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PERSPECTIVES & VIEWS

Darkness: What comprises empty space?
James Bjorken

The problem of dark en-
ergy is perhaps the most
profound issue facing fun-
damental physics at present.
This essay deals with a spec-
ulation that extends the
problem in what appears to
me to be a new direction.

Even for the most remote regions
of space in the middle of cosmic
voids, far away from ordinary matter
and dark matter, it is very arguable
that there is still a lot of something. I
will call this “something”, for want of
a better term, “darkness”. I will argue
that darkness can be quantified, and
that there are roughly 1038 units of
darkness per liter in the emptiest of
empty space, and much more than
that elsewhere in space. It is not a
novelty to suggest that empty space
is full of some kind of stuff. Some-
times this stuff is called vacuum fluc-
tuations, sometimes it is called vir-
tual particles, sometimes it is called
spacetime foam, and sometimes it is
called spin networks. But the natural
scale for a basic unit of such stuff is
usually taken to be the Planck scale
of 10−33 cm, leading to a density of
about 10102 units per liter. What is
different here is the supposition that
this kind of language might be rel-
evant, even in the context of pure
gravitation theory, at a much larger
scale -which I will call the Zeldovich
scale- of about 10−12 cm.

The motivation for this sup-
position lies in a certain version
of gravitational theory, called the
MacDowell-Mansouri extension of
the first-order Einstein-Cartan for-

malism for general relativity [1, 2].
This formalism, which has very deep
mathematical roots [24], requires
the existence of a nonvanishing,
positive dark energy density (i.e. a
cosmological term in the action). In
addition it requires the existence of
a curious topological term in the ac-
tion, known as the Euler or Gauss-
Bonnet invariant. The presence per
se of such a term is by itself un-
remarkable. But the coefficient in
front of this term is the famous 10120,
which permeates all discussions of
the problem of the magnitude of the
dark energy density observed in na-
ture. It is this feature which creates
in my mind novelty, and which mo-
tivates me to pursue possible conse-
quences of the existence of this term
in the action.

To make such a suggestion is to
live dangerously, because we have
a huge amount of evidence regard-
ing what goes on at the Zeldovich
scale. Real physical effects of “dark-
ness” must be hidden very effec-
tively; otherwise the idea is wrong.
But if the effects of “darkness” are ev-
erywhere negligible at this scale, the
idea is not even wrong - it is, opera-
tionally speaking, irrelevant. But it is
conceivable, albeit a long shot, that
there is a middle ground. This note
is based on that notion.

1. Dark energy and the
expanding universe

General relativity, supplemented
with Einstein’s cosmological term,

accounts for large-scale cosmo-
logical phenomena. The Einstein
equations contain two parameters,
Newton’s constant G N and the cos-
mological constant �. Quantum
theory and special relativity provide
two others -Planck’s constant �

and the speed of light c. (Hereafter
we choose units such that � = c =
1.) With the help of these, we may
construct two fundamental lengths,
one extremely small and the other
extremely large. The Planck length is
constructed from Newton’s constant

l2
Pl = G−1

N = (1.6 × 10−33cm)2

It defines the short distance bound-
ary of state-of-the-art descriptions
of nature. The Hubble length is con-
structed from the cosmological con-
stant

l2
H = 3

�
= (1.5 × 10+28cm)2 ≡ H −2

Its inverse H , as defined above, will
be prominent in what follows; it de-
scribes the expansion rate of dark-
energy-dominated spacetime. This
Hubble scale serves as a quantita-
tive measure of the size (as well as
the age) of the observable part of
our universe. And for a long time
to come the Hubble length will be
the biggest distance scale relevant
to observational cosmology. Beyond
that distance scale, we will, for the
foreseeable future, have no observa-
tional information about the struc-
ture of our universe.

These two extreme distance
scales define the outer boundaries
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Figure 1 Simulations of the cosmic web (a) as of now, and (b) in the future, when the universe has expanded tenfold. The distance scale
for Fig. 1a is roughly 50 megaparsecs. (The simulations were carried out by Tom Abel and Oliver Hahn, and the visualizations were carried
out by Ralf Kaehler and Tom Abel, all at the Kavli Institute for Particle Astrophysics and Cosmology, SLAC)

of scientific inquiry. They are sep-
arated by about 61 powers of ten.
But while the subject matter of
gravitation theory and cosmology
is bracketed by these two extreme
distance scales, there exists an
intermediate distance scale which is
induced from the other two. We may
call this the dark-energy scale. It
occurs from examining the dynam-
ics of the expanding universe. If we
look at the structure of the cosmos
at the largest scales, we see what is
known as the cosmic web: a complex
pattern of massive nodes (galaxies,
stars, black holes, etc.) connected
by sheets of matter as well as by fil-
aments of matter. In between these
structures are large voids containing
almost nothing. If one puts well-
separated, small bits of matter into
these voids, the bits of matter will
accelerate away from each other,
with constant acceleration. This
is due to the presence of the dark
energy inhabiting such voids. And
indeed the size of these voids will
themselves expand (exponentially)
as time progresses, until they take
over almost all of space. Our local
group of galaxies, within which
there are no such voids, will not ex-
pand. But all the neighboring voids
will expand and coalesce around
us. Our local group will therefore
become (after perhaps 200 billion

years or so) an island surrounded
by a rapidly expanding sea of dark
energy. How should we view this
situation? It is not hard to provide
some intuition, and my preferred
choice is as follows. Imagine being
in a sea in a dead calm, with no wind
or ocean currents. We are one of
many boats floating in the sea, and
we see neighboring boats receding
away from us. We learn that the
inhabitants of the other boats expe-
rience the very same phenomenon.
What is the simplest explanation? It
is simply that the sea level is rising.
(In this analogy we are subtracting
one space dimension, assuming that
the sea lies on a spherical earth,
and that we are viewing things from
the point of view of “flatlanders”.)
There are plenty of mechanisms
which can be brought forward to
account for this sea level rise, One
of the simplest is that there exist
springs at the bottom of the sea.
Another is that extra water flows
in from the boundaries of the sea,
out of sight from the observers in
the boats. Implicit in many such
interpretations is the presumption
of extra dimensions (beyond the
flatlanders’ two space dimensions,
in the analogy). My own favorite is
that there are six extra dimensions
of spacetime, very similar to what
is envisioned by the string theory

