CAP 4630
Artificial Intelligence

Instructor: Sam Ganzfried
sganzfri@cis.fiu.edu

Schedule

A 10/31: Continue planning (HW3 out)

A 11/2: Finish planning, start probability (Bayesian networks)

A 11/6: Withdrawal deadline

A 11/7: TA will go over HW?2

A 11/9: Continue probability (Bayesian networks, Markov model:

A 11/14: Markov decision processes/multiagent decision making
(HW4 out)

A 11/16: Multiagent decision making/reinforcement learning

A 11/21, 11/28, 11/30, 12/5: Machine learning (classification,
regression, clustering, deep learning)

A 12/7: Project presentations and class project due
I Project code due Monday 12/4 at 2PM on Moodle.

A Final exam on 12/14 2

Announcements

A HW3 out 10/31 due 11/14 (2:05pm in lecture or
2:00pm on Moodle)

T https://www.cs.cmu.edu/~sganzfri/HW3 Al.pdf
I Must be done individually (no partner)

A Midterm exams

A HW?2 solutions and graded assignments
A Midterm grades and withdrawal deadline
A HW4 likely out 11/14 due 11/28

https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

Class project

A For the class project students will implement an agerg-foayer
Kuhn poker This is a simple, yet interesting and nontrivial, varia
of poker that has appeared in the AAAI Annual Computer Poker
Competition. The grade will be partially based on performance
against the other agents in a clagde competition, as well as final
reports and presentations describing the approaches used. Stuc
can work alone or in groups of 2.

A Link to play against optimal strategy for eoard poker:
I http://www.cs.cmu.edu/~ggordon/poker/

A Paper on Nash equilibrium strategies faul&yer Kuhn poker
I http://poker.cs.ualberta.ca/publications/AAMAS3Bkuhn.pdf

A This weekend | will post link for code and sample agent on Moo

4

http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

Planning example: air cargo transport

A Threeactions
I Load, Unload, Fly

A Two predicates
I In(c,p) means that cargo c is inside plane p

I At(x,a)means that object x (either plane or cargo) is at
airport a.

A Initial state

I Conjunction (AND) ofground atoms(Atoms that are not
mentioned are false).

A Goal

I Conjunction of literals

A Preconditionsandeffects
I Must be specified for each action

AIr cargo transport problem

e

it(At(Cr, SFO) N At(Cy, JFK) A At(Py, SFO) A At(P,, JFK)
A Cargo(Cy) A Cargo(Cy) A Plane(P;) A Plane(Py)
A Awrport(JFK) A Avrport(SF 0))
Goal(At(C1, JFK) A At(C,. SFO))
Action(Load (e, p, a),
PRECOND: At(c, a) A At(p, a) N Cargo(c) A Plane(p) A
EFFECT: = At(c, a) A In(c, p))
Action(Unload(c, p, a),
PRECOND: In(c, p) A At(p, a) A Cargo(c) A Plane(p) A Airport(a)
EFFECT: At(c, a) A — In(c, p))
Action(Fly(p, from, to), . . e
PRECOND: 4/(/) from) A Plane(p) A Airport(from) A Airport(to)
EFFECT: — At(p, from) A At(p, to))

\ Airport(a)

~ : tat] anning problem.
p s 'an air careo transportation planning |
A PDDL description of an air cargo |

AlIr cargo transport problem

A Note that some care must be taken to make sumstthe
predicates are maintained properly. When a plane flies from o
airport to another, all the cargo inside the plane goes with it. Ir
first-order logic it would be easy to quantify over all objects th:
are inside the plane. But bast®DL (Planning Domain
Definition Language) does not have a universal quantifier, so
need a different solution. The approach we use is to say that ¢
piece of cargo ceases to Aeanywhere when it it a plane;
the cargo only becomes the new airport when it is unloaded.
SoAtr eal |l y means ndnavailabl e f

A PDDL based off STRIPS language.

STRIPS

A In artificial intelligence, STRIPS (Stanford Research Institute
Problem Solver) is an automated planner developed by Richa
Fikes and Nils Nilsson in 1971 at SRI International. The same
name was later used to refer to the formal language of the inp
to this planner. This language is the base for most of the
languages for expressing automated planning problem instant
In use today.

