
IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1544 | P a g e

A Study on Improvement of Cost Estimation Tool

Ankit Fulzele 1, Rahul Kumar Chawda2

1 Student of 6 th Sem MCA Department , Kalinga University, Raipur

2 Assistant Professor, Department of Computer Science, Kalinga University, Raipur

rahul.chawda3@gmail.com 2

Abstract Unified Modeling Language (UML) is a

standardized general-purpose modeling language in the field

of software engineering. The Unified Modeling Language

includes a set of graphic notation techniques to create visual

models of object-oriented software intensive systems. In

software engineering, a class diagram in the UML is a type of

static structure diagram that describes the structure of a

system by showing the system’s classes, their attributes,

operations (or methods), and the relationships among the

classes.

Keyword Unified Modeling Language, attributes, operations

I. INTRODUCTION

A survey says, almost one-third projects exceed their budget

and is delivered late and two-thirds of all projects overrun

their original estimates. It is impossible for a manager or

system analyst to accurately predict the cost and eff ort

required to develop software. Without accurate cost estimation

capability, project managers can’t determine how much time

and manpower the project should take and that means the

software portion of the project is out of control from its

beginning. It is difficult to understand and estimate a software

product that cant be seen and touched. Software grow and

change when it is written. In project management, the most

challenging task is cost estimation. It is necessary to correctly

estimate required resources and schedules for software

development projects. Software cost estimation process

includes the following:

 ˆ Estimation of the size of the software product to be

produced

 ˆ Estimation of the eff ort required

 ˆ Development of preliminary project schedules

 ˆ Estimation of overall cost of the project

Bottom Up Approach

 A bottom-up approach is the piecing together of

systems to give rise to grander systems. It emphasize mainly

on coding and early testing, which begins as soon as the first

module has been specified. This approach, runs the risk that

modules may be coded without having a clear idea of how

they link to other parts of the system, and such linking may

not be as easy as first thought. Main benefit of the bottom-up

approach is re-usability of code. Using bottom-up estimating

method, cost of each software components is estimated and

then combine all the results to arrive at an estimated cost of

overall project. It aims at constructing the estimate of a system

from the knowledge accumulated from the small software

components and their interactions. COCOMO model is

developed using this approach.

COCOMO Model

 The Constructive Cost Model (COCOMO) is an

algorithmic software cost estimation model. It is a regression

mailto:Rahul.chawda3@gmail.com

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1545 | P a g e

model which uses basis regression formula with parameters

that are derived from historical project data and current as

well as future project characteristics. Software development

eff ort is calculated in terms of program size by COCOMO.

Program size is estimated in thousands of source lines of code

(SLOC). COCOMO assumes that the system and software

requirements have been defined already, and that these

requirements are stable.

II. LITERATURE REVIEW

 In software project development, size evaluation is

one of the main tasks with reliable cost and eff ort estimations.

To estimate the size of a software system several measures

have been defined so far. Some are as follows:

 Function point Approach

 Class Point Approach

 T. Uemura et al., Function Point Analysis (FPA)

was developed by IBM in response to a number of problems

arising in measuring the size of system in terms of lines of

codes. FPA measures size of an application system in two

areas: the specific user functionality and the system

characteristics. The specific user functionality is the

measurement of functionality delivered by the application for

user request. The five function types identified are: external

output, external enquiries, external input, external interface

files and internal logical files. For each function identified as

one of the five function types given, it is further classified as

low, average or high and a weight is given to each. The sum

of weights tells about the size of information processing and is

referred as Unadjusted Function Points.

 S. Kanmani et al., Class Point approach provides a

system level estimation of the size of Object Oriented

products. It has been derived by recasting the ideas underlying

the function point analysis within the Object Oriented

paradigm and by suitably combining well-known OO

measures. The process of Class Point size estimation is

composed of 3 main phases, corresponding to analogous

phases in function point approach. The following steps show

how class point is calculated:

 ˆ Information procession size estimation

1. Identification and classification of class

2. Calculation of complexity level of each class

3. Calculating Total Unadjusted Class Points

 ˆ Estimation of Technical Complexity

Factor(TCF)

 ˆ Final evaluation of Class Point

 M. Jorgensen et al, FPA technique applies diff erent

formula while measuring size of system for software

development and maintenance. So, the type of function point

count should be deter mined at the outset. Three types of

function point counts:

1. Enhancement project function point count

2. Development project function point count

3. Application function point count

 G. Costagliola et al., the unadjusted function point

reflect the functionality of logical system provided to the user.

