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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

• 10/31: Continue planning (HW3 out)

• 11/2: Finish planning, start probability (Bayesian networks)

• 11/6: Withdrawal deadline

• 11/7: TA will go over HW2

• 11/9: Continue probability (Bayesian networks, Markov models)

• 11/14: Markov decision processes/multiagent decision making 

(HW4 out)

• 11/16: Multiagent decision making/reinforcement learning

• 11/21, 11/28, 11/30, 12/5: Machine learning (classification, 

regression, clustering, deep learning)

• 12/7: Project presentations and class project due

– Project code due Monday 12/4 at 2PM on Moodle.

• Final exam on 12/14
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Announcements

• HW3 out 10/31 due 11/14 (2:05pm in lecture or 

2:00pm on Moodle)

– https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

– Must be done individually (no partner)

• Midterm exams 

• HW2 solutions and graded assignments

• Midterm grades and withdrawal deadline

• HW4 likely out 11/14 due 11/28

https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf
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Class project

• For the class project students will implement an agent for 3-player 

Kuhn poker. This is a simple, yet interesting and nontrivial, variant 

of poker that has appeared in the AAAI Annual Computer Poker 

Competition. The grade will be partially based on performance 

against the other agents in a class-wide competition, as well as final 

reports and presentations describing the approaches used. Students 

can work alone or in groups of 2.

• Link to play against optimal strategy for one-card poker:

– http://www.cs.cmu.edu/~ggordon/poker/

• Paper on Nash equilibrium strategies for 3-player Kuhn poker

– http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

• This weekend I will post link for code and sample agent on Moodle

http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf
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Planning example: air cargo transport

• Three actions: 

– Load, Unload, Fly

• Two predicates:

– In(c,p) means that cargo c is inside plane p

– At(x,a) means that object x (either plane or cargo) is at 

airport a.

• Initial state

– Conjunction (AND) of ground atoms. (Atoms that are not 

mentioned are false).

• Goal

– Conjunction of literals

• Preconditions and effects

– Must be specified for each action
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Air cargo transport problem
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Air cargo transport problem

• Note that some care must be taken to make sure the At

predicates are maintained properly. When a plane flies from one 

airport to another, all the cargo inside the plane goes with it. In 

first-order logic it would be easy to quantify over all objects that 

are inside the plane. But basic PDDL (Planning Domain 

Definition Language) does not have a universal quantifier, so we 

need a different solution. The approach we use is to say that a 

piece of cargo ceases to be At anywhere when it is In a plane; 

the cargo only becomes At the new airport when it is unloaded. 

So At really means “available for use at a given location.” 

• PDDL based off STRIPS language. 



8

STRIPS

• In artificial intelligence, STRIPS (Stanford Research Institute 

Problem Solver) is an automated planner developed by Richard 

Fikes and Nils Nilsson in 1971 at SRI International. The same 

name was later used to refer to the formal language of the inputs 

to this planner. This language is the base for most of the 

languages for expressing automated planning problem instances 

in use today.

• STRIPS instance is quadruple <P,O,I,G>

– P is set of conditions

– O is set of operators (i.e., actions). Each action specifies preconditions 

and postconditions .

– I is initial state (set of conditions that are initially true).

– G is goal state (set of conditions needed to be true/false to achieve goal).
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Air cargo transport problem

• What is a solution for this problem?
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Air cargo transport problem

• One solution (there may be others):

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),

Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].
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Air cargo transport problem

• What about “degenerate” actions like 

Fly(P1,JFK,JFK)?

• This should be a no-op (no operation), but it 

apparently has contradictory effects according to the 

definition (the effect would include At(P1,JFK) AND 

!At(P1,JFK)).

• It is common to ignore such problems and assume that 

the effects just cancel out. A perhaps better approach is 

to add inequality preconditions saying that the from

and to airports must be different. We will see another 

similar example shortly.
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Spare tire problem

• The goal is to have a good spare tire properly mounted 

onto the car’s axle, where the initial state has a flat tire 

on the axle and a good spare tire in the trunk. 