A STRIPS instance is quadruple <P,0,l,G>

I P Is set otonditions

I O Is set ofoperators(i.e., actions). Each action specifies preconditions
and postconditions .

I lis initial state (set of conditions that are initially true).
I G isgoal statg(set of conditions needed to be true/false to achieve goal

8

AlIr cargo transport problem

A What is a solution for this problem?

AlIr cargo transport problem

A One solution (there may be others):
[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),
Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].

10

AlIr cargo transport problem

AWhat about fAdegenerateo
Fly(P1,JFK,JFKP

A This should be ao-op (no operation), but it
apparently has contradictory effects according to the

definition (the effect would include At(P1,JFK) AND
IAt(P1,JFK)).

A It is common to ignore such problems and assume th
the effects just cancel out. A perhaps better approacl
to add inequality preconditions saying that filoen
andto airports must be different. We will see another
similar example shortly.

11

Spare tire problem

A The goal is to have a good spare tire properly mountt
onto the caros axl e, whe
on the axle and a good spare tire in the trunk.

A Four actions:
I Removing the spare tire from the trunk
I Removing the flat tire from the axle
I Putting the spare on the axle
I Leaving the car unattended overnight

A Assume that the car is parked in a particularly bad
neighborhood, so that the effect of leaving it overnigr

IS that the tire disappear.
12

Spare tire problem

[

Init(Tire(Flat) N Tire(Spare) N At(Flat, Azle) N At(Spare, Trunk))
Goal(At(Spare, Azle))

Action(Remove(obj, loc),

PRECOND: At(obj, loc)
EFFECT: — At(obj, loc) A At(obj, Ground))
Action(PutOn(t, Azle),
PRECOND: Tire(t) A At(t, Ground) A — At(Flat, Azle) N — At(Spare, Azle
EFFECT: - At(t, Ground) N At(t, Azle))
Action(LeaveQuernight,
PRECOND:
EFFECT: = At(Spare, Ground) A — At(Spare, Azle) A — At(Spare, Trunk)
A~ At(Flat, Ground) A - At(Flat, Azle) A — At(Flat, Trunk))

L Figure 10.2 The simple spare tire problem.

Spare tire problem

A Solution?

14

Spare tire problem

A [Remove(Flat, Axle), Remove(Spare, Trunk),
PutOn(Spare, Axle)].

15

Blocks world

A One of the most famous planning domains is known

theblocks world. This domain consists of a set

of

cubeshaped blocks sitting on a table. The blocks can
be stacked, but only one block can fit directly on top ¢
another. A robot arm can pick up a block and move It

to another position, either on the table or on to
another block. The arm can pick up only one b
time, so it cannot pick up a block that has anot

0 Of
ock at

ner on

on it. The goal will always be to build one or more
stacks of blocks, specified in terms of what blocks ar:
on top of what other blocks. For example, a goal mig

be to get block A on B and block Bon C. .

Blocks world

B A

Start State

Goal State

Figure 104 Diagram of the blocks-world problem in Figure 10.3.

17

Blocks world

A We useOn(b,x)to indicate that block is onx, where x
IS either another block or the table. The action for
moving block b from the top of x to the top of y will be
Move(b,X,y). One of the preconditions on moving b IS
that no other block be on it. In firstder logic, this
would be !Exists x On(x,b), or alternatively, ForAll x
~On(x,b). Basic PDDL does not allow quantifiers, so
Instead we introduce a predic&kear(x) that is true
when nothing Is on X.

18

Blocks world

= r—/f,*/———m_—
//”/(()”(.A“- Table) N On(B, Table) A On(C, A) o i
. Block(A) N\ Block(B) A Block(C) 4 .(,;l‘eur(A Gl
m// ()l)(A, B) A\ ()n(B,C)) i ear(C) A Clear(Table)

Al(/mn(é\l(wc(b 1),
PRECOND: On(b,z) A Clear(b) A Clear(y) A Block(b) A Block(y) A

(b#2) A (by) A (a7y),
ErrECT: On(b,y) A Clear(z) A ~On(b,z) A ~Clear(y))

Action(MoveToTable(b, =),

PRECOND: On(b,xz) A A Clear(b) A Block(b) N Block(x),
EFFECT: On(b, Table) A Clear(z) A ~On(b,z))

19

A Solution?

