

Over the years Severance Tool has become known not only as the originator of the ground flute rotary file, Midget Mill ${ }^{\otimes}$, and ChatterlessCountersinks ${ }^{\mathrm{TM}}$, but also the manufacturer and inventor of the highest quality unique rotary deburring and finishing tools. The many fluting geometries offered in the Severance Catalog are backed by the highest of fluting standards. These standards, quality craftsmen, quality machinery and the highest requirements for materials assure a quality tool that to the trained eye is no less than beautiful. There really is a difference!

High Speed Steel - In general, high speed steel rotary files are better for less rigid, hand operations where some chatter is likely. High speed steel Midget Mills ${ }^{\circledR}$ also come with a standard chip breaker, holding a good finish while improving the cut due to producing smaller chips. Severance high speed steel cutting tools are manufactured with quality M2 steel with a Rockwell of 63-65. Hard cutting edges are backed up by a tough, fatigue-resistant body to give excellent performance under the most demanding service conditions.

Carbide - Carbide rotary files are for operations in rigid environments where chatter is minimized and tool control is high. Severance uses special grades of carbide, which are formulated by custom suppliers and sintered at the Severance plant. The carbide is a special blend of Tungsten and Cobalt with a Rockwell A scale hardness of 91.7 to 92.2 which is comparatively harder and tougher for a longer tool life. These custom grades have been selected because they hold a fine cutting edge, which can be reground many times before the tool is used up. Carbide may be operated at many times the speed of steel tools and generally yields as much as five to ten times the service life.

Tool Coatings - Many high speed steel tools can be used where carbide might be easily chipped. Gold TiN-coated tools feature the same tough HSS bodies as the high speed steel line, but have a layer of superhard titanium nitride deposited on their surfaces. These tools, available on special order, will out last regular high speed steel cutters, under most conditions, by a factor of about 3 to 1 . Some of the other coatings available on our Carbide and H.S.S. tools include TiCN (titanium carbon nitride) and TiAlN (titanium aluminum nitride). Consult our engineering staff with your requirements and about other coatings.

Grayhone ${ }^{\text {TM }}$ - A process developed by Severance Tool which eliminates the need for a break-in period on tools. Grayhoned tools are ready to operate at full production speeds right out of the package. This saves time and money in a full range of production operations. Severance utilizes an additional proprietary process in the production of Grayhone ${ }^{\mathrm{mw}}$ tools. After the tools are sharpened with a grinding wheel, they are also honed before shipment to users. The Grayhone ${ }^{\text {™ }}$ process also imparts a distinctive appearance to the tools that provides an added benefit. The dull gray color offers a built-in wear indicator that helps quality control efforts. When the cutting edges start to look shiny, it means that they are becoming dull, and the tools need replacement or resharpening. An overly dull tool causes bad part finishes, and increases the cost of resharpening.

Midget Mill ${ }^{\circledR}$ Classifications

H.S.S. Midget Mills ${ }^{\circledR}$ - Right hand spiral tooth pattern with a light chipbreaker originated by Severance Tool. These tools can take more shock than carbide. Mainly used on non-work hardening materials. Materials applications can include M2, M42, cold and hot roll steels, aluminum, cast iron and bronze.

Carbide Midget Mills ${ }^{\circledR}$ - Right hand spiral tooth pattern invented by Rollin Severance, mainly intended for machine applications because of its deep radial flutes. Able to take a substantial amount of material off in an environment where the tool is not allowed to bounce or chatter out of control. Works best with materials applications using carbon steels, cast steels, gray irons, some stainless steel, tungsten, and nickel alloys.

Carbo -Mills ${ }^{\mathrm{TN}}$ - Features a double cut tooth pattern, first introduced by Severance Tool. Intended for applications where there is substantial stock removal and a rough to medium finish is required. Works best with ferrous, non-work hardening materials. Materials applications can included steels, aluminum, cast iron, and bronze.

Sever-Cuts ${ }^{\text {rN }}$ - Developed by Severance Tool, these tools feature a super coarse cut designed with very course deep positive flutes with a large flute radius to remove material without loading up. Works best with nonferrous materials including aluminum, copper, bronze, nickel, and magnesium. Can be used with either hand or machine operations.

Tangent Mills ${ }^{\mathrm{TN}}$ - Are left hand spiral, right hand cutting, and are especially designed to control tool wandering on curved surfaces. Ideal for finishing holes in tubing. Works best with Ferrous, non-work hardening materials. Material applications can include M2, M42, cold \& hot rolled steels, aluminum, cast iron, and bronze. See catalog page 16 for example.

d-burrs ${ }^{\text {tw }}$ - Feature the Herringbone ${ }^{\text {rw }}$ cut invented by Severance Tool for fine finishing of plastic, aluminum, steel, and similar materials. The Herringbone ${ }^{\text {Th }}$ Cut features alternating right hand and left hand flutes to give a fine finish on difficult deburring problems. See page 28 for standard shapes and sizes.

Other tooth patterns available as a special cut upon request. Here are a few other examples.

Rasp or Diamond Cut

Straight Cut

Chatterless Chamfer Cut ${ }^{\text {TM }}$

Curve Tooth Cut

Tuff-Cut

Pitches and their Cut Numbers

The pitches of teeth ground on Severance Midget Mills ${ }^{\circledR}$ are illustrated on page 6 , in full scale. The chart at the right relates cut numbers to tool diameters for Fine, Standard, Coarse and Super Coarse pitches. Standard pitch will always be supplied unless otherwise specified. If an unlisted pitch is required, order by cut number.
This cut numbering system applies to Severance Midget Mills ${ }^{\oplus}$, Junior Mills ${ }^{\circledR}$, Carbo-Mills ${ }^{\text {TM }}$, etc., and to hand files. Sever-Cut ${ }^{\text {™ }}$ tools all have "super coarse" teeth.

Dia.	Fine	Std.	Coarse	Super Coarse*	Dia.	Fine	Std.	Coarse	Super Coarse*
	Cut \#	Cut \#	Cut \#	(Teeth		Cut \#	Cut \#	Cut \#	
$3 / 32^{\prime \prime}$	2	3	5	Per	$9 / 16^{\prime \prime}$	5	7	9	
$1 / 8^{\prime \prime}$	3	4	5	Tool)	$5 / 8^{\prime \prime}$	5	7	9	10
$3 / 16^{\prime \prime}$	3	5	6		$3 / 4^{\prime \prime}$	6	8	10	12
$1 / 4^{\prime \prime}$	4	5	7	4	$7 / 8^{\prime \prime}$	6	8	10	
$5 / 16^{\prime \prime}$	4	6	7		1 "	6	8	10	16
$3 / 8^{\prime \prime}$	4	6	8	6	$1-1 / 8^{\prime \prime}$	6	9	11	
$7 / 16^{\prime \prime}$	5	6	8		$1-1 / 4^{\prime \prime}$	6	9	11	
$1 / 2^{\prime \prime}$	5	7	9	8	$1-1 / 2^{\prime \prime}$	7	9	12	

*Super Coarse Cuts are recommended for use on aluminum and other nonferrous materials for heavy, fast, stock removal.

Phone: 989-777-5500 Fax: 989-777-0602
E-Mail: severancetool@sbcglobal.net
Severance Tool Industries Inc. • POB 1866 • Saginaw, MI 48605

Midget Mills ${ }^{\circledR}$

Identification System

Midget Mills ${ }^{\circledR}$ are identified by a three-letter "tool number."
The first and second letters specify cutting diameter and length.

The third letter is the shape of the tool. In some cases, additional descriptive information is also part of the tool number . . . EC for End Cutting, 45 for a 45° angle, etc. All carbide tools carry the suffix, -W.

The First letter designates the largest diameter.
The Second letter designates the length of cutting portion. The Third letter designates the general shape as illustrated.
A-1/8"
G-1/2"
M-1-1/8"
S-2"
Y-4-1/2"
B-3/16" H-9/16"
N-1-1/4"
T-2-1/4"
Z-5"
C-1/4"
I-5/8"
0-1-3/8"
U-2-1/2"
D-5/16"
E-3/8"
J-3/4"
F-7/16"
K-7/8"
P-1-1/2"
Q-1-5/8" W-3-1/2"
R-1-3/4" $\quad \mathrm{X}-4 "$

Standard Shape Designations

Shape A Midget Mills ${ }^{\circledR}$

Our founder, R.M. Severance, originated these tools in 1931. Today, throughout the industry, it is the standard, accepted, rotary cutting, burring and finishing tool. The Midget Mill ${ }^{\circledR}$ is efficient and practical for finishing up molds, smooth welds, clean castings, and smooth plastic edges in job or production operations. HSS Midget Mills ${ }^{\circledR}$ have Chip Breaker tooth patterns.

