Math 6345 - AODEs

Ordinary Differential Equations Review - Part 2

1 Linear Systems

A linear system of equations

$$
\begin{equation*}
\frac{d x}{d t}=a x+b y, \quad \frac{d y}{d t}=c x+d y \tag{1}
\end{equation*}
$$

can be can be written as a matrix ODE

$$
\begin{equation*}
\frac{d \bar{x}}{d t}=A \bar{x} \tag{2}
\end{equation*}
$$

where $\bar{x}=\binom{x}{y}$ and $\bar{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. If we consider solutions of the form

$$
\bar{x}=\bar{c} \mathrm{e}^{\lambda t},
$$

then after substitution into (2) we obtain

$$
\lambda \bar{c} \mathrm{e}^{\lambda t}=A \bar{c} \mathrm{e}^{\lambda t}
$$

from which we deduce

$$
\begin{equation*}
(A-\lambda I) \bar{c}=0 \tag{3}
\end{equation*}
$$

In order to have nontrivial solutions \bar{c}, we require that

$$
\begin{equation*}
|A-\lambda I|=0 \tag{4}
\end{equation*}
$$

This is the eigenvalue-eigenvector problem. If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then (4) becomes

$$
\lambda^{2}-\operatorname{Tr} A \lambda+\operatorname{Det} A=0,
$$

where $\operatorname{Tr} A=a+d$ and $\operatorname{Det} A=a d-b c$. When solving for λ we have three possible cases:

1. two distinct eigenvalues
2. two repeated eigenvalues,
3. two complex eigenvalues.

Here we consider an example of each
Example 1 If

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{ll}
1 & 1 \tag{5}\\
2 & 0
\end{array}\right) \bar{x}
$$

then the characteristic equation is

$$
\left|\begin{array}{cc}
1-\lambda & 1 \\
2 & -\lambda
\end{array}\right|=\lambda^{2}-\lambda-2=(\lambda+1)(\lambda-2)=0,
$$

from which we obtain the eigenvalues $\lambda=-1$ and $\lambda=2$.

Case 1: $\lambda=-1$
From (3) we have

$$
\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $2 c_{1}+c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{-2} .
$$

Case 2: $\lambda=2$
From (3) we have

$$
\left(\begin{array}{rr}
-1 & 1 \\
2 & -2
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0},
$$

from which we obtain upon expanding $c_{1}-c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{1} .
$$

The general solution to (10) is then given by

$$
\bar{x}=c_{1}\binom{1}{-2} \mathrm{e}^{-\mathrm{t}}+\mathrm{c}_{2}\binom{1}{1} \mathrm{e}^{2 \mathrm{t}} .
$$

Example 2 If

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{cc}
1 & -1 \tag{6}\\
1 & 3
\end{array}\right) \bar{x}
$$

then the characteristic equation is

$$
\left|\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0,
$$

from which we obtain the eigenvalues $\lambda=2,2$.
$1^{\text {st }}$ solution: $\lambda=2$
From (3) we have

$$
\left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain upon expanding $c_{1}+c_{2}=0$ and we deduce the eigenvector

$$
\bar{c}=\binom{1}{-1} .
$$

and our first solution is

$$
\bar{x}_{1}=\binom{1}{-1} \mathrm{e}^{2 \mathrm{t}} .
$$

$2^{\text {nd }}$ solution: We seek a solution of the form

$$
\begin{equation*}
\vec{x}_{2}=\vec{u} t e^{\lambda t}+\vec{v} e^{\lambda t} \tag{7}
\end{equation*}
$$

Substitution into (6) leads to the following

$$
\begin{align*}
& (A-\lambda I) \vec{u}=\overrightarrow{0} \tag{8a}\\
& (A-\lambda I) \vec{v}=\vec{u} \tag{8b}
\end{align*}
$$

The first we already calculated which is \vec{c} above. For the second we have

$$
\left(\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{1}{-1}
$$

which leads to $-v_{1}-v_{2}=1$ which we choose $v_{1}=0, v_{2}=-1$ giving our second solution as

$$
\begin{equation*}
\vec{x}_{2}=\binom{1}{-1} t e^{2 t}+\binom{0}{-1} e^{2 t} \tag{9}
\end{equation*}
$$

and the general solution

$$
\bar{x}=c_{1}\binom{1}{-1} e^{2 t}+c_{2}\left[\binom{1}{-1} t+\binom{0}{-1}\right] e^{2 t} .
$$

Example 3 If

$$
\frac{d \bar{x}}{d t}=\left(\begin{array}{rr}
3 & -2 \tag{10}\\
5 & 1
\end{array}\right) \bar{x}
$$

then the characteristic equation is

$$
\left|\begin{array}{rr}
3-\lambda & -2 \\
5 & 1-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+13=0
$$

from which we obtain the eigenvalues $\lambda=2 \pm 3 i$. In the case of complex eigenvalues where $\lambda=\alpha \pm \beta i$, the eigenvectors we be complex, say $\vec{u}=\vec{R} \pm \vec{I} i$ and the two independent solutions are

$$
\begin{align*}
\vec{x}_{1} & =[\vec{R} \cos \beta t-\vec{I} \sin \beta t] e^{\alpha t} \\
\vec{x}_{2} & =[\vec{I} \cos \beta t+\vec{R} \sin \beta t] e^{\alpha t} \tag{11}
\end{align*}
$$

Substituting $\lambda=2+3 i$ into (3) with $a=3, b=-2, c=5$ and $d=1$ gives

$$
\left(\begin{array}{rr}
1-3 i & -2 \\
5 & -1-3 i
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{0}{0}
$$

from which we obtain $(1-3 i) c_{1}-2 c_{2}=0$ and choosing $c_{1}=2, c_{2}=1-3 i$ or

$$
\binom{c_{1}}{c_{2}}=\binom{2}{1}+\binom{0}{-3} i
$$

from which we identify that

$$
\vec{R}=\binom{2}{1}, \quad \vec{I}=\binom{0}{-3},
$$

and through (11) we obtain

$$
\begin{align*}
& \vec{x}_{1}=\left[\binom{2}{1} \cos 3 t-\binom{0}{-3} \sin 3 t\right] e^{2 t} \\
& \vec{x}_{2}=\left[\binom{0}{-3} \cos 3 t+\binom{2}{1} \sin 3 t\right] e^{2 t} . \tag{12}
\end{align*}
$$

and a linear combination gives the general solution as

$$
\begin{equation*}
\vec{x}=c_{1}\binom{2 \cos 3 t}{\cos 3 t+3 \sin 3 t} e^{2 t}+c_{2}\binom{2 \sin 3 t}{-3 \cos 3 t+\sin 3 t} e^{2 t} \tag{13}
\end{equation*}
$$

