [Gilpin-SandholmAAAI ó06]. 

ÅGS2 precomputed strategies for the first three rounds, using 

simulations to estimate the payoffs at the leaves; it then solved 

the endgames for the final two rounds in real time [Gilpin-

SandholmAAMAS ô07].

ÅAt the time, these agents did not have scalable algorithms or 

resources for capability to solve abstractions of full four-round 

game at once, so a version of ñendgame solvingò was needed.
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Å2007 ï2013, everyone: ñEndgame solving is 

fundamentally flawed!!!ò

ïñNo point in doing it when we have the resources available 

to solve a reasonable abstraction of the full game already!ò
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Benefits of endgame solving

ÅComputation of exact (rather than approximate) 

equilibrium strategies in the endgames

ÅComputation of equilibrium refinements (e.g., 

undominatedand Ů-quasi-perfect equilibrium)

ÅBetter abstractions in the endgame that is reached

ïFiner-grained abstractions

ïHistory-aware abstractions

ïStrategy-biased abstractions

ÅSolving the ñoff-tree problemò 
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ÅEndgame solving had not been implemented by any competitive 

agents for no-limit Texas hold óem. 

ÅPrior approaches assume that the private hand distributions 

leading into the endgame are independent, while they are actually 

dependent and the full joint distribution should be computed. 

ÅThe prior approaches use a single perfect-recall card abstraction 

that has been precomputed offline (which assumes a uniform 

random distribution for the opponent's hand distributions). In 

contrast, we use an imperfect-recall card abstraction that is 

computed in real time in a finer granularity than the initial offline 

abstraction and that is tailored specifically to the relevant 

distribution of the opponent's hands at the given hand history.

ÅFurthermore, the prior approaches did not compare performance 

between endgame solving and not using it (since the base 

strategies were not computed for the endgames), while we 

provide such a comparison.
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G1

a1

éé

G2 Gn

a2 an

Player 1 selects his action ai, then the players play 

imperfect-information game Gi.

Is there any hope?
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Is there any hope?

ÅEndgame solving produces strategies with low 

exploitability in games where the endgame is a 

significant strategic portion of the full game.

ïi.e., in games where any endgame strategy with high full-

game exploitability can be exploited by the opponent by 

modifying his strategy just within the endgame.
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Is there any hope?

ÅProposition: If every strategy that has exploitability 

strictly more than Ůin the full game has exploitability 

of strictly more than ŭwithin the endgame, then the 

strategy output by a solver that computes a ŭ-

equilibrium in the endgame induced by a trunk strategy 

t would constitute an Ů-equilibrium of the full game 

when paired with t.
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Endgame property

ÅWe can classify different games according to 

property described by premise of proposition

ïIf premise is satisfied, then we can say game 

satisfies the (Ů,ŭ)-endgame property

ÅInteresting quantity would be smallest value Ů*(ŭ) such 

that game satisfies the (Ů,ŭ)-endgame property for a 

given ŭ.

ÅGame above has Ů*(ŭ)  = ŭfor each ŭ>= 0

ÅRPS has Ů*(ŭ)  = 1 for each ŭ>= 0
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Efficient algorithm for endgame-solving in 

large imperfect-information games

ÅFirst step: compute joint input distribution of private 

information using Bayesô rule

ÅNaïve approach requires iterating over all possible 

private hand combinations and for each pair looking up 

probability base strategy would take given sequence

ïThis requires O(n2) lookups to the strategy table, where n is 

the number of possible hands (n = 1081 for river in poker)

ïBecomes bottleneck and makes real-time endgame solving 

computationally infeasible (takes > 1 min/hand)

ïOur algorithm uses just O(n) strategy table lookups (takes a 

few seconds per hand)
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Algorithm for computing joint 

private hand distributions

ÅIn short, the algorithm first computes distributions 

separately for each player (as done by the independent 

approach), then multiplies the probabilities together for 

hands that do not share a common card (and sets the 

joint probability to zero otherwise).