We're The Originators! We've Been "Copied" But Not Surpassed.

			.S.S. didget-Mill ${ }^{\text {º }}$ ingle Cut hip Breakers		H.S.S. Midget-Mill ${ }^{\text {® }}$ Single Cut-EC Chip Breakers		Carbide Midget-Mill ${ }^{\text {® }}$ Single Cut		Carbide Midget-Mill ${ }^{\oplus}$-EC SingleCut
Head Dia.	Flute Length	$\begin{gathered} \text { Midget } \\ \text { Mill }{ }^{\circledR} \\ \text { Name } \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	Midget Mill ${ }^{\text {® }}$ Name	$\begin{gathered} \text { EDP } \\ \text { Order } \end{gathered}$ Number	Midget Mill ${ }^{\text {® }}$ Name		$\begin{gathered} \text { Midget Mill } \\ \text { End Cut } \\ \text { Name } \\ \hline \end{gathered}$	
1/8"	1/2"	AGA	22930	AGA-EC	22960	AGA-W	23280	AGA-EC-W	23300
1/8"	5/8"	-	-	-	-	AIA-W	23281	AIA-EC-W	23301
1/8"	3/4"	AJA	22931	AJA-EC	22961	-	-	-	-
1/8"	$1 "$	ALA	22932	ALA-EC	22962	-	-	-	-
1/8"	1-1/4"	ANA	22933	ANA-EC	22963	-	-	-	-
1/8"	1-1/2"	APA	22934	APA-EC	22964	-	-	-	-
5/32'	5/8"	-	-	-	-	-	-	-	-
3/16"	1/2"	BGA	22935	BGA-EC	22965	BGA-W	23282	BGA-EC-W	23302
3/16"	5/8"	-	-	-	-	BIA-W	23283	BIA-EC-W	23303
3/16"	3/4"	BJA	22936	BJA-EC	22966	-	-	-	-
3/16"	$1{ }^{\prime \prime}$	BLA	22937	BLA-EC	22967	-	-	-	-
1/4"	1/2"	CGA	22938	CGA-EC	22968	CGA-W	23284	CGA-EC-W	23304
1/4"	5/8"	-	-	-	-	CIA-W	23285	CIA-EC-W	23305
1/4"	3/4"	-	-	-	-	CJA-W	23286	CJA-EC-W	23306
1/4"	$1 "$	CLA	22939	CLA-EC	22969	CLA-W	23287	CLA-EC-W	23307
1/4"	1-1/2"	CPA	22940	CPA-EC	22970	-	-	-	-
1/4"	1-3/4"	CRA	22941	CRA-EC	22971	-	-	-	-
5/16"	3/4"	-	-	-	-	DJA-W	23288	DJA-EC-W	23308
5/16"	1 "	DLA	22942	DLA-EC	22972	DLA-W	23289	DLA-EC-W	23309
$3 / 8$ "	3/4"	EJA	22943	EJA-EC	22973	EJA-W	23290	EJA-EC-W	23310
3/8"	1 "	ELA	22944	ELA-EC	22974	ELA-W	23291	ELA-EC-W	23311
$3 / 8$ "	1-1/2"	EPA	22945	EPA-EC	22975	EPA-W	23292	EPA-EC-W	23312
3/8"	$2{ }^{\prime \prime}$	ESA	22946	ESA-EC	22976	-	-	-	-
7/16"	$1 "$	FLA	22947	FLA-EC	22977	FLA-W	23293	FLA-EC-W	23313
1/2"	1/2"	GGA	22948	GGA-EC	22978	-	-	-	-
1/2"	$1{ }^{\prime \prime}$	GLA	22949	GLA-EC	22979	GLA-W	23294	GLA-EC-W	23314
1/2"	1-1/4"	GNA	22950	GNA-EC	22980	-	-	-	-
1/2"	1-1/2"	GPA	22951	GPA-EC	22981	-	-	-	-
1/2"	$2{ }^{\prime \prime}$	GSA	22952	GSA-EC	22982	-	-	-	-
5/8"	1 "	ILA	22953	ILA-EC	22983	ILA-W	23295	ILA-EC-W	23315
$3 / 4 "$	1/2"	JGA	22954	JGA-EC	22984	JGA-W	23296	JGA-EC-W	23316
3/4"	3/4"	JJA	22955	JJA-EC	22985	JJA-W	23297	JJA-EC-W	23317
$3 / 4 "$	$1 "$	JLA	22956	JLA-EC	22986	JLA-W	23298	JLA-EC-W	23318
$3 / 4 "$	1-1/4"	JNA	22957	JNA-EC	22987	-	-	-	-
7/8"	$1{ }^{\prime \prime}$	-	-	-	-	-	-	-	-
$1{ }^{\prime \prime}$	1/4"	LCA	22958	LCA-EC	22988	-	-	-	-
$1{ }^{\prime \prime}$	1 "	LLA	22959	LLA-EC	22989	LLA-W	23299	LLA-EC-W	23319

Severance ${ }^{\text {Tool Industries, Inc. }}$

Shape A Midget Mills ${ }^{\circledR}$

Carbide Midget Mills ${ }^{\circledR}$ are for operations in rigid environments where chatter is minimized and tool control is high. Severance uses special grades of carbide, which are formulated by custom suppliers and sintered at the Severance plant. The carbide is a special blend of Tungsten and Cobalt. These custom grades have been selected because they hold a fine cutting edge, which can be reground many times before the tool is used up. Carbide may be operated at many times the speed of steel tools and generally yields as much as five to ten times the service life. Carbide Midget Mills ${ }^{\otimes}$ have a Spiral tooth pattern; Carbo-Mills ${ }^{\text {nid }}$ have a Double Cut tooth pattern; and carbide Sever-Cuts ${ }^{\text {™ }}$ have a Super Coarse tooth Pattern.

```
H.S.S. and Carbide Midget Mills}\mp@subsup{}{}{(1)
    Come with 1/4" shanks
```

			Carbide Carbo-Mill ${ }^{\text {m }}$ Double Cut		rbide rbo-Mill ${ }^{\text {"w-EC }}$ uble Cut		Carbide Sever-Cut ${ }^{\text {™ }}$ Super Coarse	
Head Dia.	Flute Length	$\begin{aligned} & \text { Carbo- } \\ & \text { Mill } \\ & \text { Name } \end{aligned}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	$\begin{aligned} & \text { Carbo-Mill" } \\ & \text { End Cut } \\ & \text { Name } \end{aligned}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	Sever$\mathrm{Cut}^{\mathrm{TN}}$ Name	$\begin{gathered} \hline \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	
1/8"	1/2"	8A4-W	22380	8A4-EC-W	22386	-	-	
1/8"	5/8"	8AI4L-W	22381	8AIAL-EC-W	22387	-	-	EndCut View
1/8"	3/4"	-	-	-	-	-	-	Available as an option
1/8"	$1 "$	-	-	-	-	-	-	on many shapes.
1/8"	1-1/4"	-	-	-	-	-	-	-7-mem
1/8"	1-1/2"	-	-	-	-	-	-	Smist
5/32"	5/8"	8A5-W	22382	8A5-EC-W	22388	-	-	+a
3/16"	1/2"	-	-	-	-	-	-	\cdots
3/16"	5/8"	8A6-W	22383	8A6-EC-W	22389	-	-	3-3incoun
3/16"	3/4"	-	-	-	-	-	-	Chip breaker used on HSS
3/16"	$1{ }^{\prime \prime}$	-	-	-	-	-	-	MidgetMills ${ }^{\text {® }}$
1/4"	1/2"	-	-	-	-	-	-	
1/4"	5/8"	8A-W	22384	8A-EC-W	22390	-	-	
1/4"	3/4"	-	-	-	-	CJA-W-4F	23680	exerer
1/4"	$1 "$	8AL-W	22385	8AL-EC-W	22391	-	-	St?
1/4"	1-1/2"	-	-	-	-	-	-	
1/4"	1-3/4"	-	-	-	-	-	-	
5/16"	3/4"	10A8-W	22480	10A8-EC-W	22496	-	-	Double cut used on Carbo-Mills ${ }^{\text {TN }}$
5/16"	$1{ }^{\prime \prime}$	10LA8-W	22481	10LA8-EC-W	22497	-	-	
3/8"	3/4"	12A8-W	22482	12A8-EC-W	22498	EJA-W-6F	23681	
$3 / 8{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	12LA8-W	22483	12LA8-EC-W	22499	-	-	
3/8"	1-1/2"	12XA8-W	22484	12XLA8-EC-W	22500	-	-	
3/8"	2 "	-	-	-	-	-	-	
7/16"	$1{ }^{\prime \prime}$	14A8-W	22485	14A8-EC-W	22501	-	-	
1/2"	1/2"	-	-	-	-	-	-	Spiral used on carbide
1/2"	$1{ }^{\prime \prime}$	16A8-W	22486	16A8-EC-W	22502	GLA-W-8F	23682	Midget Mills ${ }^{\text {® }}$ and
1/2"	1-1/4"	-	-	-	-	-	-	Ecarno-Mills ${ }^{\text {mi }}$
1/2"	1-1/2"	-	-	-	-	-	-	2
1/2"	2 "	-	-	-	-	-	-	
5/8"	$1{ }^{\prime \prime}$	20A8-W	22487	20A8-EC-W	22503	ILA-W-8F	23683	
3/4"	1/2"	24GA8-W	22488	24GA8-EC-W	22504	-	-	
3/4"	3/4"	24JA8-W	22489	24JA8-EC-W	22505	-	-	
3/4"	$1 "$	24A8-W	22490	24A8-EC-W	22506	JLA-W-8F	23684	Super coarse cut used on
3/4"	1-1/4"	-	-	-	-	-	-	Sever-Cuts ${ }^{\text {™ }}$
7/8"	$1{ }^{\prime \prime}$	28A8-W	22492	28A8-EC-W	22508	-	-	
$1 "$	1/4"	-		-	-	-	-	
$1 "$	$1 "$	32A8-W	22494	32A8-EC-W	22510	-	-	