Blocks world

20

Blocks world

A [MoveToTable(C,A), Move(B,Table,C), Move(A,Table,B)]

21

Blocks world

A The actionrMovemoves a block b from x to y if both b
and y are clear. After the move Is made, b Is still clea
but y Is not. A first at thdMoveschema is

A Action(Move(b,x,y),
I Precond: On(b,x) AND Clear(b) AND Clear(y)

I Effect: On(b,y) AND Clear(X) AND ~On(b,x) AND
~Clear(y).

22

Blocks world

A Unfortunately, this does not maintaear properly
when x or y is the table. When x Is the Table, this
action has the effe@lear(Table) but the table should
not become clear; and whgaTablg it has the
preconditionClear(Table) but the table does not have
to be clear for us to move a block onto it. To fix this,
we do two things. First we introduce another action fc
move a block b from x to the table:

A Action (MoveToTable(b,x),
I Precond: On(b,x) AND Clear(b)

I Effect: On(b,Table) AND Clear(x) AND ~On(b,x))
23

Blocks world

A Second, we take the interpretation of Clear(x) to be
Nt hhere I s a clear space
Interpretation, Clear(Table) will always be true. The
only problem is that nothing prevents the planner fror
using Move(b,x, Table) instead of MoveToTable(b,x),
which leads to a larger than needed search space,
though functionally is not problematic. We can fix this
by introducing the predicat&lockand addlock(b)
AND Block(y)}o the precondition dflove

24

Planning In relation to other class modules

A We have seen that planning and search are very intertwined f
robotics (e.g., Shakey implements A* search).

A Resemblance between Planning Domain Definition Language
and First Order Logic.

A Planning graph can be represented Satisfiability problem in
Conjunctive-Normal Form (conjunction (or AND) of clauses),
which is an instance of constraint satisfaction.

A Certain Al planning models also solved by integer programmir
http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf

25

Have cake and eat cake too

Init(Have(Cake))
Goal(Have(Cake) N FEaten(Cake))
Action(Fat(Cake)

PRECOND: Have(Cake)

EFFECT: - Have(Cake) N Faten(Cake))
Action(Bake(Cake)

PRECOND: — Have(Cake)

EFFECT: Have(Cake))

Figure 10.7 The “have cake and eat cake too” problem.

Planning graph

So S As 5

Bake(Cake)
Have(Cake) {}— \ Have(Cake
Have(Cake) X —7 |
- Have(Cake) —{] — Have(Cake)
Eat(Cake)

Eaten(Cake) 1 Eaten(Cake

Eat(Cake)

= Eaten(Cake)

— Eaten(Cake) —{ T - Eaten(Cake!

Figure 10.8 The planning graph for the ¢

y Jevel
‘have cake and eat cake too’ * problem up «
So. Rcclunt'lcx indicate actions (sm

straigh!
all squares indicate persistence actions), and o
> 0
lines indicate preconditions and effects. Mutex links are shown as curved gray lines.

literal
mutex links are shown, because the graph would be too cluttered. In general, if twW0

and W
are mutex at 5;, then the persistence actions for those literals will be mutex at Ai
need not draw that mutex link.

Planning graph

A A planning problem asks if we can reach a goal state from the
Initial state. Suppose we are given a tree of all possible action
from the initial state to successor states, and their successors
and so on. If we indexed this tree appropriately, we could
answer the planning questi or
SO I mmedi atel vy, by Just | ook
exponential size, so this approach is impractical. A planning
graph is a polynomiasize approximation to this tree that can be
constructed quickly. The pl :
definitively whether G is reachable frorg, But it canestimate
how many steps it takes to read8hThe estimate is always
correct when it reports the goal is not reachable, and it never
overestimates the number of steps, so it is an admissible
heuristic.)8

Planning graph

A A planning graph is a directed graph organized into
levels first a level G for the initial state, consisting of
nodes representing each fluent that holds,jnfen a
level A,consisting of nodes for each ground action th
might be applicable ingSthen alternating levels S
followed by A; until we reach a termination condition.