• Four actions:

– Removing the spare tire from the trunk

– Removing the flat tire from the axle

– Putting the spare on the axle

– Leaving the car unattended overnight

• Assume that the car is parked in a particularly bad 

neighborhood, so that the effect of leaving it overnight 

is that the tire disappear.
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Spare tire problem
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Spare tire problem

• Solution?
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Spare tire problem

• [Remove(Flat, Axle), Remove(Spare, Trunk), 

PutOn(Spare, Axle)].
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Blocks world

• One of the most famous planning domains is known as 

the blocks world. This domain consists of a set of 

cube-shaped blocks sitting on a table. The blocks can 

be stacked, but only one block can fit directly on top of 

another. A robot arm can pick up a block and move it 

to another position, either on the table or on top of 

another block. The arm can pick up only one block at a 

time, so it cannot pick up a block that has another one 

on it. The goal will always be to build one or more 

stacks of blocks, specified in terms of what blocks are 

on top of what other blocks. For example, a goal might 

be to get block A on B and block B on C.
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Blocks world
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Blocks world

• We use On(b,x) to indicate that block b is on x, where x 

is either another block or the table. The action for 

moving block b from the top of x to the top of y will be 

Move(b,x,y). One of the preconditions on moving b is 

that no other block be on it. In first-order logic, this 

would be !Exists x On(x,b), or alternatively, ForAll x 

~On(x,b). Basic PDDL does not allow quantifiers, so 

instead we introduce a predicate Clear(x) that is true 

when nothing is on x.
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Blocks world
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Blocks world

• Solution?
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Blocks world

• [MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]
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Blocks world

• The action Move moves a block b from x to y if both b 

and y are clear. After the move is made, b is still clear 

but y is not. A first at the Move schema is

• Action(Move(b,x,y),

– Precond: On(b,x) AND Clear(b) AND Clear(y)

– Effect: On(b,y) AND Clear(X) AND ~On(b,x) AND 

~Clear(y).
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Blocks world

• Unfortunately, this does not maintain Clear properly 

when x or y is the table. When x is the Table, this 

action has the effect Clear(Table), but the table should 

not become clear; and when y=Table, it has the 

precondition Clear(Table), but the table does not have 

to be clear for us to move a block onto it. To fix this, 

we do two things. First we introduce another action to 

move a block b from x to the table:

• Action (MoveToTable(b,x),

– Precond: On(b,x) AND Clear(b)

– Effect: On(b,Table) AND Clear(x) AND ~On(b,x))
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Blocks world

• Second, we take the interpretation of Clear(x) to be 

“there is a clear space on x to hold a block.” Under this 

interpretation, Clear(Table) will always be true. The 

only problem is that nothing prevents the planner from 

using Move(b,x,Table) instead of MoveToTable(b,x), 

which leads to a larger than needed search space, 

though functionally is not problematic. We can fix this 

by introducing the predicate Block and add Block(b) 

AND Block(y) to the precondition of Move.
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Planning in relation to other class modules

• We have seen that planning and search are very intertwined for 

robotics (e.g., Shakey implements A* search).

• Resemblance between Planning Domain Definition Language 

and First Order Logic.

• Planning graph can be represented as a Satisfiability problem in 

Conjunctive-Normal Form (conjunction (or AND) of clauses), 

which is an instance of constraint satisfaction.