Shape B Midget Mills ${ }^{\circledR}$

Carbide tools have a full radius that blends to the shank, where as the H.S.S. tools have a 20° with C / L reverse angle on the back side of the cutting head.

H.S.S. and Carbide Midget Mills ${ }^{\circledR}$ Come with $1 / 4^{\prime \prime}$ shanks

			H.S.S. Midget-Mill ${ }^{\circledR}$ Single Cut Chip Breakers		Carbide Midget-Mill ${ }^{\text {® }}$ Single Cut		Carbide Carbo-Mill ${ }^{\text {N }}$ Double Cut		Carbide Sever-Cut ${ }^{\text {™ }}$ Super Coarse
$\begin{gathered} \text { Head } \\ \text { Dia. } \end{gathered}$	$\begin{gathered} \text { Flute } \\ \text { Length } \end{gathered}$	$\begin{gathered} \hline \text { Midget } \\ \text { Mill } \\ \text { Name } \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	$\begin{gathered} \hline \text { Midget } \\ \text { Mill }{ }^{\circledR} \\ \text { Name } \end{gathered}$	$\begin{gathered} \hline \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	Carbo- Mill ${ }^{\text {T }}$ Name	$\begin{gathered} \hline \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	SeverCut ${ }^{\text {TM }}$ Name	$\begin{gathered} \hline \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$
1/8"	3/32"	AAB	22990	AAB-W	23320	8B4-W	22392	-	-
3/16"	11/64"	BBB	22991	BBB-W	23321	8B6-W	22393	-	-
1/4"	3/16"	CCB	22992	CCB-W	23322	8B-W	22394	CCB-W-4F	23685
5/16"	$1 / 4 "$	DDB	22993	DDB-W	23323	10B8-W	22512	-	-
3/8"	5/16"	EEB	22994	EEB-W	23324	12B8-W	22513	EEB-W-6F	23686
7/16"	3/8"	FFB	22995	FFB-W	23325	14B8-W	22514	-	-
1/2"	7/16"	GGB	22996	GGB-W	23326	16B8-W	22515	GGB-W-8F	23687
9/16"	1/2"	HHB	22997	-	-	-	-	GGB-8F	2367
5/8"	9/16"	IIB	22998	IIB-W	23327	20B8-W	22516	IIB-W-8F	23688
3/4"	11/16"	JJB	22999	JJB-W	23328	24B8-W	22517	JJB-W-8F	23689
7/8"	13/16"	KKB	23000	B	-	-	-	-	-
$1{ }^{\prime \prime}$	15/16"	LLB	23001	LLB-W	23329	32B8-W	22519	-	-
1-1/4"	1-3/16"	NNB	23002	-	-	-	-		

Flex-Shank Midget Mills ${ }^{\circledR}$

Many cases of puzzling, inside, blind, interrupted, winding, and around the corner; cleaning and deburring problems have been solved with Severance FLEX-SHANK Midget Mills®. We would like to help you! Submit details - sample parts if feasible. See pages 91-96 for more on special tools.

Phone: 989-777-5500 Fax: 989-777-0602

Shape C Midget Mills ${ }^{\circledR}$

Cylindrical shape mills with full radius end.
Radius on end is one-half of tool diameter.

			H.S.S. Midget-Mill ${ }^{\text {® }}$ SingleCut Chip Breakers		Carbide Midget-Mill ${ }^{\odot}$ SingleCut		Carbide Carbo-Mill ${ }^{\text {m" }}$ Double Cut		Carbide Sever-Cut ${ }^{\text {T }}$ SuperCoarse
Head Dia.	$\begin{gathered} \text { Flute } \\ \text { Length } \end{gathered}$	$\begin{gathered} \text { Midget } \\ \text { Mill } \\ \text { Name } \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	$\begin{gathered} \hline \text { Midget } \\ \text { Mill } \\ \text { Name } \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	$\begin{aligned} & \hline \text { Carbo- } \\ & \text { Mill }{ }^{1 \times 1} \\ & \text { Name } \end{aligned}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	Sever$\mathrm{Cut}^{\mathrm{Tw}}$ Name	$\begin{gathered} \hline \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$
1/8"	1/2"	AGC	23003	AGC-W	23330	8C4-W	22395	-	-
1/8"	5/8"	-	-	AIC-W	23331	8CI4L-W	22396	-	-
5/32"	5/8"	-	-	-	-	8C5-W	22413	-	-
3/16"	1/2"	BGC	23004	-	-	-	-	-	-
3/16"	5/8"	-	-	BIC-W	23332	8C6-W	22397	-	-
1/4"	1/2"	-	-	CGC-W	23333	-	-	-	-
1/4"	5/8"	-	-	CIC-W	23334	8C-W	22414	-	-
1/4"	3/4"	-	-	-	-	-	-	CJC-W-4F	23690
1/4"	$1 "$	CLC	23005	CLC-W	23335	8LC-W	22398	-	-
1/4"	1-1/2"	CPC	23006	-	-			-	-
1/4"	2-1/2"	CUC	23007	-	-			-	-
5/16"	3/4"	-	-	DJC-W	23336	10C8-W	22521	-	-
5/16"	$1{ }^{\prime \prime}$	DLC	23008	DLC-W	23337	10LC8-W	22522	-	-
3/8"	3/4"	-	-	EJC-W	23338	12C8-W	22523	EJC-W-6F	23691
3/8"	$1 "$	ELC	23009	ELC-W	23339	12MC8-W	22524	-	-
3/8"	1-1/2"	EPC	23010	EPC-W	23340	12LC8-W	22525	-	-
7/16"	$1{ }^{\prime \prime}$	FLC	23011	FLC-W	23341	14C8-W	22526	-	-
1/2"	$1 "$	GLC	23012	GLC-W	23342	16C8-W	22527	GLC-W-8F	23692
1/2"	1-1/2"	GPC	23013	-	-	${ }^{-}$	-	IL	-
5/8"	$1{ }^{\prime \prime}$	ILC	23014	ILC-W	23343	20C8-W	22528	ILC-W-8F	23693
3/4"	1/2"	-	-	-	-	24GC8-W	22529	-	-
3/4"	3/4"	-	-	-	-	24MC8-W	22531	-	-
3/4"	$1{ }^{\prime \prime}$	JLC	23015	JLC-W	23344	24C8-W	22533	JLC-W-8F	23694
3/4"	1-1/4"	JNC	23016	-	-	-	-	-	-
3/4"	1-1/2"	JPC	23017	-	-	32C8 W	-	-	-
$1{ }^{\prime \prime}$	1"	LOC	23018	-	-	32C8-W	22535	-	-
1	1-3/8"	LOC	23018	-	-	-	-	-	-

Shape D Midget Mills ${ }^{\circledR}$

Cylindrical shape mills with corner radius.