ïUtilizes indexing schemes to compute private card hand 

index and 7-card board

ïMaps 7-card index to 2-card index in main loop so we can 

determine which hands share a common card

ïFinal loop is O(n2), though main bottleneck loop is O(n)
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Main endgame-solving algorithm

ÅFirst compute joint hand distribution D[][]

ÅNext compute arrays E1, E2 of equitiesfor each hand 

against opponent's distribution 

ïFor P1, do this by adding D[h1][h2] to E1[h1] for each hand h2
with lower rank than that of h1, and adding D[h1][h2]/2 for 

each hand with equal rank

ÅCompute information (card) abstractions A1, A2 by 

clustering elements of Ei into ki buckets

ïki = floor(T/bi), where T is parameter and bi number of action 

sequences in action abstraction

ÅSolve new abstracted game using an algorithm for 

computing an equilibrium (or a refinement)
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Algorithm for computing endgame 

information abstractions
ÅMost prior work in poker uses k-means

ïHowever, this can be problematic. Suppose there are many hands with equity 

0.7643, and also many hands with equity 0.7641. Then k-means would likely 

create separate clusters for these, and group hands with very different 

equities (e.g., 0.2 and 0.3) together if few hands have those equities.

Å Instead, we use percentile hand strength

ïBreak up the interval [0,1] into ki regions of equal length

ïGroup hand hi into bucket floor(Ei[hi] / ki)

ïWe use modification where we first add a special bucket just for hands with 

Ei[hi] >= alpha

ïCan result in significantly fewer than ki buckets, since may be zero hands 

with Ei within some intervals. We take this into account, and reduce number 

of buckets in the card abstraction accordingly before solving the endgame.

ïThe abstractions may be very different for the two players (and have 

different numbers of buckets)
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Solving the abstracted endgame

ÅSolve the endgame with precomputed betting 

abstractions and computed information abstractions by 

applying an equilibrium-finding algorithm

ïIf endgame has 108 or fewer states, can solve it exactly using 

LP, as opposed to using an iterative algorithm like CFR that 

is only guaranteed to approach equilibrium in the limit

ïCan also apply algorithms that compute certain refinements

ÅWhile card abstractions are computed independently, 

we use the joint distribution for determining 

probabilities that players are dealt hands from 

respective buckets when constructing the endgame
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Experiments

ÅWe tested our algorithm against the two strongest 

agents for two-player no-limit Texas Holdôemfrom the 

2013 poker competition. The base agent was a version 

the agent we submitted to the 2014 ACPC from shortly 

before the competition.

ÅEndgame solver averaged around 8 seconds per hand 

(using GurobiôsLP solver)
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Variance reduction

ÅProposition: Let A1 and A2 be two algorithms that 

differ in play only for endgames. Then the difference in 

performance looking at only the hands where both 

make it to the same endgame is not an unbiased 

estimator of the overall performance difference.

ÅProposition: Let A1 and A2 be two algorithms that 

differ in play only for endgames. Then the difference in 

performance looking at only the hands where both 

make it to some (but not necessarily the same) 

endgame is an unbiased estimator of the overall 

performance difference.
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Experiments

ÅStatistically significant performance improvement 

against both opponents: 87+-50 vs. Hyperborean and 

29+-25 vs. Slumbot

ïResults are from 100 duplicate matches against Hyperborean 

and 155 against Slumbot. Since each match is 3000 hands, 

this corresponds to 600,000/930,000 hands.

ïOut of these hands, both versions of our agent made it to the 

river round on 173,568 hands against Hyperborean and on 

318,700 hands against Slumbot. 

ïResults are from hands where both versions made it to the 

river, using our variance-reduction technique (would not 

have obtained statistical significance using prior duplicate 

approach).
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Experiments

ÅBase agent used purification for all actions except first 

preflopaction

ïWas shown to be best in prior experiments and was our 

standard setting for evaluating our base agent

ÅEndgame solver assumed that both agents used no 

thresholdingwhen creating the input distributions

ÅEndgame solver did not do any rounding for the river
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Problematic hands

1. We had A4s and folded preflopafter putting in over half of our stack 

(human had 99).