PAS

Planning graphs

A Roughly speaking,;$ontains all the literals thabuldhold at
time I, depending on the actions executed at preceding time
steps. If it is possible that either P or !'P could hold, then both
will be represented in, SAlso roughly speaking, Aontains all
the actions thatouldhave their preconditions satisfied at time |.
We say Aroughly speakingo be
only a restricted subset of the possible negative interactions
among actions; therefore, a literal might show up at level S
when actually it could not be true until a later level, if at all. (A
literal will never show up too late.) Despite the possible error,
the level | at which a literal first appears is a good estimate of
how difficult it is to achieve the literal from the initial state.

30

Planning graphs

AThe figure shows a si mpl
cake and eat cake tooo ¢
action at level Ais connected to its preconditions at S
and its effects at. 3. So a literal appears because an
action caused it, but we also want to say that a literal
can persist if no action negates it. This Is representec
by apersistence actior{sometimes called @o-op).

For every literal C, we add to the problem a persister
action with precondition C and effect C. Levg] A
shows one Eat(€akd)aongawthtwoo n ,
persistence actions drawn as small square boxes.

31

A Level A, contains all the actions theduldoccur in

state §, but just as important it recorc
between actions that would prevent t

s conflicts
nem from

occurring together. The gray lines indicatatual

exclusion(or mutex) links. For examp

e-at(Cake)s

mutually exclusive with the persistence of either

Have(Cakepr !Eaten(Cake)

32

A Level S1 contains all the literals that could result from
picking any subset of the actions ig, As well as
mutex links (gray lines) indicating literals that could nc
appear together, regardless of the choice of actions. |
example Have(CakepndEaten(Cakegare mutex:
depending on the choice of actions ig Aither, but not
both, could be the result. In other wordsré&presents a
belief state: a set of possible states. The members of
set are all subsets of the literals such that there is no
mutex link between any members of the subset.

33

Planning graphs

A We continue in this way, alternating between state levah®
action level Auntil we reach a point where two consecutive
levels are identical. At this point, we say that the graph has
leveled off The graph in the figure levels off at S

A What we end up with is a structure where everiexel
contains all the actions that are applicable;jraleng with
constraints saying that two actions cannot both be executed a
the same level. Every &vel contains all the literals that could
result from any possible choice of actions in,Aalong with
constraints saying which pairs of literals are not possible. It is
Important to note that the process of constructing the planning
graph doesotrequire choosing among actions, which would
entail combinatorial search. Instead, it just records the

Impossibility of certain choices using mutex links. o

Planning graphs

A We now define mutex links for both actions and literals. A
mutex relation holds between twotionsat a given level if any
of the following three conditions holds:

I Inconsistent effect®ne action negates an effect of the other. For
example Eat(Cake)and the persistence bfave(Cakehave inconsistent
effects because they disagree on the eHeaste(Cake)

I Interferenceone of the effects of one action is the negation of a
precondition of the other. For examjidat(Cake)interferes with the
persistence afave(Cakepy negating its precondition.

I Competing need®ne of the preconditions of one action is mutually
exclusive with a precondition of the other. For exampake(Cakepand
Eat(Cake)are mutex because they compete on the value of the
Have(Cake)precondition.

35

Planning graphs

A A mutex relation holds between tiiterals at the same level if
one is the negation of the other or if each possible pair of actic
that could achieve the two literals is mutually exclusive. This
condition is callednconsistent suppartor example,
Have(CakepndEaten(Cakeare mutex in S1 because the only
way of achievingHave(Cake)the persistence action, is mutex
with the only way of achievingaten(Cake)namelyEat(Cake)

In S2 the two literals are not mutex, because there are new w
of achieving them, such &ake(Cakegand the persistence of
Eaten(Cake)that are not mutex.

36

Planning graphs

A A planning graph is polynomial in the size of the
planning problem. For a planning problem with L
literals and a actions, each Si has no more than L no
and 2 mutex links, and each Ai has no more than a+|
nodes (including the nRops), (a+L} mutex links, and
2(aL+L) precondition and effect links. Thus, an entire
graph with n levels has a size of O(n(a®LYhe time
to build the graph has the same complexity.