Head Dia.	Flute Length
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$
$3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$
$3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$
$3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$
$3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$

	H.S.S. Midget-Mil®
Single Cut	
ChipBreakers	

Shape E Midget Mills ${ }^{\circledR}$
Cone shape mills having $20^{\circ} \mathrm{C} / \mathrm{L}$ angle.

Shape F Midget Mills ${ }^{\circledR}$

Cone shape mills having $18^{\circ} \mathrm{C} / \mathrm{L}$ angle.
H.S.S. and Carbide Midget Mills ${ }^{\circledR}$ Come with $1 / 4$ " shanks

Phone: 989-777-5500 Fax: 989-777-0602

Shape G Midget Mills ${ }^{\circledR}$

Cone shape mills having

$16^{\circ} \mathrm{C} / \mathrm{L}$ angle. \quad

Shape H Midget Mills ${ }^{\circledR}$

Cone shape mills having $14^{\circ} \mathrm{C} / \mathrm{L}$ angle.

Head Dia.	Flute Length	Nose Pointed (P) or Radius
$3 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$	P
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	P
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	P
$5 / 16^{\prime \prime}$	$5 / 8^{\prime \prime}$	P
$3 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$5 / 64^{\prime \prime}$
$3 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$.073 FLAT
$3 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	P
$1 / 2^{\prime \prime}$	$9 / 16^{\prime \prime}$	$9 / 64^{\prime \prime}$
$1 / 2^{\prime \prime}$	$7 / 8^{\prime \prime}$	$1 / 32^{\prime \prime}$
$5 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	$5 / 32^{\prime \prime}$

	H.S.S. Midget-Mill ${ }^{\text {® }}$ SingleCut Chip Breakers	Carbide Midget-Mill ${ }^{\circledR}$ Single Cut		Carbode Carbo-Mill ${ }^{\text {T }}$ Double Cut		Carbide Sever-Cut ${ }^{\text {TM }}$ Super Coarse	
$\begin{gathered} \text { Midget } \\ \text { Mill }{ }^{\circledR} \\ \text { Name } \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	Midget Mill ${ }^{\text {® }}$ Name	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	Carbo- Mill ${ }^{11}$ Name	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \\ \hline \end{gathered}$	Sever$\mathrm{Cut}^{\text {™ }}$ Name	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$
BDH	23105	-	-	-	-	-	-
-	-	CEH-W	23400	-	-	-	-
CGH	23107	-	-	8H-W	22405	-	-
DIH	23106	-	-	-	-	-	-
EGH	23108	-	-	-	-	-	-
-	-	-	-	12H8-W	22581	-	-
EJH	23109	EJH-W	23407	-	-	-	-
GHH	23110	-	-	-	-	-	-
GKH	23111	GKH-W	23408	16H8-W	22582	GKH-W-8F	23710
IJH	23112	-	-	-	-	-	-

Shape I Midget Mills ${ }^{\circledR}$

Cone shape mills having $12^{\circ} \mathrm{C} / \mathrm{L}$ angle.

Head Dia.	Flute Length	Nose Pointed (P) or Radius
$1 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	$1 / 16^{\prime \prime}$
$3 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$3 / 32^{\prime \prime}$
$3 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 32^{\prime \prime}$
$1 / 2^{\prime \prime}$	$5 / 8^{\prime \prime}$	$9 / 64^{\prime \prime}$
$1 / 2^{\prime \prime}$	$1^{\prime \prime}$	$3 / 64^{\prime \prime}$
$5 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	$3 / 16^{\prime \prime}$
$3 / 4^{\prime \prime}$	$9 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$

	H.S.S. Midget-Mill				
SingleCut					
Chip Breakers		$	$	Midget Mill	
:---:	:---:				
Name	EDP Order Number				
CDI	23113				
EGI	23114				
EJI	23115				
GII	23116				
GLI	23117				
IJI	23118				
JHI	23119				

Phone: 989-777-5500 Fax: 989-777-0602
E-Mail:severancetool@sbcglobal.net
Severance Tool Industries Inc. • POB 1866 • Saginaw, MI 48605
Shape J Midget Mills ${ }^{\circledR}$
Cone shape mills having $10^{\circ} \mathrm{C} / \mathrm{L}$ angle.

Head Dia.	Flute Length	Nose Pointed (P) or Radius
$3 / 16^{\prime \prime}$	$3 / 8^{\prime \prime}$	$1 / 32^{\prime \prime}$
$1 / 4^{\prime \prime}$	$5 / 16^{\prime \prime}$	$5 / 64^{\prime \prime}$
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$3 / 64^{\prime \prime}$
$5 / 16^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 32^{\prime \prime}$
$3 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$1 / 8^{\prime \prime}$
$3 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$	$5 / 16^{\prime \prime}$
$3 / 4^{\prime \prime}$	$1 "$	$7 / 32^{\prime \prime}$
$1^{\prime \prime}$	$3 / 4^{\prime \prime \prime}$	$7 / 16^{\prime \prime}$
$1^{\prime \prime}$	$2-5 / 8^{\prime \prime}$	$1 / 16^{\prime \prime}$

H.S.S.
Midget-Mill
SingleCut

| | Carbide
 Midge-Mil®
 SingleCut |
| :---: | :---: | :---: |

Shape K Midget Mills ${ }^{\circledR}$
Cone shape mills having
$8-1 / 2^{\circ} \mathrm{C} / \mathrm{L}$ angle.

Head Dia.	Flute Length	Nose Pointed (P) or Radius
$1 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	P
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	$5 / 64^{\prime \prime}$
$1 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$	$1 / 32^{\prime \prime}$
$1 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$	P
$5 / 16^{\prime \prime}$	$3 / 4^{\prime \prime}$	$3 / 64^{\prime \prime}$
$3 / 8^{\prime \prime}$	$1 "$	$3 / 64^{\prime \prime}$
$1 / 2^{\prime \prime}$	$1-1 / 4^{\prime \prime}$	$1 / 16^{\prime \prime}$

	H.S.S. Midget-Mill
SingleCut	
ChipBreakers	

Shape L Midget Mills ${ }^{\text {® }}$

Cone shape mills having $7^{\circ} \mathrm{C} / \mathrm{L}$ angle.

Shape M Midget Mills ${ }^{\circledR}$

Cone shape mills having
$5^{\circ} \mathrm{C} / \mathrm{L}$ angle.

HeadDia.	$\begin{gathered} \text { Flute } \\ \text { Lengt } \end{gathered}$	Nose Pointed (P)or Radius		H.s.s. Midget-Mill SingleCut Chip Break	Carbide Midget-Mill Single Cut	
			$\begin{array}{\|c} \hline \text { Midget } \\ \text { Mile } \\ \text { Mame } \end{array}$	$\begin{gathered} \substack{\text { EDP } \\ \text { Order } \\ \text { Number }} \end{gathered}$	Midget Mill ${ }^{\circledR}{ }^{\text {Name }}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$
1/8"	1/2"	P	AGM	23143	-	-
3/16"	3/4"	1/32"	BJM	23144	-	-
1/4"	7/8"	3/64"	CKM	23145	CKM-W	23403
1/4"	1-1/4"	1/64"	CNM	23146	CNM-W	23404
3/8"	$1{ }^{1 /}$	7/64"	ELM	23147		
3/8"	1-3/4"	1/32"	ERM	23148	-	-
1/2"	3/4"	13/64"	GJM	23149	-	-
1/2"	$1{ }^{\prime \prime}$	5/32"	GLM	23150	-	-
1/2"	1-1/4"	5/32"	GNM	23151	-	-

REF. \# 55494
Here is an example of a larger milling cutter made by Severance to use in our milling department to put a special form on a standard tool.
 in confined areas that are hard to reach.

Shape \mathbf{N} Midget Mills ${ }^{@}$

Inverted Cone shape mills having 5° to $18^{\circ} \mathrm{C} / \mathrm{L}$ angle.
Most commonly used without optional end cut.