ï We only need to win 25% of time against opponentôs distribution for 

call to be profitable (we win 33% of time against 99). 

ï Translation mapped opponentôs raise to smaller size, which caused us to 

look up strategy computed thinking that pot size was much smaller than 

it was (7,000 vs. 10,000)

2. We had KT and folded to an all-in bet on turn after putting in ¾ of our stack 

despite having top pair and a flush draw

ï Human raised slightly below smallest size in our abstraction and we 

interpreted it as a call

ï Both 1 and 2 due to ñoff-tree problemò

3. Large all-in bet of 19,000 into small pot of 1700 on river without ñblockerò

ï E.g., 3s2c better all-in bluff hand than 3c2c on JsTs4sKcQh

ï Endgame information abstraction algorithm doesnôt fully account for 

ñcard removalò
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Reflections on the First Man vs. Machine 

No-Limit Texas Hold óemCompetition 
[SigecomExchanges ó15, AI Magazine Summer ó17]

ÅTwo most important avenues for improvement

ïSolving the ñoff-tree problemò

ï Improved approach for information abstraction that better accounts for 

card removal/ñblockersò 

Å Improved theoretical understanding of endgame solving

ïWorks very well in practice despite lack of guarantees

ïNewer decomposition approach with guarantees does worse

ÅBridge abstraction gap

ïApproaches with guarantees only scale to small games

ïLarger abstractions work well despite theoretical ñpathologiesò

ÅDiverse applications of equilibrium computation

ÅTheoretical questions for action translation/post-processing



90

Two most important avenues for 

improvement

ÅñThe first is to develop an improved approach for the ``off-tree'' 

problem where we make a mistake due to a misperception of the 

actual size of the pot after translating an action for the opponent 

that is not in our action abstraction. We have outlined promising 

agendas for attacking this problem, including improved action 

abstraction and translation algorithms, novel approaches for 

real-time computation that address the portion of the game 

prior to the final round , and entirely new approaches 

specifically geared at solving the off-tree problem independently 

of the other problems.ò
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ÅñAnd the second is to develop an improved approach for 

information abstraction that better accounts for card 

removal/``blockers'' (i.e., that accounts for the fact that us 

having certain cards in our hand modifies the probability of the 

opponent having certain hands). This issue is most problematic 

within the information abstraction algorithm for the 

endgame, where the card removal effect is most significant 

due to the distributions for us and the opponent being the 

most well defined(i.e., there is no more potential remaining in 

the hand due to uncertainty of public cards, and this relative 

certainty will likely cause the distributions to put positive weight 

on fewer hands), and it limits our ability to utilize large bet 

sizes, which have been demonstrated to be optimal in certain 

settings.ò

Two most important avenues for 

improvement
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ÅNew game decomposition approach (CFR-d) has 

theoretical guarantee but performs worse empirically

ïBurch et al. AAAI-14 

ÅRecent approach for safer endgame solving that 

maximizes the ñendgame marginò 

ïMoravicet al. AAAI-16

ÅDoug Polk related to me in personal communication 

after the competition that he thought the river strategy 

of Claudicousing the endgame solver was the strongest 

part of the agent.
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Second Brains vs. AI Competition

ÅLibratus: +14.7 BB/100 over 120,000 hands ($200k in 

prizes)

ïClaudico-9.16 BB/100 over 80,000 hands ($100k in prizes)
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1. Libratus: 20-25 million core hours on supercomputer

ïClaudico: 2-3 million core hours on supercomputer
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2. Improved equilibrium-finding algorithm ñRegret-

based pruningò which prunes actions with high regret 

early on in CFR so that the computation can eliminate 

large portions of the game tree following these ñbadò 

actions.

