
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

Schedule

• 10/31: Continue planning (HW3 out)

• 11/2: Finish planning, start probability (Bayesian networks)

• 11/6: Withdrawal deadline

• 11/7: TA will go over HW2

• 11/9: Continue probability (Bayesian networks, Markov models)

• 11/14: Markov decision processes/multiagent decision making

(HW4 out)

• 11/16: Multiagent decision making/reinforcement learning

• 11/21, 11/28, 11/30, 12/5: Machine learning (classification,

regression, clustering, deep learning)

• 12/7: Project presentations and class project due

– Project code due Monday 12/4 at 2PM on Moodle.

• Final exam on 12/14

3

Announcements

• HW3 out 10/31 due 11/14 (2:05pm in lecture or

2:00pm on Moodle)

– https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

– Must be done individually (no partner)

• Midterm exams

• HW2 solutions and graded assignments

• Midterm grades and withdrawal deadline

• HW4 likely out 11/14 due 11/28

https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

4

Class project

• For the class project students will implement an agent for 3-player

Kuhn poker. This is a simple, yet interesting and nontrivial, variant

of poker that has appeared in the AAAI Annual Computer Poker

Competition. The grade will be partially based on performance

against the other agents in a class-wide competition, as well as final

reports and presentations describing the approaches used. Students

can work alone or in groups of 2.

• Link to play against optimal strategy for one-card poker:

– http://www.cs.cmu.edu/~ggordon/poker/

• Paper on Nash equilibrium strategies for 3-player Kuhn poker

– http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

• This weekend I will post link for code and sample agent on Moodle

http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

5

Planning example: air cargo transport

• Three actions:

– Load, Unload, Fly

• Two predicates:

– In(c,p) means that cargo c is inside plane p

– At(x,a) means that object x (either plane or cargo) is at

airport a.

• Initial state

– Conjunction (AND) of ground atoms. (Atoms that are not

mentioned are false).

• Goal

– Conjunction of literals

• Preconditions and effects

– Must be specified for each action

6

Air cargo transport problem

7

Air cargo transport problem

• Note that some care must be taken to make sure the At

predicates are maintained properly. When a plane flies from one

airport to another, all the cargo inside the plane goes with it. In

first-order logic it would be easy to quantify over all objects that

are inside the plane. But basic PDDL (Planning Domain

Definition Language) does not have a universal quantifier, so we

need a different solution. The approach we use is to say that a

piece of cargo ceases to be At anywhere when it is In a plane;

the cargo only becomes At the new airport when it is unloaded.

So At really means “available for use at a given location.”

• PDDL based off STRIPS language.

8

STRIPS

• In artificial intelligence, STRIPS (Stanford Research Institute

Problem Solver) is an automated planner developed by Richard

Fikes and Nils Nilsson in 1971 at SRI International. The same

name was later used to refer to the formal language of the inputs

to this planner. This language is the base for most of the

languages for expressing automated planning problem instances

in use today.

• STRIPS instance is quadruple <P,O,I,G>

– P is set of conditions

– O is set of operators (i.e., actions). Each action specifies preconditions

and postconditions .

– I is initial state (set of conditions that are initially true).

– G is goal state (set of conditions needed to be true/false to achieve goal).

9

Air cargo transport problem

• What is a solution for this problem?

10

Air cargo transport problem

• One solution (there may be others):

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),

Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].

11

Air cargo transport problem

• What about “degenerate” actions like

Fly(P1,JFK,JFK)?

• This should be a no-op (no operation), but it

apparently has contradictory effects according to the

definition (the effect would include At(P1,JFK) AND

!At(P1,JFK)).

• It is common to ignore such problems and assume that

the effects just cancel out. A perhaps better approach is

to add inequality preconditions saying that the from

and to airports must be different. We will see another

similar example shortly.

12

Spare tire problem

• The goal is to have a good spare tire properly mounted

onto the car’s axle, where the initial state has a flat tire

on the axle and a good spare tire in the trunk.

• Four actions:

– Removing the spare tire from the trunk

– Removing the flat tire from the axle

– Putting the spare on the axle

– Leaving the car unattended overnight

• Assume that the car is parked in a particularly bad

neighborhood, so that the effect of leaving it overnight

is that the tire disappear.

13

Spare tire problem

14

Spare tire problem

• Solution?

15

Spare tire problem

• [Remove(Flat, Axle), Remove(Spare, Trunk),

PutOn(Spare, Axle)].

