

DEC 2023

Multi Tools for Elemental Analysis in Soil, Water, Plant and Fertilizer

Anthony Thomas

Business Development Director Non - Metals anthony.thomas@ametek.com

SOIL HEALTH PROGRAM

Soil Health Project

- Soil Fertility Program
- Soil Composition : State to State
- >200 Lac land holding

Soil Health Imbalance

- Intensive agriculture
- Greater mining of soil nutrients (>10 mt/year)
- Micronutrients Deficiency
- Declining water table and Water Quality

NORMS

Water

Directive 91/271/ EEC [1)- Waste Water

Soil

Sewage Sludge Directive 86/278/EEC" [1], Landfill Directive 1999/31/EC" [2], Organic Farming Regulation (EEC) No. 2092/91 ISO 18227: Soil quality — Determination of elemental composition by X-ray fluorescence EN 15309: Characterization of waste and soil - Determination of elemental composition by X-ray fluorescence ASTM D6052: Preparation and elemental analysis of liquid hazardous waste by EDXRF

Fertilizer

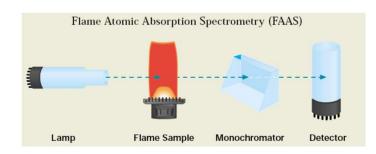
EN 16317 Fertilizers and liming materials EN 16319 Fertilizers and liming materials ISO 17318 Fertilizers and soil conditioners EN 15962 Fertilizers EN 16963 Fertilizers

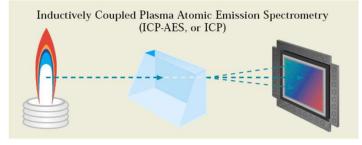
ELEMENTS IN FOCUS

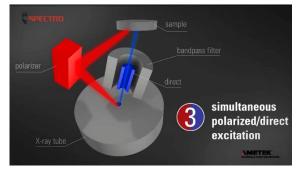
- Micro Nutrient : Zn, Fe, Cu, B*, Mo & Mn
- Macronutrient : AI, Na, S, Ca* & Mg
- Fertilizer : N*+, P* & K

• Sample Treatment : Acid Leaching

+ Limited or No possibility of analysis with Atomic Emission Spectrophotometer * By Kjeldhal Method


4


ANALYSIS OFFERINGS



X-Ray Fluorescence Spectrometer

5

Challenge & Objective

Zn, Fe, Cu, Mg & Mn - AAS with Air / Acetylene mode

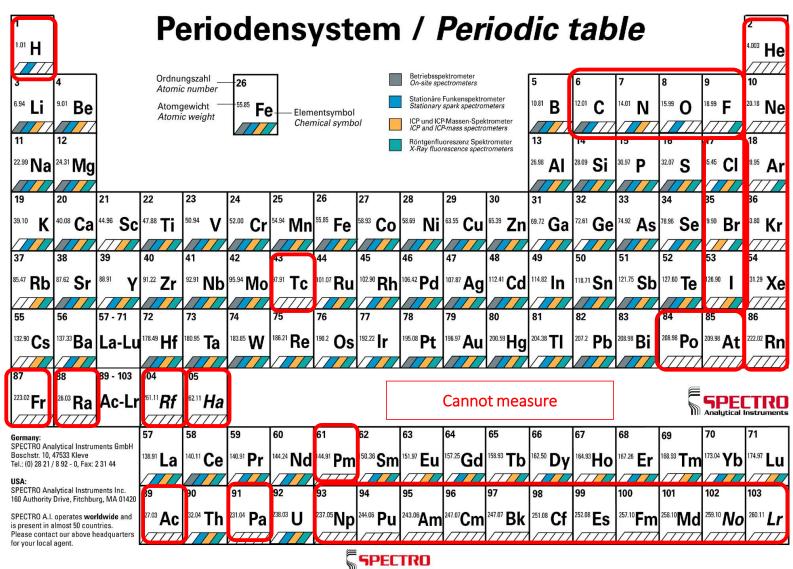
Zn, Fe, Cu, Mg, Mo, Ca & Mn - AAS with Nitrox Flame mode

Zn, Fe, Cu, Mo, B & Mn – AAS with Graphite Mode

Time consuming.....around 1 minute/element

OR

Simultaneous ICP OES Spectrometer


(+70 elements.....No loss of any elements Soil :21 element in 40 seconds)