community. But my motivation,
differs sharply from that of the string
theorists. To quantify what happens
in the real universe, put a few atoms,
very well separated, into the void,
all at rest relative to each other. If
we wait long enough (that means
something like 10 billion years!),we
will see them moving away from
each other at ever increasing speeds.
Indeed the Einstein equations, with
dark energy included, lead to a very
simple equation of motion:

d2r
dt2

= H 2r, with r(t) = r(0)eH t

Here r(t) represents the distance be-
tween any two of the atoms. If one
creates a (big) box by putting an
atom at each corner, then as time
goes on this box will increase in
volume exponentially. But the den-
sity of dark energy inside the box
does not change. Therefore the to-
tal amount of dark energy in the box
also increases exponentially with
time. At this point we must say a
few words about what this phrase
“dark energy” really signifies. In the
Einstein equations, the cosmolog-
ical term can be interpreted as a
source of gravitational field which
acts like a uniform fluid with a small,
uniform, positive energy density,
but with negative pressure equal in
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magnitude to the energy density.
While this sounds bizarre, such flu-
ids do exist in the form of super-
conductors or superfluids like liquid
Helium at low temperatures. The en-
ergy density ρDE (or pressure if one
prefers) is given by the formula

|p| = ρDE = U
V

= �

8πG N

= 3
8π

H 2 M2
Pl

With this analogy, one is invited to
view even the emptiest of empty
space that we can in principle find
in the observable universe as a
medium which contains something,
in particular energy, and this is for
sure a mysterious medium. The cen-
tral question for me is the origin
of the exponentially increasing en-
ergy in the comoving box we con-
structed above. In any case, we do
see that this dark-energy density is
characterized by a mass scale mDE

and/or a distance scale lDE which
lies halfway, logarithmically speak-
ing, between the cosmological scale
and the Planck scale:

mDE =
(

3
8π

)1/4 √
H MPl = 2.4 meV

lDE ≡ m−1
DE = 8 × 10−3cm

This scale is a very delicate one, and
it is very easy to overwhelm the ef-
fects of dark energy by putting some
matter nearby. For example, con-
sider a single proton put into the
middle of a dark-energy-dominated
void. A test particle (e.g. something
with the mass of an electron but
which is electrically neutral) will feel
the gravitational force of the proton
if it is close enough, and for example
able to orbit around the proton, like
the earth around the sun, But if it is
far away from the proton, it will feel
the dark energy and accelerate away
from the proton. Call the boundary
surface, where this transition occurs,

the sphere of influence of the pro-
ton [3]. Its radius r is given by the
formula

G N Mproton

r2
= H 2r

with

r =
(

Mproton

M2
Pl H 2

)1/3

≈ 30 cm

The total dark energy inside the
sphere of influence turns out to be of
the same magnitude as the rest en-
ergy of the source, as might be ex-
pected already by dimensional anal-
ysis.

Uinside = 4
3
πr3ρDE

= 4
3
π

(
Mproton

M2
Pl H 2

)(
3

8π
H 2 M2

Pl

)

= Mproton

2

Given this idea of sphere of influ-
ence, there is another interesting
way to define the dark energy scale,.
Were the test particle to have a really
small mass, the uncertainty prin-
ciple would imply that its sphere
of influence would lie within its
own Compton wavelength, render-
ing the very concept of sphere of in-
fluence with radius r –at a classical
level of description– irrelevant. The
crossover mass is of order the dark-
energy mass scale:

r ∼ 1
m

∼
(

m

M2
Pl H 2

)1/3

and thus

m4 ∼ M2
Pl H 2 ∼ m4

DE

This value is tantalizingly close to
the mass scale of the three neutrino
species [4]. Given this induced dark-
energy mass and distance scale, our
next task is to motivate another such
induced scale, to be associated with
the concept I have called “darkness”.
To do so properly requires some

discussion of general relativity at a
more technical level, to be given in
the online Appendix A. The bottom
line in that discussion is that there
is a third term to be added to the
action of general relativity. This is
the aforementioned Euler or Gauss-
Bonnet topological term. We will en-
counter a special case of this result,
and explicitly see its effects, in the
following section.

2. Darkness in the void

Let us imagine ourselves in the cen-
ter of a large void, with the nodes,
sheets, and filaments of matter com-
prising the “cosmic web” receding
away from us at an accelerating rate.
Now define a box by inserting, say
single atoms at the corners of the
box. We imagine this to be a very big
box, of kilometer scale or greater, so
that the effects of gravity induced
by the fiducial atoms at the corners
is negligible inside almost all of the
box. The exception is of course near
the corners where the spheres of
influence of the individual atoms
(which have a scale of about a meter
or so) exist. This volume expands
exponentially with time. The space-
time within the box is described by
the Friedmann-Robertson-Walker
(FRW) metric tensor:

ds2 = gμνdxμdxν

= dt2 − a2(t)(dx2 + dy2 + dz2)

Given that the spacetime in the inte-
rior of the box is dominated by dark
energy, the solution of the Einstein
equations is very simple:

a(t) = a(0)eH t

This means that, if the initial dimen-
sions of the box were L1, L2 , L3, then
at later times one will have for the
physical dimensions l1(t), l2(t), l3(t)
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of the box

li(t) = Lia(t) = LieH t

Of interest to us is how the ac-
tion function S for the contents of
the box behaves, and in particular
how the Gauss-Bonnet term in that
action behaves. Given the above
FRW form for the metric tensor, and
the form of the action given in on-
line Appendix A, it is straightforward
to write down S:

SFRW = − 3M2
Pl

8π H 2

∫ t

0
dt

× (ä − H 2a)(ȧ2 − H 2a2)V (0)

Here the volume factor is evidently

V (0) = L1 L2 L3 and V (t) = V (0)e3Ht

Note that the total action vanishes
when the equations of motion are
satisfied. This form of the above ex-
pression for S is also valid for a
more general FRW cosmological ex-
pansion. When expanded out, one
finds

SFRW = −3M2
Pl V (0)