ïBrown and Sandholm, ñReduced Space and Faster 

Convergence in Imperfect-Information Games via 

Regret-Based Pruning,ò 2017 AAAI Workshop on 

Computer Poker and Imperfect Information

http://www.cs.cmu.edu/~noamb/papers/16-arXiv-Total-RBP.pdf
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3. Improved endgame solver. Used supercomputer 

resources in real time. Was able to solve full turn and 

river endgames within around 20 seconds. Estimated 

that it would take 10+ minutes on normal machine.

ïBrown and Sandholm, ñSafe and Nested Endgame Solving 

in Imperfect-Information Games,ò2017 AAAI Workshop 

on Computer Poker and Imperfect Information

ïUsed CFR instead of LP for endgame solving (to better 

capitalize on parallelization).

http://www.cs.cmu.edu/~noamb/papers/17-AAAI-Refinement.pdf
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4. ñStrategy improverò

ï ñThat's why Brown and Sandholmbuilt a third 

system. Each evening, Brown would run an 

algorithm that could identify those patterns and 

remove them. "It could compute this overnight and 

have everything in place the next day," he says.ò
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5. Claudicoôsmistakes Ą Libratusô strengths

ï e.g., card removal/ñblockersò and off-tree problem
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DeepStack

ÅDeepStackagent from Alberta beat human 

ñprofessionalsò but not two-player no-limit Texas hold 

óemspecialists in 2016 for 49 bb/100.

ïLibratus: +14.7 BB/100

ïClaudico: -9.16 BB/100

ÅIt played 3000 hands per match against each human, 

against ~35 humans. Used variance reduction 

techniques for statistical significance.

ÅPublished in ñScience,ò 2017.
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ÅMichael Bowling, ñDeepStackis ALL Endgame 

Solving!ò

ÅSolves each round independently, assuming payoffs 

that were trained using deep learning.

ÅDeepStackacts very quickly in real time, but requires 

~175 core years for the training, which is equivalent to 

several hundred computers for several months.
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Midgame solving 
(Ganzfried& Hu ICTAI ó17)
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Computing Nash equilibria in games 

with more than two players
ÅCFR can be run, but no significant guarantees other than that it 

cannot play an iteratively strictly dominated action.

ÅDeveloped new algorithms for computing Ů-equilibrium 

strategies in multiplayer imperfect-information stochastic games

ïModels multiplayer poker tournament endgames [AAMAS08/IJCAI09]

ÅMost successful algorithm, called PI-FP, used a two-level 

iterative procedure

ïOuter loop is variant of policy iteration

ï Inner loop is an extension of fictitious play

ÅProposition: If the sequence of strategies determined by 

iterations of PI-FP converges, then the final strategy profile is an 

equilibrium.

ÅWe verified that our algorithms did in fact converge to Ů-

equilibrium strategies for very small Ů.
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The need for opponent exploitation

ÅGame-solving approach produces unexploitable(i.e., 

ñsafeò) strategies in two-player zero-sum games

ÅBut it has no guarantees in general-sum and 

multiplayer games

ÅFurthermore, even in two-player zero-sum games, a 

much higher payoff is achievable against weak 

opponents by learning and exploiting their mistakes
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Opponent exploitation challenges

ÅNeeds prohibitively many repetitions to learn in large 

games (only 3000 hands per match in the poker 

competition, so only have observations at a minuscule 

fraction of information sets)

ÅPartial observabilityof opponentôs private information

ÅOften, there is no historical data on the specific opponent 

ïEven if there is, it may be unlabelledor semi-labelled

ÅRecently, game-solving approach has significantly 

outperformed exploitation approaches in Texas hold óem
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Experiments on opponent exploitation

ÅSignificantly outperforms game-theory-based base strategy in 2-

player limit Texas hold óemagainst 

ï trivial opponents (e.g., one that always calls and one that plays randomly)

ïweak opponents from AAAI computer poker competitions

ÅDonôt have to turn this on against strong opponents

Opponent: Always fold

Win 

rate

Opponent: Always raise Opponent: GUS2

1,000 3,000
#hands
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Safeopponent exploitation

ÅDefinition. Safestrategy achieves at least the 

value of the (repeated) game in expectation

ÅIs safe exploitation possible (beyond selecting 

among equilibrium strategies in the one-shot 

game)?
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Rock-Paper-Scissors

ÅSuppose the opponent has played Rock in each of the 

first 10 iterations, while we have played the 

equilibrium ů*

ÅCan we exploit him by playing pure strategy Paper in 

the 11th iteration?