SELECTION CRITERIA-ICPOES/ICPAES SPECTROMETER

- True & Fully Simultaneous ICP-OES with Polychromator Optics
- High & Low Concn of all element in single sample in single run
- Analysis time of <2 min to save Argon gas consumption</p>
- Low gas purge @ 0.5 litre/min and not 7-8 litres/min
- Non Destructive Image -NO LOSS OF ANY SAMPLE ANALYSIS DATA !!
- No Water chiller and Air compressor

AMETEK

SPECTRO ICP-OES, GENESIS DSOI

- Polychromator –Fully Simultaneous for complete wave
- Compact and space saving
 - Pure bench-top design without additional components hidden underneath the table
 - No Water Chiller
 - No Air compressor
 - No Neon Light
 - Size: 87.1 x 57.3 x 100 cm (34.3 x 22.6 x 39.4) (WxDxH
 - Smallest depth of any ICP-OES on the market
- Lightweight and corrosion resistant construction
 - Aluminum and Steel body
 - Weight: 115 kg (254 lb)
 - Epoxy resin-based coating

	λ [nm]	LOD 3 0 Seaspray [µg/L]		λ [nm]	LOD 3 σ Seaspray [µg/L]
Ag	328.068	1.0	Mn	257.611	0.1
AI	396.152	3.5	Мо	202.095	0.8
As	189.042	4.8	Na	589.592	4.0
Au	242.795	1.9	Ni	221.648	1.1
В	249.773	0.70	Р	177.495	3.4
Ва	455.404	0.070	Р	178.287	4.6
Ве	313.042	0.040	Pb	220.353	6.5
Ca	393.366	0.1	Pd	324.27	6.6
Cd	226.502	0.4	Pr	417.939	3.7
Cd	228.802	0.5	Pt	177.708	5.3
Ce	418.66	4.0	Ru	240.272	3.2
Со	228.616	0.8	Sb	206.833	5.2
Cr	205.618	0.6	Se	196.09	6.7
Cu	324.754	0.7	Si	251.612	2.8
Fe	259.941	0.6	Sn	189.991	2.5
Ge	265.118	4.2	Sr	407.771	0.02
Hf	264.141	1.8	Ti	334.941	0.3
Hg	184.95	1.8	TI	190.864	4.3
Hg	194.227	1.9	v	311.071	0.8
к	766.491	26	w	207.911	3.2
Li	670.78	1.0	Zn	213.856	0.4
Mg	279.553	0.04	Zr	339.198	0.6

Application GENESIS DSOI – Unpolluted Waters – LODs Seaspray/Cyclonic

Tab.3: Limits of detection (LOD) of the selected lines

Detection Power-Soil

• •	No. 1			
Elem.	λ	LOD 3s		
	nm	[mg/kg]		
Ag	328.068	0.13		
As	189.641	1.8		
В	208.959	0.5		
Ba	455.404	0.02		
Be	313.042	0.009		
Cd	214.438	0.2		
Cd	228.802	0.1		
Co	228.616	0.2		
Cr	267.716	0.3		
Cu	327.396	0.3		
Hg	184.950	0.6		
Li	670.784	0.18		
Mn	260.569	0.1		
Mo	202.030	0.5		
Ni	231.604	0.4		
Pb	220.353	2.2		
Sb	206.833	2.4		
Se	196.090	2.9		
Sn	189.991	1.1		
Sr	421.552	0.06		
TI	190.864	2.8		
V	292.464	0.3		
Zn	213.856	0.12		

¹¹ **11**

FERTILIZER

Table 5: Typical limits of detection (LOD) in phosphate rock

Element	λ [nm]	LOD 3 0 [mg/kg]	Element	λ [nm]	LOD 3 0 [mg/kg]	Element	λ [nm]	LOD 3 0 [mg/kg]
AI	176.641	0.64	Ho	345.600	0.055	Si	251.612	1.5
As	189.042	0.2	к	766.491	3.1	Sm	428.079	1.7
Au	242.795	0.21	La	333.749	0.070	Sn	189.991	0.51
В	182.641	0.12	Li	670.780	0.12	Sr	407.771	0.70
Ba	455.404	0.024	Lu	261.542	0.025	Та	268.517	1.7
Cd	226.502	0.13	Mg	202.647	0.92	Tb	350.920	0.37
Co	228.616	0.19	Mn	257.611	0.011	Th	401.913	1.3
Cr	284.325	0.23	Mo	202.095	0.12	Ti	334.941	0.020
Cu	219.226	0.38	Na	589.592	0.61	Tm	346.220	0.083
Dy	353.170	0.14	Nd	406.109	0.41	U	409.014	3.6
Er	326.478	0.56	Ni	231.604	0.077	V	311.071	0.23
Eu	420.505	0.25	Pb	220.353	0.73	w	207.911	0.3
Gd	335.862	0.16	Pr	417.939	1.8	Y	371.030	0.043
Hf	277.336	0.79	Sb	206.833	1.2	Yb	328.937	0.014
Hg	194.227	0.24	Se	196.090	0.85	Zn	213.856	0.029