8π H 2

∫ t

0
dt

×
(

1
3

d
dt

ȧ3 − H 2

6

[
d2

dt2
a3

+ 3äa2
]

+ H 4a3
)

Evidently the left-hand term, a to-
tal time derivative, is the Gauss-
Bonnet contribution of interest. The
two middle terms are contributed by
the Einstein-Hilbert action, and the
term on the right is contributed by
the dark energy (cosmological con-
stant). Now let us look at the Gauss-
Bonnet term in more detail. Because
it is a total time derivative (this is
a general statement, not limited to
this FRW application), we write it as
follows:

SG B =
∫ t

0
dt

df
dt

= 2π [N(t) − N(0)]

This is because, at the quantum
level, the phase of a semiclassical
wave function is in fact just the ac-
tion S, and for topological terms
such as the Gauss-Bonnet term the
phase tends to accumulate in dis-
crete units of 2π . Consequently, we
define “the amount of darkness”
N(t) as the phase accumulation of
such a wave function, in units of
2π , which is supposed to describe
the contents of the spacetime within
the box, due to the presence of the
Gauss-Bonnet term in the action.
We find that N(t) is an extensive
quantity, proportional to the time-
dependent volume of the box V (t).
Therefore one may define an inten-
sive quantity, the density of darkness
n, which will, like the dark-energy
density itself, be time-independent:

n = N(t)
V (t)

= H M2
Pl

16π2
≡ �3

Z

From this result, we have defined
above a mass scale �Z and/or a dis-
tance scale lZ . Putting in the num-
bers, we obtain

�Z ≈ 10 MeV

lZ ≈ 2 × 10−12 cm

Logarithmically speaking, this scale
lies about two thirds of the way from
the cosmological distance scale to
the Planck distance scale. (The sub-
script Z stands for Zeldovich [6], who
to my knowledge is the first one to
identify this scale in more or less the
same way as described above. There
may be some prehistory associated
with Dirac’s large number hypothe-
sis. There is definitely some posthis-
tory; this relationship has been in-
dependently rediscovered by several
others in the interim [7].) I must em-
phasize that this Zeldovich scale has
been inferred from the gravitational
sector alone. It is, like the dark-
energy scale, an induced scale. Both

this scale and the dark-energy scale
emerge from the fundamental in-
put scales, cosmological and Planck,
which are defined in terms of Ein-
stein’s cosmological constant � and
Newton constant G N. Nevertheless,
it is very tempting to associate this
Zeldovich scale with the QCD scale
of the standard model of elementary
particles. It is something which I my-
self did for several years before com-
ing around to the point of view laid
out in this note. The bottom line is
that the amount of “darkness” in a
liter of “nothing at all”, such as found
in the midst of a cosmic void, is pre-
sumed to be huge, of order 1038. The
challenge is to sharpen up what is re-
ally meant by such words.

3. Darkness outside the void

The expression for darkness defined
in the previous section can be gener-
alized into regions where the space-
time curvature is dominated by mat-
ter rather than by dark energy. In
particular, as already mentioned, we
can trace its evolution during the
big bang, as described by the simple
FRW cosmology. For that case, the
relevant formula has already been
given:

n(t) = N
V

= M2
Pl

16π2 H 2

(
ȧ
a

)3

As we go back in cosmological time,
ȧ/a increases. Therefore, the density
of darkness was much larger in
the early universe. In fact, it was
already Planckian at a rather late
stage of cosmological evolution,
when the temperature of the cosmic
background radiation was only
about 50 MeV. To see this we solve
the FRW equation for the expansion
of the universe:

(
ȧ
a

)2

= 8π

3M2
Pl

ρ(t)
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Since the solution occurs during
the radiation-dominated epoch of
cosmological expansion, the en-
ergy density ρ(t) can be expressed
in terms of temperature via the
Stefan-Boltzmann law:

ρ(t) = π2g ∗

30
T 4

The quantity g* is the effective num-
ber of degrees of freedom of the
plasma, and is about 15 [8]. Putting
together the above equations ex-
hibits the structure of the solution
for the temperature at which the
density of darkness was Planckian1:

Tcritical ≈ 5�Z ≈ 50 MeV

Evidently this temperature is of
order the Zeldovich mass scale. I
interpret this feature as defining
the limits of the mass scale, or
equivalently of the distance scale,
for which the MacDowell-Mansouri
(MM) description is applicable.
In other words, for earlier stages
of cosmological evolution, some
kind of modification of the MM
description is required. I would like
to emphasize that this does not
necessarily imply a modification
of the dynamics, i.e. the Einstein
equations for gravity. We can also
explore how the density of dark-
ness behaves as one approaches a
matter source at the center of some
sphere of influence which resides
in the middle of a void. An easy
description of this configuration is
in terms of the Painleve-Gullstrand
metric for Schwarzschild-deSitter
spacetime [9]. One writes for the
metric tensor:

ds2 = dt2 − (dr − v(r)dt)2

− r2(dθ2 + sin2 θdφ2)

1 See online material Appendix B

The “velocity function” v(r) charac-
terizes the structure of the space-
time, and is identical to the velocity
of a Newtonian test particle of zero
total energy moving radially toward
(or away from) a source with mass
M - even in the fully relativistic limit:

v2

2
= G N M

r
+ H 2r2

2

When the two contributions to the
velocity are equal, one is near the
surface of the sphere of influence.
This is in fact another way of defin-
ing where it is. It is not too dif-
ficult, given the expression for the
Painleve-Gullstrand metric and the
rules for computing the Riemann
tensor from it, to determine the form
of the density of darkness. One finds

n(r) = M2
Pl

16π2 H 2

(
v2

r2

∂v
∂r

)

For distances r much larger than the
radius of the sphere of influence, one
is in a region of space dominated
by dark energy, and the velocity is
simply

v = H r

Therefore

n(r) −→ H 2 M2
Pl

16π2
when r → ∞

Happily, this agrees with what we
previously computed for dark-
energy-dominated spacetime. On
the other hand, for distances r much
smaller than the radius of the sphere
of influence, the density of darkness
increases rapidly, as the inverse
9/2 power of the distance from the
source:

n(r) ≈ M2
Pl

32π2 H 2

(
2M

M2
Plr

3

)3/2

Therefore we can again anticipate
a critical radius at which the dark-
ness density becomes Planckian. It

turns out that this distance is most
cogently characterized for sources
which are of nuclear matter density,
such as a neutron star, a large nu-
cleus, or for that matter a proton or
neutron. For a source of radius R and
atomic number A, we write