• Certain AI planning models also solved by integer programming 

http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf
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Have cake and eat cake too
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Planning graph
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Planning graph

• A planning problem asks if we can reach a goal state from the 

initial state. Suppose we are given a tree of all possible actions 

from the initial state to successor states, and their successors, 

and so on. If we indexed this  tree appropriately, we could 

answer the planning question “can we reach state G from state 

S0” immediately, by just looking it up. Of course, the tree is of 

exponential size, so this approach is impractical. A planning 

graph is a polynomial-size approximation to this tree that can be 

constructed quickly. The planning graph can’t answer 

definitively whether G is reachable from S0, but it can estimate 

how many steps it takes to reach G. The estimate is always 

correct when it reports the goal is not reachable, and it never 

overestimates the number of steps, so it is an admissible 

heuristic.
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Planning graph

• A planning graph is a directed graph organized into 

levels: first a level S0, for the initial state, consisting of 

nodes representing each fluent that holds in S0; then a 

level A0 consisting of nodes for each ground action that 

might be applicable in S0; then alternating levels Si 

followed by Ai; until we reach a termination condition.
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Planning graphs

• Roughly speaking, Si contains all the literals that could hold at 

time i, depending on the actions executed at preceding time 

steps. If it is possible that either P or !P could hold, then both 

will be represented in Si. Also roughly speaking, Ai contains all 

the actions that could have their preconditions satisfied at time i. 

We say “roughly speaking” because the planning graph records 

only a restricted subset of the possible negative interactions 

among actions; therefore, a literal might show up at level Sj

when actually it could not be true until a later level, if at all. (A 

literal will never show up too late.) Despite the possible error, 

the level j at which a literal first appears is a good estimate of 

how difficult it is to achieve the literal from the initial state.
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Planning graphs

• The figure shows a simple planning problem “have 

cake and eat cake too” and its planning graph. Each 

action at level Ai is connected to its preconditions at Si

and its effects at Si+1. So a literal appears because an 

action caused it, but we also want to say that a literal 

can persist if no action negates it. This is represented 

by a persistence action (sometimes called a no-op). 

For every literal C, we add to the problem a persistence 

action with precondition C and effect C. Level A0

shows one “real” action, Eat(Cake), along with two 

persistence actions drawn as small square boxes.
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• Level A0 contains all the actions that could occur in 

state S0, but just as important it records conflicts 

between actions that would prevent them from 

occurring together. The gray lines indicate mutual 

exclusion (or mutex) links. For example, Eat(Cake) is 

mutually exclusive with the persistence of either 

Have(Cake) or !Eaten(Cake). 
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• Level S1 contains all the literals that could result from 

picking any subset of the actions in A0, as well as 

mutex links (gray lines) indicating literals that could not 

appear together, regardless of the choice of actions. For 

example, Have(Cake) and Eaten(Cake) are mutex: 

depending on the choice of actions in A0, either, but not 

both, could be the result. In other words, S1 represents a 

belief state: a set of possible states. The members of this 

set are all subsets of the literals such that there is no 

mutex link between any members of the subset.
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Planning graphs

• We continue in this way, alternating between state level Si and 

action level Ai until we reach a point where two consecutive 

levels are identical. At this point, we say that the graph has 

leveled off. The graph in the figure levels off at S2.

• What we end up with is a structure where every Ai level 

contains all the actions that are applicable in Si, along with 

constraints saying that two actions cannot both be executed at 

the same level. Every Si level contains all the literals that could 

result from any possible choice of actions in Ai-1, along with 

constraints saying which pairs of literals are not possible. It is 

important to note that the process of constructing the planning 

graph does not require choosing among actions, which would 

entail combinatorial search. Instead, it just records the 

impossibility of certain choices using mutex links.
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Planning graphs

• We now define mutex links for both actions and literals. A 

mutex relation holds between two actions at a given level if any 

of the following three conditions holds:

– Inconsistent effects: one action negates an effect of the other. For 

example, Eat(Cake) and the persistence of Have(Cake) have inconsistent 

effects because they disagree on the effect Have(Cake). 

– Interference: one of the effects of one action is the negation of a 

precondition of the other. For example Eat(Cake) interferes with the 

persistence of Have(Cake) by negating its precondition.