16

Blocks world

• One of the most famous planning domains is known as

the blocks world. This domain consists of a set of

cube-shaped blocks sitting on a table. The blocks can

be stacked, but only one block can fit directly on top of

another. A robot arm can pick up a block and move it

to another position, either on the table or on top of

another block. The arm can pick up only one block at a

time, so it cannot pick up a block that has another one

on it. The goal will always be to build one or more

stacks of blocks, specified in terms of what blocks are

on top of what other blocks. For example, a goal might

be to get block A on B and block B on C.

17

Blocks world

18

Blocks world

• We use On(b,x) to indicate that block b is on x, where x

is either another block or the table. The action for

moving block b from the top of x to the top of y will be

Move(b,x,y). One of the preconditions on moving b is

that no other block be on it. In first-order logic, this

would be !Exists x On(x,b), or alternatively, ForAll x

~On(x,b). Basic PDDL does not allow quantifiers, so

instead we introduce a predicate Clear(x) that is true

when nothing is on x.

19

Blocks world

20

Blocks world

• Solution?

21

Blocks world

• [MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]

22

Blocks world

• The action Move moves a block b from x to y if both b

and y are clear. After the move is made, b is still clear

but y is not. A first at the Move schema is

• Action(Move(b,x,y),

– Precond: On(b,x) AND Clear(b) AND Clear(y)

– Effect: On(b,y) AND Clear(X) AND ~On(b,x) AND

~Clear(y).

23

Blocks world

• Unfortunately, this does not maintain Clear properly

when x or y is the table. When x is the Table, this

action has the effect Clear(Table), but the table should

not become clear; and when y=Table, it has the

precondition Clear(Table), but the table does not have

to be clear for us to move a block onto it. To fix this,

we do two things. First we introduce another action to

move a block b from x to the table:

• Action (MoveToTable(b,x),

– Precond: On(b,x) AND Clear(b)

– Effect: On(b,Table) AND Clear(x) AND ~On(b,x))

24

Blocks world

• Second, we take the interpretation of Clear(x) to be

“there is a clear space on x to hold a block.” Under this

interpretation, Clear(Table) will always be true. The

only problem is that nothing prevents the planner from

using Move(b,x,Table) instead of MoveToTable(b,x),

which leads to a larger than needed search space,

though functionally is not problematic. We can fix this

by introducing the predicate Block and add Block(b)

AND Block(y) to the precondition of Move.

25

Planning in relation to other class modules

• We have seen that planning and search are very intertwined for

robotics (e.g., Shakey implements A* search).

• Resemblance between Planning Domain Definition Language

and First Order Logic.

• Planning graph can be represented as a Satisfiability problem in

Conjunctive-Normal Form (conjunction (or AND) of clauses),

which is an instance of constraint satisfaction.

• Certain AI planning models also solved by integer programming

http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf

26

Have cake and eat cake too

27

Planning graph

28

Planning graph

• A planning problem asks if we can reach a goal state from the

initial state. Suppose we are given a tree of all possible actions

from the initial state to successor states, and their successors,

and so on. If we indexed this tree appropriately, we could

answer the planning question “can we reach state G from state

S0” immediately, by just looking it up. Of course, the tree is of

exponential size, so this approach is impractical. A planning

graph is a polynomial-size approximation to this tree that can be

constructed quickly. The planning graph can’t answer

definitively whether G is reachable from S0, but it can estimate

how many steps it takes to reach G. The estimate is always

correct when it reports the goal is not reachable, and it never

overestimates the number of steps, so it is an admissible

heuristic.

29

Planning graph

• A planning graph is a directed graph organized into

levels: first a level S0, for the initial state, consisting of

nodes representing each fluent that holds in S0; then a

level A0 consisting of nodes for each ground action that

might be applicable in S0; then alternating levels Si

followed by Ai; until we reach a termination condition.

30

Planning graphs

• Roughly speaking, Si contains all the literals that could hold at

time i, depending on the actions executed at preceding time

steps. If it is possible that either P or !P could hold, then both

will be represented in Si. Also roughly speaking, Ai contains all

the actions that could have their preconditions satisfied at time i.

We say “roughly speaking” because the planning graph records

only a restricted subset of the possible negative interactions

among actions; therefore, a literal might show up at level Sj

when actually it could not be true until a later level, if at all. (A

literal will never show up too late.) Despite the possible error,

the level j at which a literal first appears is a good estimate of

how difficult it is to achieve the literal from the initial state.