Head Dia.	Flute Length	Included Angle
$1 / 4^{\prime \prime}$	$1 / 8^{\prime \prime}$	36°
$1 / 4^{\prime \prime}$	$3 / 16^{\prime \prime}$	28°
$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	20°
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	14°
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	20°
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	10°
$3 / 8^{\prime \prime}$	$3 / 16^{\prime \prime}$	36°
$3 / 8^{\prime \prime}$	$1 / 4^{\prime \prime}$	28°
$3 / 8^{\prime \prime}$	$5 / 16^{\prime \prime}$	20°
$3 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	13°
$3 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	10°
$1 / 2^{\prime \prime}$	$3 / 8^{\prime \prime}$	20°
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	14°
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	16°
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	28°
$1 / 2^{\prime \prime}$	$1 "$	14°
$1 / 2^{\prime \prime}$	$1-1 / 8^{\prime \prime}$	10°
$5 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	36°
$5 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	28°
$5 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	18°
$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	36°
$3 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$	30°
$3 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$	36°
$3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$	21°

Midget Mil® Name	EDP Order Number
CAN	23152
CBN	23153
CCN	23154
CEN	23155
-	-
CGN	23156
EBN	23157
ECN	23158
EDN	23159
-	-
EGN	23160
GEN	23161
GGN	23162
-	-
-	-
GLN	23163
GMN	23164
IEN	23165
IGN	23166
-	-
JGN	23167
-	-
JIN	23168
-	-

Midget Mill End Cumting Name	EDP Order Number
CAN-EC	23169
CBN-EC	23170
CCN-EC	23171
CEN-EC	23172
--	-
CGN-EC	23173
EBN-EC	23174
ECN-EC	23175
EDN-EC	23176
-	-
EGN-EC	23177
GEN-EC	23178
GGN-EC	23179
-	-
-	-
GLN-EC	23180
GMN-EC	23181
IEN-EC	23182
IGN-EC	23183
-	-
JGN-EC	23184
-	-
JIN-EC	23185
-	-

Midget Mill End Cutting Name	EDP Order Number
-	-
-	-
-	-
-	-
CEN-W	23411
-	-
-	-
-	-
EDN-W	23412
-	-
-	-
-	-
-	-
GGN-W	23413
-	-
-	-
-	-
IEN-W	23414
-	-
-	-
JGN-W	23415
-	-
-	-
-	-

Midget Mill End Cutting Name	EDP Order Number
-	-
-	-
-	-
-	-
CEN-W-EC	23416
-	-
-	-
-	-
EDN-W-EC	23417
-	-
-	-
-	-
-	-
GGN-W-EC	23418
-	-
-	-
-	-
IEN-W-EC	23419
-	-
-	-
JGN-W-EC	23420
-	-
-	-
-	-

REF.\#55523

REF. \# 55373
Here is an example of a larger milling cutter made by Severance. The tool was 3" diameter by 4 " length of cut.

Special Extra Length Midget Mills
Midget Mills \circledR are available in diferent shapes, sizes, and lengths of cut.

Here is an example of a larger inverted cone milling cutter also made by Severance to use in our milling department to put flutes in a standard

Phone: 989-777-5500 Fax: 989-777-0602
E-Mail: severancetool@sbcglobal.net
Severance Tool Industries Inc. • POB 1866 • Saginaw, MI 48605

Shape N Midget Mills ${ }^{\circledR}$

Inverted Cone shape mills having 5° to $18^{\circ} \mathrm{C} / \mathrm{L}$ angle. Most commonly used without optional end cut.

Head Dia.	Flute Length	Included Angle
$1 / 4^{\prime \prime}$	$1 / 8^{\prime \prime}$	36°
$1 / 4^{\prime \prime}$	$3 / 16^{\prime \prime}$	28°
$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	20°
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	14°
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	20°
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	10°
$3 / 8^{\prime \prime}$	$3 / 16^{\prime \prime}$	36°
$3 / 8^{\prime \prime}$	$1 / 4^{\prime \prime}$	28°
$3 / 8^{\prime \prime}$	$5 / 16^{\prime \prime}$	20°
$3 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	13°
$3 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	10°
$1 / 2^{\prime \prime}$	$3 / 8^{\prime \prime}$	20°
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	14°
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	16°
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	28°
$1 / 2^{\prime \prime}$	$1 "$	14°
$1 / 2^{\prime \prime}$	$1-1 / 8^{\prime \prime}$	10°
$5 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	36°
$5 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	28°
$5 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	18°
$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	36°
$3 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$	30°
$3 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$	36°
$3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$	21°

$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Carbo-Mill } \\ \text { Double Cut } \\ \text { Name } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	Carbo-Mill Double Cut-EC Name\qquad	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$
-	-	-	-
8N-W	22409	8N-W-EC	22410
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
12N8-W	22584	12N8-W-EC	22588
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
16N8-W	22585	16N8-W-EC	22589
-	-	-	-
-	-	-	-
-	-	-	-
-	-	-	-
20N8-W	22586	20N8-W-EC	22590
-	-	-	-
24N8-W	22587	24N8-W-EC	22591
-	-	-	-
24JN8-W	22545	24JN8-W-EC	22592

H.S.S. and Carbide Midget Mills ${ }^{\circledR}$ Come with $1 / 4$ " shanks

Inside Hole Deburring Cutters

Inside Hole - Place cutter head inside hole, bring back against inner wall edge; follow around inner contour of hole letting the shank act as a guide.

High Speed Steel
Inside Style

Cutting Dia.	Neck Dia.	Shank Dia.	Severance Tool Name	EDP Order Number
$7 / 32^{\prime \prime}$	$.109^{\prime \prime}$	$1 / 4^{\prime \prime}$	$7 / 32-$ IAD	35660
$1 / 4^{\prime \prime}$	$.125^{\prime \prime}$	$1 / 4^{\prime \prime}$	$1 / 4-$ IAD	35661
$5 / 16^{\prime \prime}$	$.156^{\prime \prime}$	$1 / 4^{\prime \prime}$	$5 / 16-\mathrm{IAD}$	35662
$3 / 8^{\prime \prime}$	$.187^{\prime \prime}$	$1 / 4^{\prime \prime}$	$3 / 8-\mathrm{IAD}$	35663
$7 / 1^{\prime \prime}$	$.250^{\prime \prime}$	$1 / 4^{\prime \prime}$	$7 / 16-\mathrm{IAD}$	35664
$1 / 2^{\prime \prime}$	$.250^{\prime \prime}$	$1 / 4^{\prime \prime}$	$1 / 2-$ IAD	35665

Tangent/Hole Deburring Cutters

Outside Hole -Place cutter in hole at right angle to tubing length. Geometrically (for any size hole) the diameter of the tool and the outside diameter of the part should be equal.

High Speed Steel
Outside Style

Cutting Dia.	Cutting Length	Shank Dia.	Severance Tool Name	EDP Order Number
$5 / 16^{\prime \prime}$	$1^{\prime \prime}$	$1 / 4^{\prime \prime}$	DLA-LHS	35666
$3 / 8^{\prime \prime}$	$1^{\prime \prime}$	$1 / 4^{\prime \prime}$	ELA-LHS	35667
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	GGA-LHS	35668
$5 / 8^{\prime \prime}$	$1^{\prime \prime}$	$1 / 4^{\prime \prime}$	ILA-LHS	35669
$3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	JJA-LHS	35670
$1 "$	$1^{\prime \prime}$	$1 / 4^{\prime \prime}$	LLA-LHS	35671

Special Flute Geometry

Special flute geometry is used on this cutter to cut wafered cardboard.

Shape P Midget Mills ${ }^{\circledR}$

Pear shape mills with small end forward.

H.S.S. and Carbide Midget Mills ${ }^{\circledR}$ Come with $1 / 4^{\prime \prime}$ shanks

Shape Q Midget Mills ${ }^{\circledR}$

The very useful olive-shaped mills.

			H.S.S. Midget-Mill ${ }^{\text {® }}$ SingleCut Chip Breakers		Carbide Midget-Mill ${ }^{\oplus}$ Single Cut		Carbide Carbo-Mill ${ }^{\text {™ }}$ DoubleCut		Carbide Sever-Cut ${ }^{\text {™ }}$ SuperCoarse
$\begin{gathered} \text { Head } \\ \text { Dia. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Flute } \\ \text { Length } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Midget } \\ \text { Mill }{ }^{\circledR} \\ \text { Name } \\ \hline \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	$\begin{gathered} \hline \text { Midget } \\ \text { Mill } \\ \text { Name } \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { Carbo- } \\ \text { Mill }{ }^{\mathrm{TM}} \\ \text { Name } \\ \hline \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \end{gathered}$ Number	SeverCut ${ }^{\text {m }}$ Name	$\begin{gathered} \text { EDP } \\ \text { Order } \end{gathered}$ Number
3/16"	5/16"	BDQ	23032	BDQ-W	23372	8Q6-W	22399	-	-
1/4"	3/8"	-	-	CEQ-W	23373	8Q-W	22400	-	-
1/4"	7/16"	CFQ	23033	-	-	-	-	-	-
5/16"	1/2"	DGQ	23034	-	-	-	-	-	-
3/8"	5/8"	EIQ	23035	EIQ-W	23374	12Q8-W	22537	EIQ-W-6F	23695
3/8"	3/4"	EJQ	23036	-	-	-	-	-	-
7/16"	$1 "$	-	-	-	-	14Q8-W	22538	-	-
1/2"	7/8"	GKQ	23037	GKQ-W	23375	16Q8-W	22540	GKQ-W-8F	23696
5/8"	$1 "$	ILQ	23038	ILQ-W	23376	20Q8-W	22541	ILQ-W-8F	23697
3/4"	$1 "$	JLQ	23039	JLQ-W	23377	24Q8-W	22542	JLQ-W-8F	23698
1 '	1-3/8"	LOQ	23040	-	-	32Q8-W	22544	-	-

Shape R Midget Mills ${ }^{\circledR}$

Tree-shape mills with rounded noses.