– Competing needs: one of the preconditions of one action is mutually 

exclusive with a precondition of the other. For example, Bake(Cake) and 

Eat(Cake) are mutex because they compete on the value of the 

Have(Cake) precondition.
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Planning graphs

• A mutex relation holds between two literals at the same level if 

one is the negation of the other or if each possible pair of actions 

that could achieve the two literals is mutually exclusive. This 

condition is called inconsistent support. For example, 

Have(Cake) and Eaten(Cake) are mutex in S1 because the only 

way of achieving Have(Cake), the persistence action, is mutex 

with the only way of achieving Eaten(Cake), namely Eat(Cake). 

In S2 the two literals are not mutex, because there are new ways 

of achieving them, such as Bake(Cake) and the persistence of 

Eaten(Cake), that are not mutex. 
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Planning graphs

• A planning graph is polynomial in the size of the 

planning problem. For a planning problem with L 

literals and a actions, each Si has no more than L nodes 

and L2 mutex links, and each Ai has no more than a+l 

nodes (including the no-ops), (a+L)2 mutex links, and 

2(aL+L) precondition and effect links. Thus, an entire 

graph with n levels has a size of O(n(a+L)2). The time 

to build the graph has the same complexity.
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GRAPHPLAN algorithm

• The GRAPHPLAN algorithm repeatedly adds a level 

to a planning graph with EXPAND-GRAPH. Once all 

the goals show up as non-mutex in the graph, 

GRAPHPLAN calls EXTRACT-SOLUTION to search 

for a plan that solves the problem. If that fails, it 

expands another level and tries again, terminating with 

failure when there is no reason to go on. 
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GRAPHPLAN
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GRAPHPLAN

• Let us now trace the operation of GRAPHPLAN on the spare 

tire problem. The first line of GRAPHPLAN initializes the 

planning graph to a one-level (S0) graph representing the initial 

state. The positive fluents (state variables) from the problem 

description’s initial state are shown, as are the relevant negative 

fluents. Not shown are the unchanging positive literals (such as 

Tire(Spare)) and the irrelevant negative literals. The goal 

At(Spare,Axle) is not present in S0, so we need not call 

EXTRACT-SOLUTION—we are certain that there is no 

solution yet. Instead, EXPAND-GRAPH adds into A0 the three 

actions whose preconditions exist at level S0 (i.e., all the actions 

except PutOn(Spare, Axle), along with persistence actions for all 

the literals in S0. The effects of the actions are added at level S1. 

EXPAND-GRAPH then looks for mutex relations and adds 

them to the graph.



41

Spare tire problem
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GRAPHPLAN
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GRAPHPLAN

• At(Spare, Axle) is still not present in S1, so again we do not call 

EXTRACT-SOLUTION. We call EXPAND-GRAPH again, 

adding A1 and S1 and giving us the planning graph shown. Now 

that we have the full complement of actions, it is worthwhile to 

look at some of the examples of mutex relations and their causes:

– Inconsistent effects: Remove(Spare,Trunk) is mutex with LeaveOvernight

because one has the effect At(Spare,Ground) and the other has its negation.

– Interference: Remove(Flat, Axle) is mutex with LeaveOvernight because one 

has the precondition At(Flat,Axle) and the other has its negation as an effect.

– Competing needs: PutOn(Spare, Axle) is mutex with Remove(Flat, Axle) 

because one has At(Flat, Axle) as a precondition and other has its negation.

– Inconsistent support: At(Spare, Axle) is mutex with At(Flat, Axle) in S2

because the only way of achieving At(Spare,Axle) is by PutOn(Spare, Axle), 

and that is mutex with the persistence action that is the only way of 

achieving At(Flat,Axle). Thus, the mutex relations detect the immediate 

conflict that arises from trying to put two objects in the same place at the 

same time.