M ∼= mproton A ∼= 100�Z A

The radius of an object of nu-
clear matter density scales as A1/3,
with coefficient R0 empirically de-
termined to be

R0 = 1.2 × 10−13 cm

R = R0 A1/3 ∼= A1/3

16�Z

When the density of darkness goes
critical, i.e. is of the Planck scale, we
have

ncritical ≡ M3
Pl =

√
2M3/2

16π2 H 2 MPlr
9/2
critical

Therefore

rcritical

R
∼= 2.5

It is again clear that the Zeldovich
scale is playing an important role
in this result. Again, it appears that
the MacDowell-Mansouri descrip-
tion becomes incomplete in regions
of space where the energy density of
matter exceeds that of nuclear mat-
ter. Note also that the amount of
darkness residing outside (but quite
near!) the critical radius is easily
found to be of order (MPl/H )A ∼
1060 A .

4. A digression: The history
of ideal gases

Back in the days of James Watt, it
was realized that a hot gas con-
tained energy which could be con-
verted into useful work. But at that
time even the concept of energy was
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not crisp, not to mention the con-
cept of temperature as understood
by a scientist today. In addition, half
a century would pass before Carnot
introduced the concept of entropy,
an essential ingredient in analyz-
ing the maximum efficiency of the
steam engine itself. And it would
take nearly another century before
the microscopic basis of these con-
cepts was firmly established. Now,
instead of ideal gases, we must con-
front empty space, which turns out
to be not completely empty. Not only
does it contain a positive energy
density and a nonvanishing nega-
tive pressure, but perhaps a dark-
ness density. We have in previous
sections already used the language
of thermodynamics, in particular the
identification of extensive and in-
tensive variables and the general re-
lations between them. The hallmark
of the nineteenth-century history of
ideal gases was the development
of thermodynamics and the role it
played in elucidating the general
properties of ideal gases even in the
absence of a microscopic under-
standing of them. This may serve as
a useful object lesson in approach-
ing the dark energy problem today.
Are there other thermodynamics-
like parameters that should be as-
cribed to empty space? There cer-
tainly are candidates. Thanks to
Bekenstein and Hawking, among
others, temperature and entropy are
commonplace concepts used to de-
scribe black hole and cosmological
horizons. Can they be adapted to the
description of spacetime in the bulk?
While most of the attention has been
focused on horizon structure, there
have been adventurous attempts to
do just that. The most recent is the
idea of entropic force introduced
by Eric Verlinde [10], which builds
on previous work by Jacobson and
Padmanabhan [11]. But there are
serious difficulties, and the present
situation, at least to me, appears

to be very unclear. In thermograv-
ity, the concept of entropy is associ-
ated with area. And the concept of
temperature is associated with ac-
celeration. According to Unruh [11],
detectors undergoing constant ac-
celeration behave as if they are at a
finite temperature. The formula re-
lating acceleration a and tempera-
ture T is simple:

T = a
2π

However, what this formula really
means is far from simple, and there
is plenty of room for debate among
the experts. Nevertheless, the very
existence of such a connection in-
vites a further step. I here cross
the line and enter a regime of per-
sonal, rather toxic speculation. Con-
sider again the comoving box in the
void which we discussed already.
Identify the relative acceleration of
pairs of opposite walls with Unruh
temperatures:

ai = Li H 2

Again, L1, L2 and L3 are the dimen-
sions of the box. Now identify the
areas of the walls with entropies S,
according to the Bekenstein rule:

S1 = M2
Pl

4
L2 L3, S2 = M2

Pl

4
L3 L1,

S3 = M2
Pl

4
L1 L2

It follows that

T1 S1 = T2 S2 = T3 S3

= M2
Pl H 2

8π
L1 L2 L3

= 1
8π

(
H 2 M2

Pl

)
V (t) = 1

3
U(t)

Evidently the sum adds up to the
total energy of the box. It is also
amusing that this contribution can
be identified with the äa2 term in
the Einstein-Hilbert part of the ac-
tion (SF RW). However, I must freely

admit that I have not been able
to assemble these vague hints into
a scientific argument. What about
the Gauss-Bonnet term itself, re-
sponsible for the purported “dark-
ness”? As best as I can surmise,
it seems better not to associate it
with temperature and entropy. In the
ideal-gas analogy, it appears to me
somewhat closer to the concepts of
mole fractions and chemical poten-
tials. In other words, if empty space
has several kinds of “constituents”,
analogous to the air we breathe,
then “darkness” may define one of
these components, or some relation-
ship between them. It is very ar-
guable that empty space contains
at the very least a Higgs conden-
sate, a complex quantum chromo-
dynamics (QCD) vacuum structure
associated with quark confinement,
the vacuum amplitudes of all the
other field degrees of freedom, the
“Dirac sea” of quarks and leptons,
and perhaps an axion condensate
responsible for dark matter. Conse-
quently, a multicomponent descrip-
tion of the contents of a cosmic
void may not be unreasonable. But
attaining a full microscopic descrip-
tion may be as elusive as nineteenth-
century attempts to attain a full mi-
croscopic description of the classical
ideal gas.

Another argument for consider-
ing the concept of chemical poten-
tial in the context of empty-space
properties has been given repeat-
edly by Volovik [12]. He considers
the vacuum state as analogous to
a quantum liquid like helium at
very low temperatures. Imagine
stuffing some of that into a box, and
then expanding the box. Eventually
the box will be big enough that a
droplet of the liquid is formed. The
condition for this to occur is that,
ignoring surface effects, the pressure
vanishes. But if the liquid is in a uni-
versality class which admits special
relativity as a low-energy emergent
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symmetry, this implies that the
energy density must also vanish-
up to corrections which scale with
surface area, not volume. This be-
havior does mimic the situation
regarding dark-energy-dominated
spacetime. However, there is a catch.
In the analogy, one has implicitly
kept the baryon number of the
liquid constant while expanding
the box. In the thermodynamic
description, this is tantamount to
introduction of a chemical poten-
tial. And indeed, Volovik’s detailed
thermodynamics-based line of ar-
gument does introduce it via the
Gibbs-Duhem equation.