ïYes, but this would not be safe! 

ÅBy similar reasoning, any deviation from ů* will be 

unsafe

ÅSo safe exploitation is not possible in Rock-Paper-

Scissors
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Rock-Paper-Scissors-Toaster

Åt is strictly dominated

ïs does strictly better than t regardless of P1ôs strategy

ÅSuppose we play NE in the first round, and he plays t

ïExpected payoff of 10/3

ÅThen we can play R in the second round and guarantee at 
least 7/3 between the two rounds

ÅSafe exploitation is possible in RPST!

ïBecause of presence of ógiftô strategy t

rock paper scissors toaster

Rock 0,0 -1, 1 1, -1 4, -4

Paper 1,-1 0, 0 -1,1 3, -3

Scissors -1,1 1,-1 0,0 3, -3
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When can opponent be exploited safely?

ÅOpponent played an (iterated weakly) dominated strategy?

ÅOpponent played a strategy that isnôt in the support of any eq?

Å Definition. We received a gift if opponent played a strategy such that we have 

an equilibrium strategy for which the opponentôs strategy isnôt a best response

Å Theorem.Safe exploitation is possible iff the game has gifts

R is a gift 

but not iteratively weakly dominated

L M R

U 3 2 10

D 2 3 0

L R

U 0 0

D -2 1

R isnôt in the support of any equilibrium

but is also not a gift
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Exploitation algorithms

1. Risk what youôve won so far

2. Risk what youôve won so far in expectation (over natureôs & own 

randomization), i.e., risk the gifts received

ïAssuming the opponent plays a nemesis in states we donôt observe

ÅTheorem. A strategy for a two-player zero-sum game is safe iff it 

never risks more than the gifts received according to #2

ÅCan be used to make any opponent model / exploitation algorithm 

safe

ÅNo prior (non-eq) opponent exploitation algorithms are safe

ÅWe developed several new algorithms that are safe

ïPresent analogous results and algorithms for extensive-form 

games of perfect and imperfect-information
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Risk What Youôve Won in Expectation 

(RWYWE)

ÅSet k1 = 0

Åfor t = 1 to T do

ïSet ́ t
i to be kt-safe best response to M

ïPlay action at
i according to ́ti

ïUpdate M with opponentôs action at
-i

ïSet kt+1 = kt + ui(
t́
i, a-i) ïv* 
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Game solving challenges

ÅNash equilibrium lacks theoretical justification in 

certain game classes

ïE.g., games with more than two players

ïEven in two-player zero-sum games, certain refinements are 

preferable

ÅComputing Nash equilibrium is PPAD-complete in 

certain classes

ÅEven approximating NE in 2p zero-sum games very 

challenging in practice for many interesting games

ïHuge state spaces

ÅRobust exploitation is preferable
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Major future avenue: Beyond two agents

ÅMany components of the standard and the endgame paradigms 

aredirectly applicable to more agents.

ÅDirect: abstraction, translation, post-processing, 

endgame/midgame solving, exploitation algorithms

ïEndgame solving: would require only two agents remaining in the 

endgame, which is common for postflopin poker. For more than two 

agents, would likely need CFR approximation.

ÅEquilibrium algorithms such as CFR can apply, but guarantees 

are limited.

ï Improved theoretical understanding of existing approaches.

ïNew approaches with improved performance/theory.

ïNew solution concepts altogether, with efficient algorithms for them.

ÅSafe exploitation, but guarantees maximin instead of value 



115