37

GRAPHPLAN algorithm

A The GRAPHPLAN algorithm repeatedly adds a level

to a planning gra
the goals show u
GRAPHPLAN ca
for a plan that so
expands another

oh with EXPANIGRAPH. Once all
D as nomutex in the graph,
Is EXTRACTSOLUTION to search

ves the problem. If that fails, it
level and tries again, terminating wi

fallure when there Is no reason to go on.

38

GRAPHPLAN

function GRAPH PLAN(problem) returns solution or failure

graph «— INITIAL-PLANNING-GRAPH(problem)
goals <— CON]J UNCTS(problem.GOAL)
nogoods « an empty hash table
for t/ =0 to oo do
if goals all non-mutex in St of graph then
solution «— EXTRACT-SOLUTION(grap/z, goals, NUMLEVELS(gmph), nogoods)
if solution # failure then return solution
if graph and nogoods have both leveled off then return failure
graph «— EXPAND-GRAPH(graph, problem)

Figure 10.9 The GRAPHPLAN algorithm. GRAPHPLAN calls EXPANI.)—G.RAPH to add a
level until either a solution is found by EXTRACT-SOLUTION, or no solution is possible.

GRAPHPLAN

A Let us now trace the operation of GRAPHPLAN on the spare
tire problem. The first line of GRAPHPLAN initializes the
planning graph to a ordevel (§) graph representing the initial
state. The positive fluents (state variables) from the problem
descriptiono6s i1 nitial state
fluents. Not shown are the unchanging positive literals (such a
Tire(Spare) and the irrelevant negative literals. The goal
At(Spare,Axlejs not present in 5so we need not calll
EXTRACT-SOLUTIONO we are certain that there is no
solution yet. Instead, EXPANIGRAPH adds into Athe three
actions whose preconditions exist at levg(i®., all the actions
exceptPutOn(Spare, Axlepnlong with persistence actions for all
the literals in § The effects of the actions are added at leyel S
EXPAND-GRAPH then looks for mutex relations and adds
them to the graph. 40

Spare tire problem

[

Init(Tire(Flat) N Tire(Spare) N At(Flat, Azle) N At(Spare, Trunk))
Goal(At(Spare, Azle))

Action(Remove(obj, loc),

PRECOND: At(obj, loc)
EFFECT: — At(obj, loc) A At(obj, Ground))
Action(PutOn(t, Azle),
PRECOND: Tire(t) A At(t, Ground) A — At(Flat, Azle) N — At(Spare, Azle
EFFECT: - At(t, Ground) N At(t, Azle))
Action(LeaveQuernight,
PRECOND:
EFFECT: = At(Spare, Ground) A — At(Spare, Azle) A — At(Spare, Trunk)
A~ At(Flat, Ground) A - At(Flat, Azle) A — At(Flat, Trunk))

L Figure 10.2 The simple spare tire problem.

GRAPHPLAN

Aq

At(Spare, Tryny

At(Spare, Trunk)

5

—
J

\| Remove(Spare|TfUnk)]\
g

= At(Spare, Trunk)

T el
/LRemove(Flat.Axle)
| gy
At(Flat,Axle) S
g __=

At(Flat, Axle)
AN\
= Ar(FIat,Axle) - L1

= At(Flat,Axle)

it At(spafe Tf[,t'?*

|_LeaveOvernight

At(Spare Axle

—1 Al(Spare,Axle) —{}— T AISP :
are,Axie)

\\\ PutOn(Spare,AxIe) Al(Sp

lat, Ground
1 Al(Flat, Ground) — At(Fla

\ { { "G!L‘[Avﬂ,i‘.
At(Flat, Ground) \ Al(Flal
1 Al(Spare, Ground)

— At(Spare,Groun

At(Spare, Grount

At(Spare, Ground)

Figure 10.10 The planning graph for the °PAre tire problem after expansion to level 52
Mutex links are shown 45 gray lines. Not links are show

‘ould be 100
- n, because the graph would be
n all. The solution i indic

cluttered if we show) s A
S Al i aled by bolq lines and outlines.

ed the;

e /Hl(‘l_'/(’/‘(’ll(‘(’.' it

GRAPHPLAN

A At(Spare, Axlejs still not present in S1, so again we do not call
EXTRACT-SOLUTION. We call EXPANDGRAPH again,
adding A and S and giving us the planning graph shown. Now
that we have the full complement of actions, it is worthwhile to
look at some of the examples of mutex relations and their cause
I Inconsistent effectkemove(Spare, Trunlg mutex withLeaveOvernight
because one has the effé¢(Spare,Groungand the other has its negation.