5. Effective field theory and
the MacDowell-Mansouri
description

Most quantum field theories have
only a limited domain of appli-
cability. But in elementary particle
physics and in gravitation theory,
theorists’ ambitions have been tra-
ditionally higher than that. Never-
theless, precious few if any of our
theories satisfy the goal of unlimited
applicability. And the MacDowell-
Mansouri description, the center-
piece of this note, definitely does
not fall into that category. Quantum
field theories which do not fill the
bill as fundamental are designated
as “effective field theories”. The de-
grees of freedom in an effective-
field-theory action quite often turn
out to be not so fundamental after
all. And the various terms in the ac-
tion play the role of phenomeno-
logical, descriptive placeholders, of-
ten expressing some features of a
more fundamental underlying the-
ory - especially with respect to
symmetries.

A very relevant example of such
an effective field theory is called the
Gasser-Leutwyler chiral effective ac-

tion [13]. Its ingredients are the raw
material of nuclear physics, namely
the Yukawa π-mesons, the proton,
and the neutron. It most importantly
expresses the symmetry properties
of the strong interactions at large
distances (in particular its chiral
symmetries), as well as much of the
dynamics. But the form of the action
is anything but simple, and in any
case is inapplicable for the short-
distance, high-energy applications
associated with the more funda-
mental theory QCD. Under those
circumstances the Gasser-Leutwyler
action gets replaced by the action of
QCD, which looks very much like the
Maxwell action of electrodynamics.
It is an unmet theoretical challenge
to fully derive the Gasser-Leutwyler
effective action from the QCD
action.

One way to think of that action is
in terms of a field theory designed
to only describe the fields within
a box of finite size, such as the
comoving boxes we introduced in
previous sections of this note. If
the dimensions of such a box are
very large compared to the size
of a nucleon, and if one restricts
oneself to low enough energies, the
Gasser-Leutwyler action provides
the most appropriate description.
However, when the box is small
compared to the size of a nucleon,
one is forced to the QCD description
in terms of quarks and gluons. There
is a kind of “phase transition” which
is implied when the box size is of
order the confinement scale of the
strong interactions. I find this point
of view quite germane when con-
templating the role of the darkness,
or Zeldovich, scale in gravitation
theory. The MacDowell-Mansouri
description is only viable if the box
is chosen to be large compared to
the Zeldovich scale. The description
for boxes very small in comparison
to the Zeldovich scale can be ex-
pected to be as different from the

MacDowell-Mansouri description as
the quark-gluon description is from
the Gasser-Leutwyler pion-nucleon
description. Nevertheless, the de-
scription of gravitational forces,
not to mention the standard-model
forces and other standard-model
properties, must not be affected in
a fundamental way. Those descrip-
tions must be applicable on both
sides of the darkness scale, perhaps
in a way similar to how the weak
and electromagnetic interactions
are successfully described on each
side of the strong-interaction, QCD-
confinement boundary. In that case,
a very appropriate language is that
of Gell-Mann’s current algebra, and
perhaps something similar can be
constructed for the case of dark-
ness. But there is a clear need to
elucidate in more detail the nature
of this purported phase boundary
at the Zeldovich scale. Clearly, the
novel feature in the MacDowell-
Mansouri description lies in the
huge coefficient of 10120 multiplying
the action. Where does such a big
number come from? Here I offer a
highly speculative suggestion—six
extra dimensions. Seeing how this
works requires a close look at the
MacDowell-Mansouri formalism. A
sketch of the argument is given in
the online Appendix B.

An interesting consequence of
this hypothesis is that the formalism
expands to gargantuan size. For the
original version of the theory, there
are 40 field degrees of freedom. In
the extra-dimensions version, this
number increases to 550. When this
generalized MacDowell-Mansouri
action is expanded out in terms of
the Riemann tensor, vierbein, etc.,
many new terms in the action are
generated. Most of these terms are
not total time derivatives and ex-
press nontrivial dynamics. They are
analogous to the Einstein-Hilbert
terms which were induced alongside
the Gauss-Bonnet and cosmological
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terms in the original MacDowell-
Mansouri formalism. Those terms
describe gravitons. There is a good
chance that some or all of these extra
terms can be identified with terms in
the standard-model action describ-
ing, e.g., gluons or other physical
degrees of freedom. This is because
the group structure implied by the
geometry of the extra dimensions
might be identifiable with standard-
model internal symmetries. Indeed,
there has existed for some time a
small theory subculture devoted to
the exploitation of essentially this
idea [14]. In summary, the specula-
tive picture that emerges is that the
MacDowell-Mansouri description
is limited to scales large compared
to the Zeldovich scale because the
properties of the six small, compact
extra dimensions cannot be resolved
at the larger scales. The descrip-
tion breaks down because at much
smaller scales the six extra dimen-
sions must in some way be included.
The biggest challenge remaining is
to show that, for standard-model
phenomenology, there exists a de-
scription at scales small compared
with the Zeldovich scale which
remains completely—or almost
completely—insensitive to the pres-
ence of those six extra dimensions,
while remaining formally distinct
from the MacDowell-Mansouri
description valid at large distance
scales.