Head Dia.	Flute Length
$1 / 8^{\prime \prime}$	$7 / 16^{\prime \prime}$
$1 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$
$3 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$
$3 / 16^{\prime \prime}$	$1 / 2^{\prime \prime}$
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$
$1 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$
$1 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$
$1 / 4^{\prime \prime}$	$1^{\prime \prime}$
$5 / 16^{\prime \prime}$	1 "
$3 / 8^{\prime \prime}$	$7 / 16^{\prime \prime}$
$3 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$
$3 / 8^{\prime \prime}$	$1 "$
$7 / 16^{\prime \prime}$	$1 "$
$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$
$1 / 2^{\prime \prime}$	$1 "$
$1 / 2^{\prime \prime}$	$1-1 / 8^{\prime \prime}$
$5 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$
$5 / 8^{\prime \prime}$	$1 "$
$5 / 8^{\prime \prime}$	$1-1 / 8^{\prime \prime}$
$3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$
$3 / 4^{\prime \prime}$	$1 "$
$3 / 4^{\prime \prime}$	$1-1 / 4^{\prime \prime}$
$3 / 4^{\prime \prime}$	$1-1 / 2^{\prime \prime}$
$3 / 4^{\prime \prime}$	$1-5 / 8^{\prime \prime}$
$1 "$	$1-3 / 8^{\prime \prime}$
$1-1 / 8^{\prime \prime}$	$1-3 / 4^{\prime \prime}$
$1-1 / 4^{\prime \prime}$	$2 "$

	H.S.S. Midget-Mill Single Cut
ChipBreakers	

Carbide Midget-Mill	
Midget Mill Mame	EDP Order Number
AFR-W	23345
-	-
-	-
-	-
-	-
CGR-W	23346
CIR-W	23347
CJR-W	23348
-	-
DLR-W	23350
-	-
EJR-W	23349
-	-
-	-
GJR-W	23351
GLR-W	23352
-	-
-	-
ILR-W	23353
-	-
-	-
JLR-W	23354
JNR-W	23355
JPR-W	23356
-	-
-	-
-	-
-	-

Sever- Cut Name	Carbide Sever-Cut SuperCoarse
-	-
Order	
Number	

Shape S Midget Mills ${ }^{\circledR}$

Tree shape mills with a small radius nose.

| $\begin{array}{c}\text { Head } \\ \text { Dia. }\end{array}$ | | | |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Flute Breakers

Length\end{array} \quad $$
\begin{array}{c}\text { Severance } \\
\text { Tool } \\
\text { Name }\end{array}
$$ \quad $$
\begin{array}{c}\text { EDP } \\
\text { Order } \\
\text { Number }\end{array}
$$\right]\).

Shape T Midget Mills ${ }^{\circledR}$
Tree-shape mills with a pointed noses.

H.S.S. and Carbide Midget Mills ${ }^{\circledR}$
Come with $1 / 4^{\prime \prime}$ shanks

			H.S.S. Midget-Mill ${ }^{\circledR}$ SingleCut Chip Breakers		Carbide Midget-Mill ${ }^{\text {® }}$ ingle Cut		Carbide Carbo-Mill ${ }^{\text {Tx }}$ Double Cut
Head Dia.	$\begin{gathered} \text { Flute } \\ \text { Length } \end{gathered}$	Midge Mill ${ }^{\text {® }}$ Name	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	$\begin{gathered} \text { Midget } \\ \text { Mill } \\ \text { Name } \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	Carbo- Mill ${ }^{1 / 2}$ Name	$\begin{gathered} \hline \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$
1/8"	1/2"	-	-	-	-	8T4-W	22403
1/4"	1/2"	CGT	23069	CGT-W	23357	-	-
1/4"	5/8"	-	-	CIT-W	23358	8T-W	22404
1/4"	3/4"	CJT	23070	CJT-W	23359	-	-
5/16"	3/4"	-	-	DJT-W	23360	10T8-W	22557
3/8"	5/8"	EIT	23701	-	-	-	-
3/8"	$3 / 4 "$	EJT	23702	EJT-W	23361	12T8-W	22558
7/16"	$1{ }^{\prime \prime}$	-	-	-	-	14T8-W	22559
1/2"	3/4"	GJT	23073	GJT-W	23362	16JT8-W	22560
1/2"	$1 "$	GLT	23074	GLT-W	23363	16T8-W	22561
1/2"	1-1/8"	GMT	23075	-	-	-	-
5/8"	$1 "$	ILT	23076	ILT-W	23364	20T8-W	22562
3/4"	$1 "$	JLT	23077	JLT-W	23365	24T8-W	22563
3/4"	1-1/2"	-	-	JPT-W	23366	24PT8-W	22565
$1{ }^{\prime \prime}$	1-3/8"	-	-	-	-	32T8-W	22567

Shape U Midget Mills ${ }^{\text {® }}$

Concave radius mills with cutting teeth on radius only.

				H.S.S. Midget-Mill ${ }^{\oplus}$ Single Cut Chip Breakers		Carbide Midget-Mill ${ }^{\text {® }}$ Single Cut		Carbide Carbo-Mill Double Cut
Head Dia.	$\begin{gathered} \text { Flute } \\ \text { Length } \end{gathered}$	Radius	$\begin{gathered} \hline \text { Midget } \\ \text { Mill }{ }^{\circledR} \\ \text { Name } \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Oumber } \end{gathered}$	$\begin{gathered} \text { Midget } \\ \text { Mill } \\ \text { Name } \\ \hline \end{gathered}$	$\begin{gathered} \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$	$\begin{aligned} & \hline \text { Carbo- } \\ & \text { Mill } \\ & \text { Name } \end{aligned}$	$\begin{gathered} \hline \text { EDP } \\ \text { Order } \\ \text { Number } \end{gathered}$
1/4"	1/8"	3/32"	CAU	23186	-	-	-	-
1/4"	3/16"	3/16"	CBU	23187	-	-	-	-
1/4"	$1 / 8 "$	1/16"x4 PL	CZU	23188	-	-	-	-
5/16"	3/16"	3/32"	DBU	23189	-	-	-	-
3/8"	1/8"	1/16"	EAU	23190	-	-	-	-
3/8"	3/16"	1/8"	EBU	23191	-	-	-	-
3/8"	1/4"	3/16"	ECU	23192	-	-	-	-
3/8"	5/16"	1/4"	EDU	23193	-	-	-	-
7/16"	1/4"	5/32"	FCU	23194	-	-	-	-
1/2"	1/4"	3/16"	GCU	23195	GCU-W	23421	-	-
1/2"	5/16"	1/4"	GDU	23196	GDU-W	23422	-	-
1/2"	3/8"	5/16"	GEU	23197	GEU-W	23423	16U8-W	22556
1/2"	7/16"	3/8"	GFU	23198	GFU-W	23424	-	-
5/8"	1/2"	7/16"	IGU	23199	-	-	-	-
3/4"	3/8"	1/4"	JEU	23200	-	-	-	-
3/4"	7/16"	5/16"	JFU	23201	-	-	-	-
3/4"	1/2"	3/8"	JGU	23202	-	-	-	-
3/4"	5/8"	1/2"	JIU	23203	-	_	-	-
7/8"	5/8"	7/16"	KIU	23204	-	-	-	-
7/8"	3/4"	5/8"	KJU	23205	-	-	-	-

Manufactures Code 662018
Website: www.Severancetool.com

H.S.S.

Midget-Mill ${ }^{\text {® }}$ Single Cut Chip Breakers

Shape V Midget Mills ${ }^{\circledR}$

Convex with cutting teeth on the radis only.