I Interference Remove(Flat, Axlay mutex withLeaveOvernighbecause one
has the preconditioAt(Flat,Axle)and the other has its negation as an effect

I Competing need®utOn(Spare, Axlay mutex withRemove(Flat, Axle)
because one has At(Flat, Axle) as a precondition and other has its negati

I Inconsistent supporft(Spare, Axlels mutex withAt(Flat, Axle)in S,
because the only way of achieviAfSpare,Axlels by PutOn(Spare, Axle)
and that is mutex with the persistence action that is the only way of
achievingAt(Flat,Axle) Thus, the mutex relations detect the immediate
conflict that arises from trying to put two objects in the same pRce at the
same time.

GRAPHPLAN

A This time, when we go back to the state of the loop, ¢
the literals from the goal are present g &d none of
them Is mutex with any other. That means that a
solution might exist and EXTRAGBOLUTION will

try to find it. We can formulate EXTRAGT
SOLUTION as a Boolean constraint satisfaction
problem (CSP) where the variables are the actions a
each level, the values for each variableiam@ out of
the plan, and the constraints are the mutexes and the
need to satisfy each goal and precondition.

44

GRAPH-PLAN

A Alternatively, we can define EXTRAGBOLUTION
as a backward search problem, where each state in t
search contains a pointer to a level in the planning
graph and a set of unsatisfied goals.
I Initial state Is last level Sn with set of goals

I Acti ons at Si ar-Bréeeosslubs
actions in A, whose effects cover the goals in the state. The
resulting state has level &nd has as its set of goals the
preconditions for the sele
free, 0 we mean a set of ac
mutex and no two of their preconditions are mutex.

I The goal is to reach a state at levgs&ch that all the goals
are satisfied.

I The cost of each action is 1. 45

GRAPHPLAN

A In the case where EXTRAGSOLUTION fails to find a
solution for a set of goals at a given level, we record the (leve
goals) pair as ao-good (a similar idea is used for constraint
learning for CSPs). Whenever EXTRAECIOLUTION is called
again with the same level and goals, we can find the recorded
no-good and immediately return failure rather than searching
again. We will see shortly that fgmods are also used in the
termination test.

46

GRAPHPLAN

A We know that planning is PSPA@®mplete (will elaborate
next lecture) and that constructing the planning graph takes
polynomial time, so it must be the case that solution extractior
Intractable in the worst case. Therefore, we will need some
heuristic guidance for choosing among actions during the
backward search. One approach that works well in practice is
greedy algorithm based on the level cost of the literals. For an
set of goals, we proceed in the following order:

I Pick first the literal with the highest level cost

I To achieve that literal, prefer actions with easier preconditions. That is,
choose an action such that the sum (or maximum) of the level costs of
preconditions is smallest.

47

GRAPHPLAN termination

A How long do we have to keep expanding after the
graph has leveled off? If the function EXTRACT
SOLUTION falls to find a solution, then there must
have been at least one set of goals that were not
achievable and were marked as agood. So it iIs
possible that there might ne fewergaods in the next
level, then we should continue. As soon as the graph
itself and the naoods have both leveled off, with no
solution found, we can terminate with failure because
there Is no possibility of a subsequent change that
could add a solution.

48

Planning summary

A Planning systems are problesulving algorithms that operate
on explicit propositional or relational representations of states
and actions. These representations make possible the derivat
of effective heuristics and the development of powerful and
flexible algorithms for solving problems.

A PDDL, the Planning Domain Definition Language, describes tt
Initial and goal states as conjunctions of literals, and actions ir
terms of their preconditions and effects.