6. An intuitive view of some
topological actions

In searching for a better understand-
ing of darkness, I crave a better in-
tuitive understanding of the mean-
ing of topological terms in an action
function. This section is devoted to
two such examples. The first exam-
ple comes from classical electrody-
namics, and the idea goes all the

way back to Gauss. But the variant
I discuss here is from the twenti-
eth century, and features the Dirac
string. A Dirac string is essentially a
very thin solenoid containing a finite
amount of magnetic flux, even in the
limit of vanishing solenoid diame-
ter. If the string is open, the mag-
netic field emerging from the end
is radial and inverse square. It de-
scribes a magnetic monopole; the
other end of the string is the source
of a magnetic antimonopole. If the
string is closed, there is no magnetic
field outside the string, and classi-
cally the presence of the string is un-
observable. Quantum-mechanically,
the presence of the closed string can
be detected via an Aharanov-Bohm
experiment [15]. Now consider two
loops of string. They can either be
linked or unlinked. The distinction
can be determined, even classically,
via the magnitude of a topological
term in the action. This topologi-
cal term is the spacetime integral of−→
E · −→

B :

∫
dt

∫
d3x (

−→
E · −→

B )

= −
∫

dt
∫

d3x
−̇→
A · (

−→∇ × −→
A )

= −1
2

∫
dt

d
dt

∫
d3x

−→
A · −→

B

(We here choose temporal gauge,
A0 = 0, for convenience.) It is a short,
pleasurable calculation to show that
the space integral of

−→
A · −→

B is twice
the product of the fluxes if the two
loops of Dirac string are linked, and
is zero otherwise. This is called the
Gauss linking theorem. The result is
independent of the shape, position,
and circumference of the strings; it
measures a topological property of
the string/field configuration. It is
even fun to model darkness in this
language. Build a long chain out of
Dirac string, make each link rigid,
with a size of order the Zeldovich
scale, and arrange each pair of adja-

cent links to give a positive contribu-
tion to the topological action. Make
the field strength inside the string of
Zeldovich scale, and make the diam-
eter of the string the Planck scale.
Pack this chain into our comoving
box, assuming that each link occu-
pies a Zeldovich-scale volume. An-
other pleasurable calculation shows
that these specifications suffice to
provide a dark energy density and a
darkness density of the right orders
of magnitude.

The second example comes from
quantum chromodynamics (QCD).
It again features the

−→
E · −→

B term,
but now with the complications in-
duced by the replacement of the
single photon of quantum elec-
trodynamics with the eight gluons
of quantum chromodynamics. In-
stead of the unit of topology be-
ing represented by a closed loop of
Dirac string, the conventional de-
scription introduces what is often
called a “hedgehog”. It is a nonsingu-
lar gauge potential which gives rise
to zero field strength, and can be
written as a 3 x 3 matrix in color
space, as follows:

A0 = 0,
−→
A = U−1−→∇ U,

U = ei−→τ ·−→r f (r)

with

f (r) −→
{

0 r → ∞
π r → 0

The Pauli matrices −→τ in the above
expression act in color space and ro-
tate a chosen pair of the three col-
ors into each other. Antihedgehogs
can be built by replacing the uni-
tary matrix U by its inverse. In this
case, unlike that of the Dirac string,
the gauge potential

−→
A is everywhere

nonsingular.
Now imagine that the universe is

filled with a “condensate” of hedge-
hogs. Choosing a density of order
the Zeldovich, darkness, scale will
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lead to a total hedgehog number N
of order 10120 for the visible uni-
verse. However, there is a compli-
cation. While one may expect that
classically that N is conserved, this
is not true at the quantum level.
Tunnelling processes, called instan-
ton events, can create or destroy
hedgehogs and antihedgehogs at a
nominal rate of one event per dark-
ness volume per darkness unit of
time. Over all of observable cos-
mological space and cosmological
time there have been of order 10160

such instanton events, leading to
an uncertainty 
N in the hedge-
hog number N of order 1080. But
this number is much smaller than
〈N〉, so no serious damage has been
done.

The conventional, textbook QCD
wisdom regarding hedgehogs differs
from the above version. Instead
of 〈N〉 ∼ 10120, 〈N〉 = 0 is assumed
instead. Instead of 
N ∼ 1080, con-
ventional wisdom sets 
N = ∞.
The variable quantum-mechanically
conjugate to N is the well-known
CP-violating parameter θ of QCD. It
is conventionally regarded as sharp,
i.e. 
θ = 0. In my version 
θ >

10−80. It is unlikely that this causes
phenomenological difficulties.

But it is not fully clear whether
this variant causes difficulties
elsewhere in the QCD formalism.
Certainly the version I have de-
scribed would better match the
overall theme of this note than the
standard version. What I take away
from these examples is not a realistic
model of darkness. Instead, the
message to me is that topological
information like darkness is in a
sense nonlocal. In our examples, the
topological information does not
depend upon the local properties of
strings and hedgehogs, such as size,
shape, and position. Those proper-
ties are in fact not gauge invariant.
Therefore they will not represent
“elements of physical reality”, unless

at some deep level gauge invariance
(and quite likely Lorentz covariance
as well ) is broken. Such a situation is
anticipated in the emergent-gravity
approach, based on analogues
to condensed-matter behavior
[12].

7. Distance scales in the
standard model

The action function which describes
the standard model of elementary
particles is widely regarded as an ef-
fective action. It contains over two
dozen input parameters. Many of
these introduce intrinsic distance
(or energy) scales into the descrip-
tion. In this section we investigate
whether, in some future improved
version of the standard model, some
or all of such distance scales might in
fact be traceable to the darkness and
dark-energy scales and therefore to
G N and � only. Many of the dimen-
sionful parameters of the standard-
model action have to do with quark
masses and mixings. These spread
out over five orders of magnitude,
from the electron mass to the top
quark mass. Understanding them is
still for the future. However, the cen-
troid of this broad distribution, loga-
rithmically speaking, is very near the
Zeldovich scale. Perhaps this is no
accident. It is important in this con-
text to note that conventional wis-
dom provides no real clue as to why
quark and lepton masses should be
anywhere near this value.

We have already commented that
the QCD confinement scale also lies
near the Zeldovich scale. Perhaps
this is also no accident. Here the rel-
evant standard model parameter is
the dimensionless running coupling
constant αs(μ2). In the far ultravio-
let, near the Planck scale, this pa-
rameter is somewhere around 1/40.
Its inverse decreases by about 2 units

per order of magnitude as the scale-
parameter μ is reduced, becoming
of order unity at the confinement
(or darkness!) scale. The structure of
the QCD vacuum at the confinement
scale is complex. Perhaps darkness
most peacefully coexists with the
QCD vacuum structure if the dark-
ness density matches the density of
the QCD vacuum structures respon-
sible for confinement. Gravity needs
only to whisper to QCD at the Planck
scale in order to create the necessary
linkage of the confinement scale to
the darkness scale.