31

Planning graphs

• The figure shows a simple planning problem “have

cake and eat cake too” and its planning graph. Each

action at level Ai is connected to its preconditions at Si

and its effects at Si+1. So a literal appears because an

action caused it, but we also want to say that a literal

can persist if no action negates it. This is represented

by a persistence action (sometimes called a no-op).

For every literal C, we add to the problem a persistence

action with precondition C and effect C. Level A0

shows one “real” action, Eat(Cake), along with two

persistence actions drawn as small square boxes.

32

• Level A0 contains all the actions that could occur in

state S0, but just as important it records conflicts

between actions that would prevent them from

occurring together. The gray lines indicate mutual

exclusion (or mutex) links. For example, Eat(Cake) is

mutually exclusive with the persistence of either

Have(Cake) or !Eaten(Cake).

33

• Level S1 contains all the literals that could result from

picking any subset of the actions in A0, as well as

mutex links (gray lines) indicating literals that could not

appear together, regardless of the choice of actions. For

example, Have(Cake) and Eaten(Cake) are mutex:

depending on the choice of actions in A0, either, but not

both, could be the result. In other words, S1 represents a

belief state: a set of possible states. The members of this

set are all subsets of the literals such that there is no

mutex link between any members of the subset.

34

Planning graphs

• We continue in this way, alternating between state level Si and

action level Ai until we reach a point where two consecutive

levels are identical. At this point, we say that the graph has

leveled off. The graph in the figure levels off at S2.

• What we end up with is a structure where every Ai level

contains all the actions that are applicable in Si, along with

constraints saying that two actions cannot both be executed at

the same level. Every Si level contains all the literals that could

result from any possible choice of actions in Ai-1, along with

constraints saying which pairs of literals are not possible. It is

important to note that the process of constructing the planning

graph does not require choosing among actions, which would

entail combinatorial search. Instead, it just records the

impossibility of certain choices using mutex links.

35

Planning graphs

• We now define mutex links for both actions and literals. A

mutex relation holds between two actions at a given level if any

of the following three conditions holds:

– Inconsistent effects: one action negates an effect of the other. For

example, Eat(Cake) and the persistence of Have(Cake) have inconsistent

effects because they disagree on the effect Have(Cake).

– Interference: one of the effects of one action is the negation of a

precondition of the other. For example Eat(Cake) interferes with the

persistence of Have(Cake) by negating its precondition.

– Competing needs: one of the preconditions of one action is mutually

exclusive with a precondition of the other. For example, Bake(Cake) and

Eat(Cake) are mutex because they compete on the value of the

Have(Cake) precondition.

36

Planning graphs

• A mutex relation holds between two literals at the same level if

one is the negation of the other or if each possible pair of actions

that could achieve the two literals is mutually exclusive. This

condition is called inconsistent support. For example,

Have(Cake) and Eaten(Cake) are mutex in S1 because the only

way of achieving Have(Cake), the persistence action, is mutex

with the only way of achieving Eaten(Cake), namely Eat(Cake).

In S2 the two literals are not mutex, because there are new ways

of achieving them, such as Bake(Cake) and the persistence of

Eaten(Cake), that are not mutex.

37

Planning graphs

• A planning graph is polynomial in the size of the

planning problem. For a planning problem with L

literals and a actions, each Si has no more than L nodes

and L2 mutex links, and each Ai has no more than a+l

nodes (including the no-ops), (a+L)2 mutex links, and

2(aL+L) precondition and effect links. Thus, an entire

graph with n levels has a size of O(n(a+L)2). The time

to build the graph has the same complexity.

38

GRAPHPLAN algorithm

• The GRAPHPLAN algorithm repeatedly adds a level

to a planning graph with EXPAND-GRAPH. Once all

the goals show up as non-mutex in the graph,

GRAPHPLAN calls EXTRACT-SOLUTION to search

for a plan that solves the problem. If that fails, it

expands another level and tries again, terminating with

failure when there is no reason to go on.