Head Dia.	Flute Length	Radius	Severance Tool Name	EDP Order Number
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	$1 / 4^{\prime \prime}$	CEV	23206
$5 / 8^{\prime \prime}$	$7 / 16^{\prime \prime}$	$1 / 4^{\prime \prime}$	IFV	23207
$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	JGV	23208
$11^{\prime \prime}$	$3 / 16^{\prime \prime}$	$3 / 32^{\prime \prime}$	LBV	23209
$1-1 / 4^{\prime \prime}$	$7 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$	NKV	23210

H.S.S.

Midget-Mill ${ }^{\circledR}$ Single Cut Chip Breakers

Shape X Midget Mill ${ }^{\text {® }}$

Convex shape mills. This shape combines forward and reverse angles as listed in the "Included Angle" column. Forward angle is given first, followed by reverse angle. Angles are given with C/L. Special angles may be obtained at a nominal extra charge.

Head Dia.	Head Length	Centerline Angles		Severance Tool Name	EDP Order Number
$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	20°	B	20°	CCX
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	80°	10°	CEX	23221
$5 / 16^{\prime \prime}$	$1 / 4^{\prime \prime}$	30°	30°	DCX	232222
$3 / 8^{\prime \prime}$	$1 / 4^{\prime \prime}$	60°	60°	ECX	23223
$1 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	50°	50°	GCX	23224
$5 / 8^{\prime \prime}$	$1 / 4^{\prime \prime}$	60°	60°	ICX	23225
$5 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$	40°	20°	IIX	23218
$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	120°	60°	JGX	23219
$1 "$	$1 / 4^{\prime \prime}$	90°	90°	LCX	23226
$1 "$	$3 / 4^{\prime \prime}$	90°	30°	LJX	23220
$1-1 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	60°	60°	PCX-30	23227
$1-1 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	90°	90°	PCX-45	23228
$1-1 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	120°	120°	PCX-60	23229

Shape W Midget Mills ${ }^{\circledR}$

H.S.S.

Midget-Mill ${ }^{\text { }}$
Single Cut
Chip Breakers

Cylindrical shape mills with cutting teeth on the end radius only. They feature a non-fluted (safe) area at the center of the end face and on the straight cylindrical sides adjacent to the radius. Use for finishing fillets and many other similar applications.

Head Dia.	Flute Length	Radius	Severance Tool Name	EDP Order Number
$1 / 4^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1 / 16^{\prime \prime}$	CAW	23211
$5 / 16^{\prime \prime}$	$1 / 4^{\prime \prime}$	$1 / 16^{\prime \prime}$	DCW	23212
$3 / 8^{\prime \prime}$	$5 / 16^{\prime \prime}$	$3 / 32^{\prime \prime}$	ECW	23213
$1 / 2^{\prime \prime}$	$3 / 8^{\prime \prime}$	$5 / 32^{\prime \prime}$	GEW	23214
$7 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	KGW	23215
$1^{\prime \prime}$	$1 / 2^{\prime \prime}$	$5 / 16^{\prime \prime}$	LGW	23216

Long Shank Midget Mills ${ }^{\circledR}$

1/4" Shank Diameter - 8" Shank Length

Other shank lengths available upon request

Special Flute

Geometry

Special flute geometry is used on this cutter to deburr part.

REF.\#51926

Cylindrical, Plain Nose, Shape "A"

CLAx8	23730
ELAx8	23731
GLAx8	23732

CLA-Wx8	23780
ELA-Wx8	23781
GLA-Wx8	23782

Cylindrical, End Cutting, Shape "A"

$1 / 4^{\prime \prime}$	$1^{\prime \prime}$	-
$3 / 8^{\prime \prime}$	$1^{\prime \prime}$	-
$1 / 2^{\prime \prime}$	$1^{\prime \prime}$	-

CLA-ECx8	23733
ELA-ECx8	23734
GLA-ECx8	23735

CLA-EC-Wx8	23783
ELA-EC-Wx8	23784
GLA-EC-Wx8	23785

Ball,Shape "B"

$1 / 4^{\prime \prime}$	$3 / 16^{\prime \prime}$	-
$3 / 8^{\prime \prime}$	$5 / 16^{\prime \prime}$	-
$1 / 2^{\prime \prime}$	$7 / 16^{\prime \prime}$	-

CCBx8	23736
EEBx8	23737
GGBx8	23738

CCB-Wx8	23786
EEB-Wx8	23787
GGB-Wx8	23788

Cylindrical, Ball Nose, Shape "C"

$1 / 4^{\prime \prime}$	$1^{\prime \prime}$	-
$3 / 8^{\prime \prime}$	$1^{\prime \prime}$	-
$1 / 2^{\prime \prime}$	$1^{\prime \prime}$	-

CLCx8	23739
ELCx8	23740
GLCx8	23741

CLC-Wx8	23789
ELC-Wx8	23790
GLC-Wx8	23791

Tree, Radius Nose, Shape "R"

$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	-
$3 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	-
$1 / 2^{\prime \prime}$	$1^{\prime \prime}$	-

CJRx8	23742
EJRx8	23743
GLRx8	23744

CJR-Wx8	23792
EJR-Wx8	23793
GLR-Wx8	23794

Tree, Pointed Nose, Shape ' T "

1/4"	3/4"	P
3/8"	3/4"	P
1/2"	$1{ }^{\prime \prime}$	P

CJTx8	23745
EJTx8	23746
GLTx8	23747

CJT-Wx8	23795
EJT-Wx8	23796
GLT-Wx8	23797

Flame, Shape "FL"

$5 / 16^{\prime \prime}$	$3 / 4^{\prime \prime \prime}$	-
$1 / 2^{\prime \prime}$	$1-1 / 4^{\prime \prime}$	-

DJFLx8	23748
GNFLx8	23749

DJFL-Wx8	23798
GNFL-Wx8	23799

Olive, Shape "Q"

$1 / 4^{\prime \prime}$	$7 / 16^{\prime \prime}$	-
$3 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$	-
$1 / 2^{\prime \prime}$	$7 / 8^{\prime \prime}$	-

CFQx8	23750
EIQx8	23751
GKQx8	23752

CFQ-Wx8	23800
EIQ-Wx8	23801
GKQ-Wx8	23802

Cone, 14° Included, Shape "L"

3/8"	1"	.063"
Cone, 20° Included, Shape " J "		
5/16"	3/4"	.031"
Cone, $28{ }^{\circ}$ Included, Shape "H"		
1/4"	1/2"	P
1/2"	$1{ }^{\prime \prime}$	F

ELL-Wx8	23805

DJJx8	23754	DJJ-Wx8	23804
CGHx8	23753	CGH-Wx8	23803
GLHx8	23756	GLH-Wx8	23806

Phone: 989-777-5500 Fax: 989-777-0602
E-Mail: severancetool@sbcglobal.net
Severance Tool Industries Inc. • POB 1866 • Saginaw, MI 48605
Carbo-Mills ${ }^{\mathrm{Tm}}$ \& Ecarno-Mills ${ }^{\mathrm{mM}}$

3/16" Shank Diameter -
 2" Overall Length

Carbo-Mills ${ }^{\mathrm{TM}}$ - tough durable carbide features the Severance Double-Cut flute design. Ecarno-Mills ${ }^{\mathrm{TM}}$ - carbide with standard spiral flute design.

Cylindrical, Plain Nose, Shape "A"

$1 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	-
$3 / 16^{\prime \prime}$	$1 / 2^{\prime \prime}$	-

Cylindrical, End Cutting, Shape "A"

$1 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	-
$3 / 16^{\prime \prime}$	$1 / 2^{\prime \prime}$	-

Ball, Shape "B"

$1 / 8^{\prime \prime}$	$3 / 32^{\prime \prime}$	-
$3 / 16^{\prime \prime}$	$11 / 64^{\prime \prime}$	-

Cylindrical, Ball Nose, Shape "C"

$1 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	-
$3 / 16^{\prime \prime}$	$1 / 2^{\prime \prime}$	-

6C4-W	22286
6C-W	22287

SC-82	21926
SC-81	21927

Olive, Shape "Q"

$3 / 16^{\prime \prime}$	$9 / 32 "$	-
$3 / 16^{\prime \prime}$	$3 / 8^{\prime \prime}$	-

Tree, Radius Nose, Shape "R"

3/16"	1/2"	.048"
Tree, Pointed Nose, Shape 'T"		
3/16"	1/2"	P
Cone, 7° Included, Shape ' $\mathrm{H}^{\prime \prime}$		
3/16"	1/2"	.067"
Cone, $10{ }^{\circ}$ Included, Shape ' M^{\prime}		
3/16"	1/4"	.031"
3/16"	5/16"	.031"