The remaining dimensionful pa-
rameters in the standard-model ac-
tion have to do with the Higgs
sector. These include the vacuum
condensate value of the Higgs field
(242 GeV), the top quark mass
(173 GeV), and the newly-discovered
Higgs-boson mass of 125 GeV. It is
curious that these cluster together,
and even more curious that the top
quark mass is the geometric mean of
the other two, which in turn are in
the ratio 2/1. Perhaps a future the-
ory can relate these to each other.
If so, there might be a tenuous link
to the Zeldovich scale. I regard this
as a marginal possibility, given that
this scale is at least 1000 times the
darkness scale. However, it may be
that the Higgs sector itself has fam-
ily structure, containing a variety
of states which span mass scales
much like the quarks and leptons
do, and extending all the way down
to the regime inhabited by the pro-
posed Peccei-Quinn axion. If so, the
Higgs sector might be rich enough
to include the dark matter sector as
well.

In this regard, I find the ideas of
Hong-Mo Chan and his collabora-
tors especially relevant and provoca-
tive [16]. They suggest that the
mass matrices of quarks and leptons
evolve with scale as the renormaliza-
tion scale μ descends from the ultra-
violet toward the infrared, becoming
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very rapid as one approaches the
Zeldovich scale. Here I interpret
“scale” in terms of the size of the
quantization volume. They have
considerable success in providing
a phenomenological description
of quark and lepton masses and
mixings, especially the second-
generation parameters.

I have constructed my own ver-
sion of their ideas. It is a fragile con-
struction, and this is not the place to
describe or defend it in detail. But I
do get quite good formulae for first
and second generation masses and
mixings in terms of the input values
of third generation quark and lep-
ton masses, plus a crucial charac-
teristic input mass parameter m ∼= 7
MeV. For large mass scales μ, I re-
late the basic, scale-dependent, mix-
ing angle α(μ) of the scheme to
this parameter m in a simple way
[17]: α(μ) ≈ √

m/μ. The output for-
mulae which I obtain are listed in
Table 1.

The main reason for including
all of this here is the ubiquity of the
7 MeV mass parameter. It lies right
in the middle of the darkness scale.
And it seems clear that it represents
a “phase boundary” which separates
the description at scales well below
7 MeV from scales well above it.
However, the arguments leading
to the above formulae still remain
fragile, albeit provocative. As I view
this rotating-mass-matrix idea, it
requires the existence of low-mass
particles to create the necessary
“rotation”. This in turn reinforces
the notion expressed above that the
Higgs sector has a rich family struc-
ture and dynamic range—enough
to encompass the problem of dark
matter. Indeed, ideas not too dis-
similar to this are in fact politically
correct, and there is consider-
able activity nowadays in search-
ing for dark-matter candidates
having masses near the darkness, or
Zeldovich scale [18].

8. CP violation

The phenomenon of CP violation
is subtle, and is seen only in the
context of elementary particle pro-
cesses. The fundamental origin of
this phenomenon is not at all clear
at this time. CP violation can also be
characterized as violation of time-
reversal symmetry of the funda-
mental laws of physics, and this
way of thinking about it may be
especially appropriate in the con-
text of field theory. The standard
Einstein-Hilbert metric theory of
gravity does not admit time-reversal
violation. However, the first-order
Einstein-Cartan version, and espe-
cially the MacDowell-Mansouri ex-
tension thereto, does admit this pos-
sibility in a natural way [19]. And
I see a possible, albeit very spec-
ulative, link to QCD and the dark-
matter sector as well, thanks to the
presence of the darkness scale. Ad-
dition of CP violating terms in the
action can be accomplished in the
MacDowell-Mansouri formalism in
a very simple way [22]. When this
is done and the action is expanded
out in a way analogous to what was
described earlier in this text, three
new terms are generated [2]. Two of
them are topological. One is called
the Pontryagin term, and is very sim-
ilar to the

−→
E · −→

B term present in
QCD. The other topological term is
called the Nieh-Yan invariant, and is
not very familiar, even to many ex-
perts in the business.

The third term, widely known as
the Holst term [20], is not topologi-
cal. When written down in Einstein-
Cartan language, it bears a close kin-
ship to the Einstein-Hilbert term in
the action. Nevertheless, for almost
all practical purposes, it does not
affect the Einstein equations them-
selves. Activation of the Holst term
requires activation of the degrees
of freedom called torsion which
were briefly mentioned earlier. For

most practical applications of gen-
eral relativity—falling apples, plan-
etary motion, cosmology—the tor-
sion vanishes as a consequence
of the Einstein-Cartan version of
the variational principle. But when
quarks and leptons are included
it is possible—but not very sim-
ple in practice—to activate these
torsion degrees of freedom. There
is a small theory subculture that
explores this option [21]. This in-
cludes me; my own attempt to ac-
tivate torsion led to a fermion con-
densate of Zeldovich density [22].
It would contribute significantly to
the dark-energy budget and would
also lead, in addition to CP viola-
tion, to a tiny amount of Lorentz
violation—roughly a billion times
less than present-day experimental
sensitivity.

While the Einstein-Cartan and
MacDowell-Mansouri formalisms
only admit the possibility of CP
violation, the phenomenon clearly
exists. It must be an integral part of a
future theory of masses and mixings
of quarks and leptons. In addition,
the QCD theory of the strong inter-
actions of quarks and gluons also
naturally admits CP violation via the−→
E · −→

B term discussed earlier. This
issue is most successfully dealt with
via the Peccei-Quinn mechanism.
It involves adding to the theory
Higgs-like degrees of freedom which
screen the CP violation from the
strong interactions, at the expense
of introducing an almost mass-
less boson called the axion. The
axion, in turn, is an attractive dark-
matter candidate and is the object
of experimental search nowadays
[23].