39

GRAPHPLAN

40

GRAPHPLAN

• Let us now trace the operation of GRAPHPLAN on the spare

tire problem. The first line of GRAPHPLAN initializes the

planning graph to a one-level (S0) graph representing the initial

state. The positive fluents (state variables) from the problem

description’s initial state are shown, as are the relevant negative

fluents. Not shown are the unchanging positive literals (such as

Tire(Spare)) and the irrelevant negative literals. The goal

At(Spare,Axle) is not present in S0, so we need not call

EXTRACT-SOLUTION—we are certain that there is no

solution yet. Instead, EXPAND-GRAPH adds into A0 the three

actions whose preconditions exist at level S0 (i.e., all the actions

except PutOn(Spare, Axle), along with persistence actions for all

the literals in S0. The effects of the actions are added at level S1.

EXPAND-GRAPH then looks for mutex relations and adds

them to the graph.

41

Spare tire problem

42

GRAPHPLAN

43

GRAPHPLAN

• At(Spare, Axle) is still not present in S1, so again we do not call

EXTRACT-SOLUTION. We call EXPAND-GRAPH again,

adding A1 and S1 and giving us the planning graph shown. Now

that we have the full complement of actions, it is worthwhile to

look at some of the examples of mutex relations and their causes:

– Inconsistent effects: Remove(Spare,Trunk) is mutex with LeaveOvernight

because one has the effect At(Spare,Ground) and the other has its negation.

– Interference: Remove(Flat, Axle) is mutex with LeaveOvernight because one

has the precondition At(Flat,Axle) and the other has its negation as an effect.

– Competing needs: PutOn(Spare, Axle) is mutex with Remove(Flat, Axle)

because one has At(Flat, Axle) as a precondition and other has its negation.

– Inconsistent support: At(Spare, Axle) is mutex with At(Flat, Axle) in S2

because the only way of achieving At(Spare,Axle) is by PutOn(Spare, Axle),

and that is mutex with the persistence action that is the only way of

achieving At(Flat,Axle). Thus, the mutex relations detect the immediate

conflict that arises from trying to put two objects in the same place at the

same time.

44

GRAPHPLAN

• This time, when we go back to the state of the loop, all

the literals from the goal are present in S2, and none of

them is mutex with any other. That means that a

solution might exist and EXTRACT-SOLUTION will

try to find it. We can formulate EXTRACT-

SOLUTION as a Boolean constraint satisfaction

problem (CSP) where the variables are the actions at

each level, the values for each variable are in or out of

the plan, and the constraints are the mutexes and the

need to satisfy each goal and precondition.

45

GRAPH-PLAN

• Alternatively, we can define EXTRACT-SOLUTION

as a backward search problem, where each state in the

search contains a pointer to a level in the planning

graph and a set of unsatisfied goals.

– Initial state is last level Sn with set of goals

– Actions at Si are to select any “conflict-free” subset of

actions in Ai-1 whose effects cover the goals in the state. The

resulting state has level Si-1 and has as its set of goals the

preconditions for the selected set of actions. By “conflict

free,” we mean a set of actions such that no two of them are

mutex and no two of their preconditions are mutex.

– The goal is to reach a state at level S0 such that all the goals

are satisfied.

– The cost of each action is 1.

46

GRAPHPLAN

• In the case where EXTRACT-SOLUTION fails to find a

solution for a set of goals at a given level, we record the (level,

goals) pair as a no-good (a similar idea is used for constraint

learning for CSPs). Whenever EXTRACT-SOLUTION is called

again with the same level and goals, we can find the recorded

no-good and immediately return failure rather than searching

again. We will see shortly that no-goods are also used in the

termination test.

47

GRAPHPLAN

• We know that planning is PSPACE-complete (will elaborate

next lecture) and that constructing the planning graph takes

polynomial time, so it must be the case that solution extraction is

intractable in the worst case. Therefore, we will need some

heuristic guidance for choosing among actions during the

backward search. One approach that works well in practice is a

greedy algorithm based on the level cost of the literals. For any

set of goals, we proceed in the following order:

– Pick first the literal with the highest level cost

– To achieve that literal, prefer actions with easier preconditions. That is,

choose an action such that the sum (or maximum) of the level costs of its

preconditions is smallest.

48

GRAPHPLAN termination

• How long do we have to keep expanding after the

graph has leveled off? If the function EXTRACT-

SOLUTION fails to find a solution, then there must

have been at least one set of goals that were not

achievable and were marked as a no-good. So it is

possible that there might ne fewer no-goods in the next

level, then we should continue. As soon as the graph

itself and the no-goods have both leveled off, with no

solution found, we can terminate with failure because

there is no possibility of a subsequent change that

could add a solution.