A A planning graph can be constructed incrementally, starting
from the initial state. Each layer contains a superset of all the
literals or actions that could occur at that time step and encode
mutual exclusion (mutex) relations among literals or actions th
cannot ceoccur. Planning graphs yield useful heuristics for
statespace and partirder planners and can be used directly i
the GRAPHPLAN algorithm. 49

Probability

A Consider a domain with three Boolean variablemthache,
Cavity,Catci t he denti st os steel

toothache ﬁfoo/hu;/n

| —cavity 1
| Figure 13.3

50

Probabillity

A Notice that the probabilities in theint distribution sum
to 1, as required by thexioms of probabillity.

A Axioms of probability:
1. 0<=P(w) <=1 for every possible world w
2. Sum over all worlds w of P(w) =1

A For example, if we roll two dice, there are 36 possible
worl ds: (1, 1), (1, 2), ¢é&,

A I f each die is fair and r o
each world has probability 1/36.

A On the other hand, if the dice conspire to produce the same
number, then the worlds (1,1), (2,2), (3,3), etc. might have

higher probabillities, leaving the others with lower probabiliti
51

Probabillity

A Technique to calculate the probability of any
proposition, simple or complex: identify those possibl
worlds in which the proposition is true and add up the
probabilities. For example, there are six possible
worlds in whichcavity OR toothachkolds:

I P(cavity OR toothache= 0.108 + 0.012 + 0.072 + 0.008 +
0.016 + 0.064 = 0.28.

A One particularly common task is to extract the
distribution over some subset of variables or a single
variable. For example, adding the entries in the first
row gives thanarginal probability of cavity:.

i P(cavity) = 0.108 + 0.102 + 0.072 + 0.008 = 0.2.z5

Probabillity

Aln general, for any s ezt sP(Yef

A P(CaVitW Zin {Cgch, ToothacheE(CaVity’ Z)

A Conditional probability:
I P(a|b)=P(a AND b) / P(b) whenever P(b) >0
I P(doubleq Diel = 5) = RfoublesAND Diel = 5)/P(Diel =5)

A P(cavity|toothachg = P(avity AND toothache) / P(toothache)
=(0.108 + 0.012) / (.108 + 0.012 + 0.016 + 0.064) = 0.6.

A P(Icavity|toothach& = P(lcavity AND toothache) / P(toothache)
= (0.016 + 0.064) / (.108 + 0.012 + 0.016 + 0.064) = 0.4.

A These two values sum to 1 as they should. This can be viewec
normalization.

53

Independence

A Let us expand the full joint distribution by adding a fourth
variable,Weather The full joint distribution then becomes
P(Toothache, Catch, Cavity, Weather), which has 2 x 2 x 2 x -
32 entri es. |t contains fout

each kind of weather.

A How do these editions relate to each other and to the original
threevariable table? For example, P(toothache, catch, cavity,
cloudy) vs. P(toothache, catch, cavity)?

A We can use theroduct rule:

P(toothache, catch, cavity, cloudy)
= P(cloudy | toothache, catch, cavity) * P(toothache, catch, cavity).

24

Probabillity

A Now, unless one is in the deity business, one should not imag
t hat onedos dent al probl ems i
dentistry, at least, it seems safe to say that the weather does |
Influence the dental variables.

A Therefore, the following assertion seems reasonable:
P(cloudy | toothache, catch, cavity) = P(cloudy).
A From this, we can deduce

P(toothache, catch, cavity, cloudy) = P(cloudy)P(toothache,
catch, cavity).

A A similar equation exists for every entry in P(toothache, catch
cavity, weather). In fact, we can write the general equation:
P(toothache, catch, cavity, weather) = P(toothache, catch, cavity) P(weat

55

Probabillity

A Thus, the 322lement table for four variables can be
constructed from one-8lement table and one 4
element table. This decomposition is illustrated
schematically in next slide. The property we used Is
calledindependencdalsomarginal independence
andabsolute independencke In particular, the weather
|l S I ndependent of oneos
between propositions a and b can be written as:

I P(alb) = P(a) or
I P(bla) = P(b) or
i P(a AND b) = P(a)P(b)

56

Independence

Cavity
Toothache Catch
Weather

decomposes decomposes
Into into

("l) (h)

, . of factoring a large joint distribution into smaller distributions.