It should be clear that this CP vio-
lation issue impinges on the subject
matter of this note—especially the
previous section, and in particular
the rotating-mass-matrix ideas of
Hong-Mo Chan and his collabora-
tors. An important feature of that
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Table 1 First and second generation masses, as well as mixings in terms of the input values of third generation quark and lepton
masses. Experimental values are in parentheses. The asterisks are a Michelin scale for the quality of the theoretical arguments
leading to the quoted results.

proposed value exp. value

First-generation masses mu � m = 7 MeV (2.3 ± 0.6 MeV)

md � m = 7 MeV (4.8 ± 0.5 MeV)

me = m2/mμ = 0.44 MeV∗ (0.51 MeV)

Second-generation masses mc = √
mmt = 1.1 GeV∗∗ (1.3 GeV)

ms = √
mmb = 170 MeV∗∗ (100 ± 30 MeV)

mμ = √
mmτ = 110 MeV∗∗ (106 MeV)

CKM mixings |Vcb| ∼= √
m/mb = .040∗∗ (.041)

|Vtd| ∼= m/
√

mbms = .0080∗ (.0081)

|Vub| ∼= m/
√

mbmc = .0032∗ (.0039)

Unitary-triangle vertex angle α = π/2 (89◦ ± 4◦)

description, both in the original
version and in the variant which I
explored, is that—at least for mass
scales μ large in comparison to the
critical scale of 7 MeV—the mass
matrix is assumed to be rank 2 or
less. At least one eigenvalue must
vanish. Under such circumstances,
it is well-established that strong
CP-violating effects vanish. Only
below the 7 MeV scale will the strong
CP violation emerge phenomeno-
logically. And Hong-Mo Chan et. al.
and I argue that below that scale
the strong CP violating effects are
expressed only in the electroweak
sector according to the usual
Cabibbo-Kobayashi-Maskawa
(CKM) description. In order for this
to happen, the primordial value of
the coefficient θ in front of the QCD−→
E · −→

B term in the action is expected
to be large, of order unity, and
some variant of the Peccei-Quinn
mechanism must be operative.

The bottom line is that perhaps
one way of characterizing the dis-
tinction between the “macroscopic”
phase describing phenomena at

distance scales large compared to
the darkness scale, and the opposite
“microscopic” phase describing
phenomena at distance scales small
compared to the darkness scale,
is that CP violation is present in
the former case and absent in the
latter. For better or worse, I gen-
eralize this to include the lepton
number violation associated with
the standard picture of neutrino
mixing. This gives rise to interesting
implications for the description of
neutrino masses and mixings. But
these are beyond the scope of this
note.

9. Darkness and the
foundations of quantum
theory

We have seen that the radius of a
sphere of influence for a single pro-
ton is about 30 cm. The spheres of
influence of larger, ordinary objects
scale as the cube root of their atomic
numbers. That means that my per-

sonal sphere of influence is about
a million kilometers. Consequently,
if I try to observe an elementary
phenomenon occurring in the midst
of a cosmic void, such as a typical
elementary-particle-physics scatter-
ing process, it may make a differ-
ence if I distance myself (and all
other measuring apparatus of a sim-
ilar size) by an amount large com-
pared to the distance from here to
the moon. Otherwise I am osten-
sibly contributing a lot of “back-
ground darkness” to the region of
space where the elementary process
occurs.

For example, imagine an 8 TeV
proton-proton collision which pro-
duces, amidst the collision debris,
a Higgs boson which decays into
two gamma rays. Let us suppose
it occurs in the midst of a cosmic
void. On approach, each proton pre-
sumably carries with it a Lorentz-
contracted “darkness disc”, within
which there are of order 1060 units
of darkness. In addition, when the
separation of the two protons is
small compared to 30 cm, there must
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also appear an ephemeral sphere
of influence with radius appropri-
ate to the total center-of-mass en-
ergy of the two protons; the radius of
that sphere of influence is evidently
about six meters. Eventually, long af-
ter the collision is over, the sundry
fragments carry away their own
Lorentz-contracted “darkness discs”,
and the six-meter sphere of influ-
ence disappears. A serious general-
ization of the MacDowell-Mansouri
description would endeavor to fol-
low the detailed evolution of the
darkness as such a collision evolves,
perhaps in analogy to how statistical
mechanics and kinetic theory flesh
out a thermodynamic description of
the evolution of a gas or fluid.

If I were to take a close look at
such a collision process, the dark-
ness within my gravitational field
would swamp the other contribu-
tions and arguably influence the
flow of all the darkness associated
with the collision itself. In other
words, at the MacDowell-Mansouri
level of description, the presence of
nearby macroscopic observers and
nearby macroscopic measuring de-
vices will for sure alter the descrip-
tion. However, we do not expect that
this will affect the practicalities in-
volving the prediction of the out-
come of the collision process.

But it is arguable that in a sense it
does. We cannot predict in advance
that an individual proton-proton
collision will produce the Higgs bo-
son, and in any case cannot predict
its decay mode into two gamma rays.
There are quantum choices to be
made. Perhaps the details of the con-
figuration of darkness do influence
the quantum decisions. Even so, it
may still be the case that, for all prac-
tical purposes, it does not matter
whether such observers are present
or not. In either case the density of
darkness in the neighborhood of the
Higgs boson is so large that its fate
may be only determined statistically.

9.1 Final remarks

The above musings essentially as-
sert that for some strange reason
the gravitational fields of observers
and even of elementary particles do
have to be taken into account in or-
der to fully understand present-day,
mundane elementary-particle colli-
sion processes. Conventional wis-
dom, for very good reasons, says
that such effects are negligible. So
the chances are that the above argu-
ments will be of interest, if at all, only
to those natural philosophers who
puzzle over the foundations of quan-
tum mechanics and the theory of
measurements. But I will add two re-
marks to this conclusion. One is that
if darkness is in some sense related
to quantum-mechanics hidden vari-
ables, then Bell’s theorem implies
these are nonlocal. This meshes with
our previous discussion, and again
suggests that, if darkness at some
deep level is emergent and does rep-
resent “elements of physical reality” ,
Lorentz covariance and/or gauge in-
variance will be broken at that deep
level.

The second remark is also some-
thing of a repetition. It is curious that
the quantum (Wheeler-deWitt) wave
function of a piece of dark-energy
dominated space at the semiclas-
sical level is, in the MacDowell-
Mansouri description, trivial—
something that does not happen
in the absence of the enormous
Gauss-Bonnet topological term.
Perhaps the darkness-dominated
regions of cosmic voids are in some
sense so close to “nothing at all” as
to be “beyond the quantum theory”.
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