Five function types are used to determine unadjusted function

point. Those function points are:

 ˆ Internal Logical File (ILF)

 ˆ External Interface File (EIF)

 ˆ External Input (EI)

 ˆ External Output (EO)

 ˆ External Inquiry (EQ)

 Each function type is assessed for its complexity

(low, average or high) as follows

 Depending on the number of file type referenced

(FTR) and data element type (DET), EI, EO and EQ

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1546 | P a g e

are given complexity ratings; and Depending on

number of record element types (RET) and data

element types

 (DET), EIF and ILF are given complexity rating .

III. CONCLUSION

 The Extended Class Point Approach provides

system-level size estimation of Object Oriented product and

from empirical validation, it exhibits better performance than

the Class Point Approach. Software developed for class point

calculation is simple to use. Calculating Adjusting Class Point

value for large number of softwares using this tool, compared

the actual eff ort and the estimated eff ort using regression

analysis. Through the eff ort estimation, we can conclude that,

how much eff ort the project has used and then we can have a

deeper knowledge of developer teams professional skill level.

Leaders of company need this kind of data to manage the

company and arrange tasks according to the developer’s

professional skill.

References

1. Nikki Panlilio-Yap. Software estimation using the

slim tool. In Proceedings of the 1992 conference of

the Centre for Advanced Studies on Collaborative

research - Volume 1, CASCON ’92, pages 439–475.

IBM Press, 1992.

2. K. Pillai and V.S. Sukumaran Nair. A model for

software development eff ort and cost estimation.

Software Engineering, IEEE Transactions on,

23(8):485–497, 1997

3. Barry W. Boehm, Clark, Horowitz, Brown, Reifer,

Chulani, Ray Madachy, and Bert Steece. Software

Cost Estimation with Cocomo II with Cdrom.

Prentice Hall PTR, Upper Saddle River, NJ, USA,

1st edition, 2000.

4. T. Uemura, S. Kusumoto, and K. Inoue. Function

point measurement tool for uml design specification.

In Software Metrics Symposium, 1999. Proceedings.

Sixth International, pages 62–69, 1999

5. CPM IFPUG. Counting practices manual, release 4.1.

1. IFPUG–International Function Point Users Group,

2000.

6. T. Fetcke, A. Abran, and Tho-Hau Nguyen. Mapping

the oo-jacobson approach into function point

analysis. In Technology of Object-Oriented

Languages and Systems, 1997. TOOLS 23.

Proceedings, pages 192–202, 1997

7. M. Jorgensen and M. Shepperd. A systematic review

of software development cost estimation studies.

Software Engineering, IEEE Transactions on,

33(1):33–53, 2007

8. J.E. Matson, B.E. Barrett, and J.M. Mellichamp.

Software development cost estimation using function

points. Software Engineering, IEEE Transactions on,

20(4):275–287, 1994.

9. G. Costagliola, F. Ferrucci, G. Tortora, and G.

Vitiello. Class point: an approach for the size

estimation of object-oriented systems. Software

Engineering, IEEE Transactions on, 31(1):52– 74,

2005.

10. SangEun Kim, William Lively, and Dick Simmons.

An eff ort estimation by uml points in early stage of

software development. In Software Engineering

Research and Practice’06, pages 415–421, 2006.

11. Wei Zhou and Qiang Liu. Extended class point

approach of size estimation for oo product. In

Computer Engineering and Technology (ICCET),

2010 2nd International Conference on, volume 4,

pages V4–117–V4–122, 2010.2

12. S. Kanmani, J. Kathiravan, S. Senthil Kumar, and M.

Shanmugam. Neural network based eff ort estimation

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1547 | P a g e

using class points for oo systems. In Proceedings of

the International Conference on Computing: Theory

and Applications, ICCTA ’07, pages 261–266,

Washington, DC, USA, 2007. IEEE Computer

Society.

13. M. Shepperd and C. Schofield. Estimating software

project eff ort using analogies. Software Engineering,

IEEE Transactions on, 23(11):736–743, 1997.