Figure 13.4 Two examples of factoring a la iLd,l e s fndependent. (5 Coin
' : o (: ather and denta S &)

using absolute independence. (a) Weathe

flips are independent. ! B)

Independence

A Independence assertions are usually based on knowledge of
domain. As the toothacheeather example illustrates, they can
dramatically reduce the amount of information necessary to
specify the full joint distribution. If the complete set of variable
can be divided into independent subsets, then the full joint
distribution can béactoredinto separate joint distributions on
those subsets. For example, the full joint distribution on the
outcome of n I ndependent <col
entries, but it can be represented as the product of nsingle
variable distributions P(Ci). In a more practical vein, the
Independence of dentistry and meteorology is a good thing,
because otherwise the practice of dentistry might require
Intimate knowledge of meteorology, and vice versa.

58

Independence

A When they are available, then, independence assertions can |
In reducing the size of the domain representation and the
complexity of the inference problem. Unfortunately, clean
separation of entire sets of variables by independence is quite
rare. Whenever a connection, however indirect, exists betwee
two variables, independence will fail to hold. Moreover, even
Independent subsets can be quite laripr example, dentistry
might involve dozens of diseases and hundreds of symptoms,
of which are interrelated. To handle such problems, we need
more subtle methods than the straightforward concept of
Independence.

59

Bayeso Rul e

A Recall theproduct rule: P(a AND b) = P(a | b)P(b), or
equivalently, P(a AND b) = P(bla)P(a)

A Equating the two righhand sides and dividing by P(a), we get
i P(bla) = P(a|b)P(b)/P(a)

A This equationisknown @& ay es 0 at abe Bayesao

Bayeso theorem). This simpl
Al systems for probabilistic inference.

60

Bayeso rul e

AOn the surface, Bayesod r
It allows us to compute the single term P(bla) in term
of three terms: P(alb), P(b), and P(a). That seems lik
t wo steps backwards, but
practice because there are many cases where we do
have good probability estimates for these three
numbers and need to compute the fourth. Often, we
perceive as evidence thffectof some unknowmcause
and we would like to determine that cause. In that ca
Bayeso rul e becomes

I P(cause | effect) = P(effect | cause) P(cause) / P(effect)

61

Bayeso rul e

A The conditional probability P(effect | cause) quantifies the
relationship in theausaldirection, whereas P(cause|effect)
describes thdiagnosticdirection. In a task such as medical
diagnosis, we often have conditional probabilities on causal
relationships (that is, the doctor knows P(symptoms| disease)
and want to derive a diagnosis, P(disease | symptoms). For
example, a doctor knows that the disease meningitis causes t
patient to have a stiff neck, say, 70% of the time. The doctor
also knows some unconditional facts: the prior probability that
patient has meningitis is 1/50,000, and the prior probability the
any patient has a stiff neck is 1%. Letting s be the proposition
that the patient has a stiff neck and m be the proposition that 1
patient has meningitis, we have:

62

Bayeso rul e

A P(s|m) =0.7

A P(m) = 1/50000

A P(s) =0.01

A P(m | s) = P(s|m)P(m)/P(s) = (0.7 * 1/5000)/0.01 = 0.0014

A Thus, we expect less than 1 in 700 patients with a stiff neck tc
have meningitis. Notice that even though a stiff neck is quite
strongly indicated by meningitis (with probability 0.7), the
probability of meningitis in the patient remains small. This is

because the prior probability of stiff necks is much higher thar
that of meningitis.

63

Probability

A What is probability that sum of first two die rolls is >=
9 given that the first roll 1s 57

64

Bayesian networks

A A Bayesian network is a directed graph in which eact
node Is annotated with quantitative probability
Information. The full specification Is:

1. Each node corresponds to a random variable, which may
discrete or continuous

2. A set of directed links or arrows connects pairs of nodes.
there is an arrow form node X to node Y, X is said to be ¢
parentof Y. The graph has no directed cycles (and hence
a directed acyclic graph), or DAG.

3. Each node Xi has a conditional probability distribution
P(Xi|Parents(Xi)) that quantifies the effect of the parents
the node.

65

Bayesian networks

Figure 14.1 A simple Bayesian network in which Weather is independent of the other
7 | ‘ are conditionally independent, given Cavity.

three variables and Toothache and Clatch fidependel iver
| R Yanane

66

Bayesian network

67