44

GRAPHPLAN

• This time, when we go back to the state of the loop, all 

the literals from the goal are present in S2, and none of 

them is mutex with any other. That means that a 

solution might exist and EXTRACT-SOLUTION will 

try to find it. We can formulate EXTRACT-

SOLUTION as a Boolean constraint satisfaction 

problem (CSP) where the variables are the actions at 

each level, the values for each variable are in or out of 

the plan, and the constraints are the mutexes and the 

need to satisfy each goal and precondition. 



45

GRAPH-PLAN

• Alternatively, we can define EXTRACT-SOLUTION 

as a backward search problem, where each state in the 

search contains a pointer to a level in the planning 

graph and a set of unsatisfied goals. 

– Initial state is last level Sn with set of goals

– Actions at Si are to select any “conflict-free” subset of 

actions in Ai-1 whose effects cover the goals in the state. The 

resulting state has level Si-1 and has as its set of goals the 

preconditions for the selected set of actions. By “conflict 

free,” we mean a set of actions such that no two of them are 

mutex and no two of their preconditions are mutex.

– The goal is to reach a state at level S0 such that all the goals 

are satisfied.

– The cost of each action is 1.
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GRAPHPLAN

• In the case where EXTRACT-SOLUTION fails to find a 

solution for a set of goals at a given level, we record the (level, 

goals) pair as a no-good (a similar idea is used for constraint 

learning for CSPs). Whenever EXTRACT-SOLUTION is called 

again with the same level and goals, we can find the recorded 

no-good and immediately return failure rather than searching 

again. We will see shortly that no-goods are also used in the 

termination test.
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GRAPHPLAN

• We know that planning is PSPACE-complete (will elaborate 

next lecture) and that constructing the planning graph takes 

polynomial time, so it must be the case that solution extraction is 

intractable in the worst case. Therefore, we will need some 

heuristic guidance for choosing among actions during the 

backward search. One approach that works well in practice is a 

greedy algorithm based on the level cost of the literals. For any 

set of goals, we proceed in the following order:

– Pick first the literal with the highest level cost

– To achieve that literal, prefer actions with easier preconditions. That is, 

choose an action such that the sum (or maximum) of the level costs of its 

preconditions is smallest.
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GRAPHPLAN termination

• How long do we have to keep expanding after the 

graph has leveled off? If the function EXTRACT-

SOLUTION fails to find a solution, then there must 

have been at least one set of goals that were not 

achievable and were marked as a no-good. So it is 

possible that there might ne fewer no-goods in the next 

level, then we should continue. As soon as the graph 

itself and the no-goods have both leveled off, with no 

solution found, we can terminate with failure because 

there is no possibility of a subsequent change that 

could add a solution.
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Planning summary

• Planning systems are problem-solving algorithms that operate 

on explicit propositional or relational representations of states 

and actions. These representations make possible the derivation 

of effective heuristics and the development of powerful and 

flexible algorithms for solving problems.

• PDDL, the Planning Domain Definition Language, describes the 

initial and goal states as conjunctions of literals, and actions in 

terms of their preconditions and effects.

• A planning graph can be constructed incrementally, starting 

from the initial state. Each layer contains a superset of all the 

literals or actions that could occur at that time step and encodes 

mutual exclusion (mutex) relations among literals or actions that 

cannot co-occur. Planning graphs yield useful heuristics for 

state-space and partial-order planners and can be used directly in 

the GRAPHPLAN algorithm.
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Probability

• Consider a domain with three Boolean variables: Toothache, 

Cavity, Catch (the dentist’s steel probe catches in my tooth). 
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Probability

• Notice that the probabilities in the joint distribution sum 

to 1, as required by the axioms of probability.

• Axioms of probability:

1. 0 <= P(w) <= 1 for every possible world w

2. Sum over all worlds w of P(w) = 1

• For example, if we roll two dice, there are 36 possible 

worlds: (1,1), (1,2), …, (6,6). 