Table 6: Typical limits of detection (LOD) in solid fertilizer

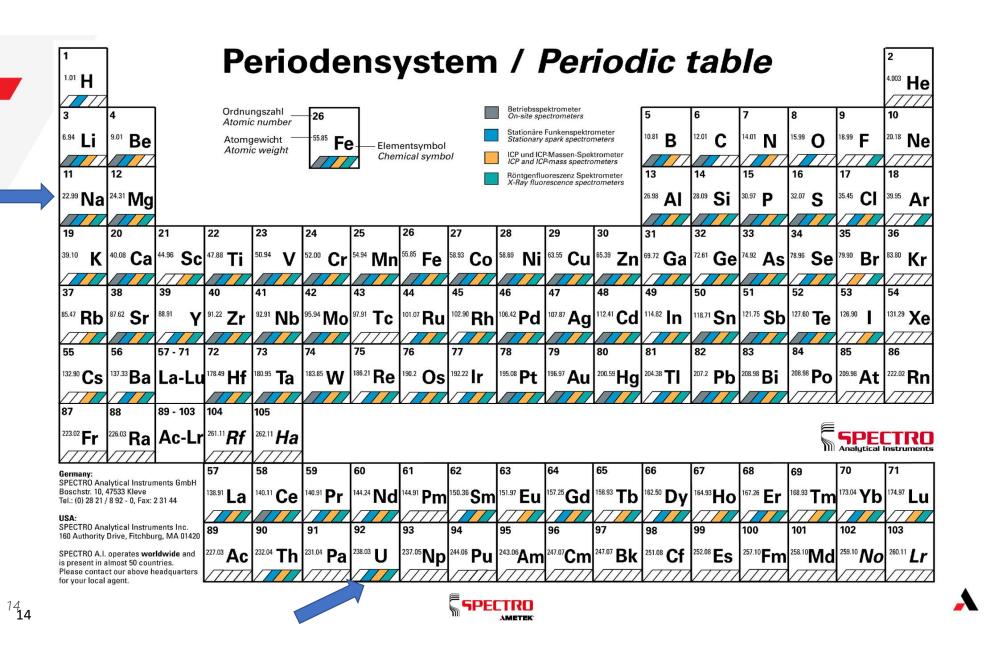
Element	λ [nm]	LOD 3 0 [mg/kg]		
В	249.677	0.048		
Cd	228.802	0.009		
Cr	267.716	0.016		
Cu	324.754	0.055		
Fe	238.204	0.013		
Hg	184.95	0.028		
K	766.491	1.6		
Mg	279.553	0.0008		
Mn	257.611	0.0045		
Mo	202.095	0.025		
Ni	231.604	0.028		
Р	177.495	0.050		
Pb	220.353	0.143		
Zn	213.856	0.006		

¹² 12

NORMS

Water

Directive 91/271/ EEC [1])- Waste Water


Soil

Sewage Sludge Directive 86/278/EEC" [1], Landfill Directive 1999/31/EC" [2], Organic Farming Regulation (EEC) No. 2092/91 ISO 18227: Soil quality — Determination of elemental composition by X-ray fluorescence EN 15309: Characterization of waste and soil - Determination of elemental composition by X-ray fluorescence ASTM D6052: Preparation and elemental analysis of liquid hazardous waste by EDXRF

Fertilizer

EN 16317 Fertilizers and liming materials EN 16319 Fertilizers and liming materials ISO 17318 Fertilizers and soil conditioners EN 15962 Fertilizers EN 16963 Fertilizers