49

Planning summary

• Planning systems are problem-solving algorithms that operate

on explicit propositional or relational representations of states

and actions. These representations make possible the derivation

of effective heuristics and the development of powerful and

flexible algorithms for solving problems.

• PDDL, the Planning Domain Definition Language, describes the

initial and goal states as conjunctions of literals, and actions in

terms of their preconditions and effects.

• A planning graph can be constructed incrementally, starting

from the initial state. Each layer contains a superset of all the

literals or actions that could occur at that time step and encodes

mutual exclusion (mutex) relations among literals or actions that

cannot co-occur. Planning graphs yield useful heuristics for

state-space and partial-order planners and can be used directly in

the GRAPHPLAN algorithm.

50

Probability

• Consider a domain with three Boolean variables: Toothache,

Cavity, Catch (the dentist’s steel probe catches in my tooth).

51

Probability

• Notice that the probabilities in the joint distribution sum

to 1, as required by the axioms of probability.

• Axioms of probability:

1. 0 <= P(w) <= 1 for every possible world w

2. Sum over all worlds w of P(w) = 1

• For example, if we roll two dice, there are 36 possible

worlds: (1,1), (1,2), …, (6,6).

• If each die is fair and rolls don’t interfere with each other, then

each world has probability 1/36.

• On the other hand, if the dice conspire to produce the same

number, then the worlds (1,1), (2,2), (3,3), etc. might have

higher probabilities, leaving the others with lower probabilities.

52

Probability

• Technique to calculate the probability of any

proposition, simple or complex: identify those possible

worlds in which the proposition is true and add up their

probabilities. For example, there are six possible

worlds in which cavity OR toothache holds:

– P(cavity OR toothache) = 0.108 + 0.012 + 0.072 + 0.008 +

0.016 + 0.064 = 0.28.

• One particularly common task is to extract the

distribution over some subset of variables or a single

variable. For example, adding the entries in the first

row gives the marginal probability of cavity:

– P(cavity) = 0.108 + 0.102 + 0.072 + 0.008 = 0.2.

53

Probability

• In general, for any sets of variables Y and Z, P(Y) = Σz in Z P(Y,z)

• P(Cavity) = Σz in {Catch, Toothache} P(Cavity,z)

• Conditional probability:

– P(a | b) = P(a AND b) / P(b) whenever P(b) > 0

– P(doubles | Die1 = 5) = P(doubles AND Die1 = 5)/P(Die1 = 5)

• P(cavity | toothache) = P(cavity AND toothache) / P(toothache)

= (0.108 + 0.012) / (.108 + 0.012 + 0.016 + 0.064) = 0.6.

• P(!cavity | toothache) = P(!cavity AND toothache) / P(toothache)

= (0.016 + 0.064) / (.108 + 0.012 + 0.016 + 0.064) = 0.4.

• These two values sum to 1 as they should. This can be viewed as

normalization.

54

Independence

• Let us expand the full joint distribution by adding a fourth

variable, Weather. The full joint distribution then becomes

P(Toothache, Catch, Cavity, Weather), which has 2 x 2 x 2 x 4 =

32 entries. It contains four “editions” of the table shown, one for

each kind of weather.

• How do these editions relate to each other and to the original

three-variable table? For example, P(toothache, catch, cavity,

cloudy) vs. P(toothache, catch, cavity)?

• We can use the product rule:

P(toothache, catch, cavity, cloudy)

= P(cloudy | toothache, catch, cavity) * P(toothache, catch, cavity).

55

Probability

• Now, unless one is in the deity business, one should not imagine

that one’s dental problems influence the weather. And for indoor

dentistry, at least, it seems safe to say that the weather does not

influence the dental variables.

• Therefore, the following assertion seems reasonable:

P(cloudy | toothache, catch, cavity) = P(cloudy).

• From this, we can deduce

P(toothache, catch, cavity, cloudy) = P(cloudy)P(toothache,

catch, cavity).