• If each die is fair and rolls don’t interfere with each other, then 

each world has probability 1/36.

• On the other hand, if the dice conspire to produce the same 

number, then the worlds (1,1), (2,2), (3,3), etc. might have 

higher probabilities, leaving the others with lower probabilities.
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Probability

• Technique to calculate the probability of any 

proposition, simple or complex: identify those possible 

worlds in which the proposition is true and add up their 

probabilities. For example, there are six possible 

worlds in which cavity OR toothache holds:

– P(cavity OR toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 

0.016 + 0.064 = 0.28.

• One particularly common task is to extract the 

distribution over some subset of variables or a single 

variable. For example, adding the entries in the first 

row gives the marginal probability of cavity:

– P(cavity) = 0.108 + 0.102 + 0.072 + 0.008 = 0.2.
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Probability

• In general, for any sets of variables Y and Z, P(Y) = Σz in Z P(Y,z)

• P(Cavity) = Σz in {Catch, Toothache} P(Cavity,z)

• Conditional probability:

– P(a | b) = P(a AND b) / P(b) whenever P(b) > 0

– P(doubles | Die1 = 5) = P(doubles AND Die1 = 5)/P(Die1 = 5)

• P(cavity | toothache) = P(cavity AND toothache) / P(toothache)

= (0.108 + 0.012) / (.108 + 0.012 + 0.016 + 0.064) = 0.6.

• P(!cavity | toothache) = P(!cavity AND toothache) / P(toothache)

= (0.016 + 0.064) / (.108 + 0.012 + 0.016 + 0.064) = 0.4.

• These two values sum to 1 as they should. This can be viewed as 

normalization.
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Independence

• Let us expand the full joint distribution by adding a fourth 

variable, Weather. The full joint distribution then becomes 

P(Toothache, Catch, Cavity, Weather), which has 2 x 2 x 2 x 4 = 

32 entries. It contains four “editions” of the table shown, one for 

each kind of weather. 

• How do these editions relate to each other and to the original 

three-variable table? For example, P(toothache, catch, cavity, 

cloudy) vs. P(toothache, catch, cavity)?

• We can use the product rule:

P(toothache, catch, cavity, cloudy) 

= P(cloudy | toothache, catch, cavity) * P(toothache, catch, cavity).
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Probability

• Now, unless one is in the deity business, one should not imagine 

that one’s dental problems influence the weather. And for indoor 

dentistry, at least, it seems safe to say that the weather does not 

influence the dental variables.

• Therefore, the following assertion seems reasonable:

P(cloudy | toothache, catch, cavity) = P(cloudy).

• From this, we can deduce

P(toothache, catch, cavity, cloudy) = P(cloudy)P(toothache, 

catch, cavity).

• A similar equation exists for every entry in P(toothache, catch, 

cavity, weather). In fact, we can write the general equation:

P(toothache, catch, cavity, weather) = P(toothache, catch, cavity) P(weather)
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Probability

• Thus, the 32-element table for four variables can be 

constructed from one 8-element table and one 4-

element table. This decomposition is illustrated 

schematically in next slide. The property we used is 

called independence (also marginal independence 

and absolute independence). In particular, the weather 

is independent of one’s dental problems. Independence 

between propositions a and b can be written as:

– P(a|b) = P(a) or

– P(b|a) = P(b) or

– P(a AND b) = P(a)P(b)
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Independence
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Independence

• Independence assertions are usually based on knowledge of the 

domain. As the toothache-weather example illustrates, they can 

dramatically reduce the amount of information necessary to 

specify the full joint distribution. If the complete set of variables 

can be divided into independent subsets, then the full joint 

distribution can be factored into separate joint distributions on 

those subsets. For example, the full joint distribution on the 

outcome of n independent coin flips, P(C1,…,Cn) has 2^n 

entries, but it can be represented as the product of n single-

variable distributions P(Ci). In a more practical vein, the 

independence of dentistry and meteorology is a good thing, 

because otherwise the practice of dentistry might require 

intimate knowledge of meteorology, and vice versa.
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Independence