SAMPLE PREPARATION-XRF

Preparation –I

- 5gm dried powder (65um) + 1gm wax- homogeneity
- Pressed with 15 Tn Press

Preparation-II

¹⁵ 15 • Liquid Samples-No Sample Preparation

SOIL & FERTILIZER

NIST 1570 Soil Analysis-Repeatability

N°∖Element	Na (%)	P (%)	K (%)	Ca (%)	Mn (µg∕g)	Fe (%)	Cu (µg/g)	Zn (µg/g)	Cd (µg/g)
1	1.916	0.579	3.187	1.662	79.3	0.02513	14.7	89.2	2.8
2	1.917	0.580	3.200	1.668	81.3	0.02515	14.4	91.2	3.1
3	1.928	0.581	3.209	1.671	80.3	0.02589	15.2	91.6	2.3
4	1.924	0.581	3.209	1.673	80.9	0.02520	14.4	91.7	1.9
5	1.928	0.581	3.212	1.675	82.3	0.02517	14.8	91 <mark>.</mark> 3	3.0
6	1.927	0.581	3.215	1.675	80.9	0.02524	14.7	90.1	3.3
7	1.918	0.582	3.214	1.675	79.5	0.02513	15.0	90.4	3.2
8	1.930	0.581	3.218	1.679	80.5	0.02547	15.2	91.9	3.4
9	1.924	0.582	3.220	1.678	80.2	0.02533	14.7	92.6	3.2
10	1.928	0.582	3.220	1.679	80.5	0.02529	14.6	91.7	3.4
Average:	1.924	0.581	3.210	1.674	80.6	0.02530	14.8	91.2	3.0
Std. deviation:	0.005	0.001	0.010	0.005	0.8	0.00022	0.3	0.9	0.5

Element	Typ. concentration range [mg/100g]
Na	100 – 450
Mg	30 – 200
Р	170 – 1100
CI	270 – 1000
К	400 – 1700
Ca	250 – 1400
Mn	0.01 – 1.5
Fe	0.4 - 10
Cu	0.1 – 0.9
Zn	3 – 8

ELEMENTAL ANALYSIS OF ENVIRONMENTAL SAMPLES USING XRF

Screening from Na to U

- Sample preparation-less
- From 0.5ppm and above
- Analysis time : 5 min max

¹⁷ 17

Headquarters – Kleve, Germany

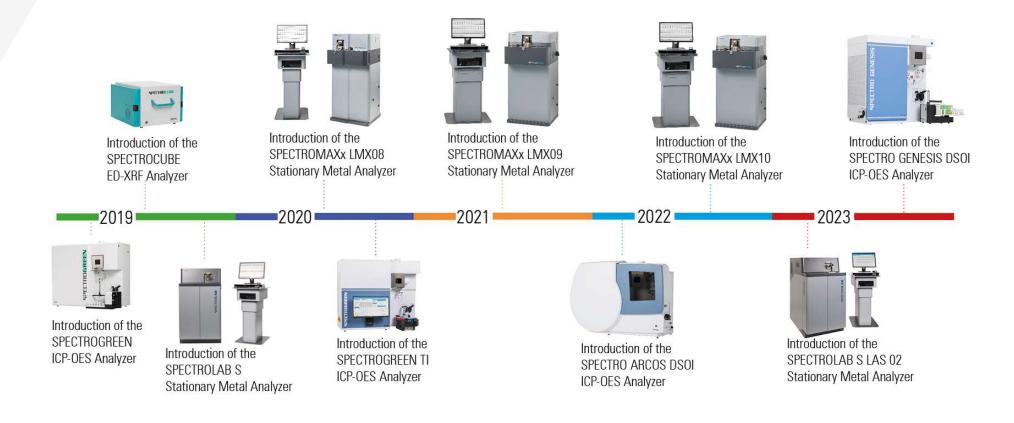
Headquarters, Boschstrasse 10

- 3740 sq. Meters (40225 sq. ft.)
- Management
- Product Management
- Research & Development
- Regional Center Europe
- D,A, CH, Sales & Service
- Human Resources
- Accounting

Production Facility, Boschstrasse 15

- 4,500 sq. meters (48,400 sq ft.)
- Optical System Manufacturing
- ICP, XRF, SMA & MMA System Manufacturing
- Warehouse & Parts Distribution
- Purchasing

¹⁸ 18



RECENT EVENTS

¹⁹19

PRODUCTS

- Spark Emission Spectrometer-Solid Metal Analysis
- XRF Spectrometer-Handheld /Portable/Benchtop
- ICP-OES Spectrometer
- / ICP-MS