• A similar equation exists for every entry in P(toothache, catch,

cavity, weather). In fact, we can write the general equation:

P(toothache, catch, cavity, weather) = P(toothache, catch, cavity) P(weather)

56

Probability

• Thus, the 32-element table for four variables can be

constructed from one 8-element table and one 4-

element table. This decomposition is illustrated

schematically in next slide. The property we used is

called independence (also marginal independence

and absolute independence). In particular, the weather

is independent of one’s dental problems. Independence

between propositions a and b can be written as:

– P(a|b) = P(a) or

– P(b|a) = P(b) or

– P(a AND b) = P(a)P(b)

57

Independence

58

Independence

• Independence assertions are usually based on knowledge of the

domain. As the toothache-weather example illustrates, they can

dramatically reduce the amount of information necessary to

specify the full joint distribution. If the complete set of variables

can be divided into independent subsets, then the full joint

distribution can be factored into separate joint distributions on

those subsets. For example, the full joint distribution on the

outcome of n independent coin flips, P(C1,…,Cn) has 2^n

entries, but it can be represented as the product of n single-

variable distributions P(Ci). In a more practical vein, the

independence of dentistry and meteorology is a good thing,

because otherwise the practice of dentistry might require

intimate knowledge of meteorology, and vice versa.

59

Independence

• When they are available, then, independence assertions can help

in reducing the size of the domain representation and the

complexity of the inference problem. Unfortunately, clean

separation of entire sets of variables by independence is quite

rare. Whenever a connection, however indirect, exists between

two variables, independence will fail to hold. Moreover, even

independent subsets can be quite large—for example, dentistry

might involve dozens of diseases and hundreds of symptoms, all

of which are interrelated. To handle such problems, we need

more subtle methods than the straightforward concept of

independence.

60

Bayes’ Rule

• Recall the product rule: P(a AND b) = P(a | b)P(b), or

equivalently, P(a AND b) = P(b|a)P(a)

• Equating the two right-hand sides and dividing by P(a), we get

– P(b|a) = P(a|b)P(b)/P(a)

• This equation is known as Bayes’ rule (also Bayes’ law or

Bayes’ theorem). This simple equation underlies most modern

AI systems for probabilistic inference.

61

Bayes’ rule

• On the surface, Bayes’ rule does not seem very useful.

It allows us to compute the single term P(b|a) in terms

of three terms: P(a|b), P(b), and P(a). That seems like

two steps backwards, but Bayes’ rule is useful in

practice because there are many cases where we do

have good probability estimates for these three

numbers and need to compute the fourth. Often, we

perceive as evidence the effect of some unknown cause

and we would like to determine that cause. In that case,

Bayes’ rule becomes

– P(cause | effect) = P(effect | cause) P(cause) / P(effect)

62

Bayes’ rule

• The conditional probability P(effect | cause) quantifies the

relationship in the causal direction, whereas P(cause|effect)

describes the diagnostic direction. In a task such as medical

diagnosis, we often have conditional probabilities on causal

relationships (that is, the doctor knows P(symptoms| disease)

and want to derive a diagnosis, P(disease | symptoms). For

example, a doctor knows that the disease meningitis causes the

patient to have a stiff neck, say, 70% of the time. The doctor

also knows some unconditional facts: the prior probability that a

patient has meningitis is 1/50,000, and the prior probability that

any patient has a stiff neck is 1%. Letting s be the proposition

that the patient has a stiff neck and m be the proposition that the

patient has meningitis, we have:

63

Bayes’ rule

• P(s|m) = 0.7

• P(m) = 1/50000

• P(s) = 0.01

• P(m | s) = P(s|m)P(m)/P(s) = (0.7 * 1/5000)/0.01 = 0.0014

• Thus, we expect less than 1 in 700 patients with a stiff neck to

have meningitis. Notice that even though a stiff neck is quite

strongly indicated by meningitis (with probability 0.7), the

probability of meningitis in the patient remains small. This is

because the prior probability of stiff necks is much higher than

that of meningitis.

64

Probability

• What is probability that sum of first two die rolls is >=

9 given that the first roll is 5?

65

Bayesian networks

• A Bayesian network is a directed graph in which each

node is annotated with quantitative probability

information. The full specification is:

1. Each node corresponds to a random variable, which may be

discrete or continuous

2. A set of directed links or arrows connects pairs of nodes. If

there is an arrow form node X to node Y, X is said to be a

parent of Y. The graph has no directed cycles (and hence is

a directed acyclic graph), or DAG.

3. Each node Xi has a conditional probability distribution

P(Xi|Parents(Xi)) that quantifies the effect of the parents on

the node.

66

Bayesian networks

67

Bayesian network

68

Homework for next class

• Chapter 16 from Russel/Norvig

• HW3 out 10/31, due 11/14

• Next lecture: Finish up probability, describe extensions

for Markov decision processes and multiagent decision

making (game theory)