• When they are available, then, independence assertions can help 

in reducing the size of the domain representation and the 

complexity of the inference problem. Unfortunately, clean 

separation of entire sets of variables by independence is quite 

rare. Whenever a connection, however indirect, exists between 

two variables, independence will fail to hold. Moreover, even 

independent subsets can be quite large—for example, dentistry 

might involve dozens of diseases and hundreds of symptoms, all 

of which are interrelated. To handle such problems, we need 

more subtle methods than the straightforward concept of 

independence.
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Bayes’ Rule

• Recall the product rule: P(a AND b) = P(a | b)P(b), or 

equivalently, P(a AND b) = P(b|a)P(a)

• Equating the two right-hand sides and dividing by P(a), we get

– P(b|a) = P(a|b)P(b)/P(a)

• This equation is known as Bayes’ rule (also Bayes’ law or 

Bayes’ theorem). This simple equation underlies most modern 

AI systems for probabilistic inference.
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Bayes’ rule

• On the surface, Bayes’ rule does not seem very useful. 

It allows us to compute the single term P(b|a) in terms 

of three terms: P(a|b), P(b), and P(a). That seems like 

two steps backwards, but Bayes’ rule is useful in 

practice because there are many cases where we do 

have good probability estimates for these three 

numbers and need to compute the fourth. Often, we 

perceive as evidence the effect of some unknown cause

and we would like to determine that cause. In that case, 

Bayes’ rule becomes

– P(cause | effect) = P(effect | cause) P(cause) / P(effect)
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Bayes’ rule

• The conditional probability P(effect | cause) quantifies the 

relationship in the causal direction, whereas P(cause|effect) 

describes the diagnostic direction. In a task such as medical 

diagnosis, we often have conditional probabilities on causal 

relationships (that is, the doctor knows P(symptoms| disease) 

and want to derive a diagnosis, P(disease | symptoms). For 

example, a doctor knows that the disease meningitis causes the 

patient to have a stiff neck, say, 70% of the time. The doctor 

also knows some unconditional facts: the prior probability that a 

patient has meningitis is 1/50,000, and the prior probability that 

any patient has a stiff neck is 1%. Letting s be the proposition 

that the patient has a stiff neck and m be the proposition that the 

patient has meningitis, we have:
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Bayes’ rule

• P(s|m) = 0.7

• P(m) = 1/50000

• P(s) = 0.01

• P(m | s) = P(s|m)P(m)/P(s) = (0.7 * 1/5000)/0.01 = 0.0014

• Thus, we expect less than 1 in 700 patients with a stiff neck to 

have meningitis. Notice that even though a stiff neck is quite 

strongly indicated by meningitis (with probability 0.7), the 

probability of meningitis in the patient remains small. This is 

because the prior probability of stiff necks is much higher than 

that of meningitis.
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Probability

• What is probability that sum of first two die rolls is >= 

9 given that the first roll is 5?
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Bayesian networks

• A Bayesian network is a directed graph in which each 

node is annotated with quantitative probability 

information. The full specification is:

1. Each node corresponds to a random variable, which may be 

discrete or continuous

2. A set of directed links or arrows connects pairs of nodes. If 

there is an arrow form node X to node Y, X is said to be a 

parent of Y. The graph has no directed cycles (and hence is 

a directed acyclic graph), or DAG. 

3. Each node Xi has a conditional probability distribution 

P(Xi|Parents(Xi)) that quantifies the effect of the parents on 

the node.
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Bayesian networks
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Bayesian network
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Homework for next class

• Chapter 16 from Russel/Norvig

• HW3 out 10/31, due 11/14

• Next lecture: Finish up probability, describe extensions 

for Markov decision processes and multiagent decision 

making (game theory)