Cone, 12° Included, Shape "J"

$3 / 16^{\prime \prime}$	$7 / 16^{\prime \prime}$	F
$3 / 16^{\prime \prime}$	$5 / 8^{\prime \prime}$	$.067^{\prime \prime}$

$6 \mathrm{~J}-\mathrm{W}$	22295
-	-

-	-
SM-81	21932

Cone, 14° Included, Shape 'L'

$3 / 16^{\prime \prime}$	$3 / 8^{\prime \prime}$	$.054^{\prime \prime}$
$3 / 16^{\prime \prime}$	$7 / 16^{\prime \prime}$	$.031^{\prime \prime}$

$6 \mathrm{~L}-\mathrm{W}$	22294
-	-

-	-
SL-81	21931

Flame, Shape "FL"

$3 / 16^{\prime \prime}$	$1 / 4^{\prime \prime}$	-
$3 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$	-

Inverted Cone, Plain End, Shape " N "

3/16"	3/16"	-	6N-W	22297	SN-81	21934
Inverted Cone, End Cutting, Shape " N "						
3/16"	3/16"	-	6N-EC-W	22298	SN-82	21935
Tapered End, $60{ }^{\circ}$ Included Angle Double End						
3/16"	5/32"	P	6Z-W-DE	20622	SJ-81	21931
Tapered End, $\mathbf{9 0}^{\circ}$ Included Angle Double End						
3/16"	$3 / 32^{\prime \prime}$	P	6Y-W-DE	20682	SK-81	21936

Phone: 989-777-5500 Fax: 989-777-0602
E-Mail:severancetool@sbcglobal.net
Carbo-Mills ${ }^{\mathrm{ra}}$ \& Ecarno-Mills ${ }^{\mathrm{ma}}$
1/8" Shank Diameter -
1-1/2" Overall Length
Carbo-Mills $^{\mathrm{TM}}$ - tough durable carbide features

the Severance Double-Cut flute
design.

Ecarno-Mills ${ }^{\mathrm{TM}-\text { carbide with standard spiral }}$| flute design. |
| :--- |

Shape "A"

Shape "A"

Shape "B"

Shape "C"

Shape "C"

Tapered End 90° Incld

Tapered End 60° Incld

Head Dia.	Flute Length	Nose Point, Flat, or Radius
Cylindrical, Plain Nose, Shape " A "		
1/16"	1/4"	-
3/32	7/16"	-
3/32"	1/2"	-
1/8"	9/16"	-
Cylindrical, End Cutting, Shape 'A'		
1/16"	1/4"	-
3/32	7/16"	-
3/32'	1/2"	-
1/8"	9/16"	-
1/8"	3/8"	-

-	-
-	-
4A3-W	22230
4A-W	22231

SA-41	21770
SA-42	21771
-	-
SA-43	21772

Ball,Shape ' B '

$\begin{gathered} \hline 3 / 32^{\prime \prime} \\ 1 / 8^{\prime \prime} \end{gathered}$	$\begin{aligned} & \hline 5 / 64 " \\ & 3 / 32^{\prime \prime} \end{aligned}$	-
Cylindrical, Ball Nose, Shape ' ${ }^{\text {C" }}$		
3/32"	1/2"	-
3/32"	7/16"	-
1/8"	9/16"	-
Olive, Shape 'Q"		
1/8"	7/32"	-
Tree, Radius Nose, Shape 'R'		
1/8"	1/4"	.031"
1/8"	1/2"	.031"

-	-
-	-
4A3-EC-W	22232
4A-EC-W	22233
-	-

SB-42	21774
SB-43	21775
-	-
SB-44	21776
*SB-41	21773

4B3-W	22234
4B-W	22235

SD-41	21777
SD-42	21778

Tree, Radius Nose, Shape ' S ''		
1/8"	1/2"	.031"
Tree, Pointed Nose, Shape ' T '		
1/8"	1/4"	P
$1 / 8^{\prime \prime}$	3/8"	P
1/8"	1/2"	P

$4 \mathrm{C} 3-\mathrm{W}$	22236
-	-
$4 \mathrm{C}-\mathrm{W}$	22237

-	-
SC-41	21779
SC-42	21780

$4 \mathrm{Q}-\mathrm{W}$	22238		
- - - -		$.$	
:---:			

SE-41	21781
SF-41	21783
SF-42	21782

Shape "L", "H","J", "M"
 Shape "N",
 3
 Shape "Q",

Shape "R"
Cone, 7° Included, Shape ${ }^{\prime} \mathbf{H}^{\prime \prime}$

$1 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$.031 "$
$1 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$	$.031 "$

SG-41	21786
SG-43	21785
SG-44	21784

$1 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	$.031 "$
$1 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$	$.031 "$

Cone, $\mathbf{8}^{\circ}$ Included, Shape ' $\mathbf{L}^{\prime \prime}$ '

-	-
SM-43	21787

Cone, 8° Included, Shape ' L '

$\begin{aligned} & \hline 1 / 8^{\prime \prime} \\ & 1 / 8^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hline 3 / 8^{\prime \prime} \\ & 1 / 2^{\prime \prime} \end{aligned}$	$\begin{gathered} .039^{\prime \prime} \\ \mathrm{F} \end{gathered}$
Cone, $10{ }^{\circ}$ Included, Shape ' ${ }^{\text {M' }}$		
3/32"	1/4"	.016"
1/8"	5/16"	.031"
Cone, $12{ }^{\circ}$ Included, Shape ' J '		

SL-41	21791
SL-42	21790

-	-
-	-

$1 / 8^{\prime \prime}$	$11 / 32 "$	F
$1 / 8^{\prime \prime}$	$7 / 16^{\prime \prime}$	F

Cone, 14° Included, Shape ' L '

$\begin{aligned} & \hline 1 / 8^{\prime \prime} \\ & 1 / 8^{\prime \prime} \end{aligned}$	$\begin{gathered} \hline 3 / 8^{\prime \prime} \\ 7 / 16^{\prime \prime} \end{gathered}$	$\begin{aligned} & \hline .019 " \\ & \hline .010^{\prime \prime} \end{aligned}$
Flame, Shape 'FL"		
1/8"	1/4"	-
Inverted Cone, Plain End, Shape ' N "		
3/32"	1/8"	-
1/8"	3/16"	-

Inverted Cone, End Cutting, Shape ' N "

SN-41	21794
SN-42	21793
SJ-41	21798

Phone: 989-777-5500 Fax: 989-777-0602
E-Mail: severancetool@sbcglobal.net
Severance Tool Industries Inc. • POB 1866 • Saginaw, MI 48605
Carbo-Mills ${ }^{\text {Tu }}$ \&
Ecarno-Mills ${ }^{\mathrm{TM}}$
3/32" Shank Diameter -
$2^{\prime \prime}$ Overall Length
Carbo-Mills ${ }^{\text {TM }}$ - tough durable carbide
features the Severance Double-Cut flute design.
Ecarno-Mills ${ }^{\text {TM }}$ - carbide with standard spiral flute design.

Uses - Carbo-Mills ${ }^{\mathrm{TM}}$ cover a wide range of uses such as: removing gates, fins, and risers; breaking sharp corners and edges;machining carbon; finishing castings of any material; working fillets, radii, and grooves; deburring oil holes; blending welded and assembled parts; and removing weld beads. They are ideal for the production deburring and machining of parts made from materials that are abrasive or tough, or having hardness up to 60 "C" Rockwell. They are equally useful to maintenance men, and to tooling departments that produce dies, molds, and metal patterns.

Cylindrical, End Cutting, Shape "A"

$1 / 16^{\prime \prime}$	$1 / 4^{\prime \prime}$	-
$3 / 32 "$	$3 / 8^{\prime \prime}$	-

3A2-EC-W	22182
3A-EC-W	22183

SB-61	21723
SB-63	21724

Ball, Shape "B"

$1 / 16 "$	$3 / 64^{\prime \prime}$	-
$3 / 32 "$	$5 / 64^{\prime \prime}$	-

SD-61	21726
SD-63	21727

Cylindrical, Ball Nose, Shape "C"

$1 / 16^{\prime \prime}$	$1 / 4^{\prime \prime}$	-
$3 / 32^{\prime \prime}$	$3 / 8^{\prime \prime}$	-

$\begin{aligned} & \hline \text { SC-61 } \\ & \text { SC-63 } \end{aligned}$	$\begin{aligned} & 21728 \\ & 21729 \end{aligned}$
SE-61	21730
SF-61	21731
SG-61	21732
SM-63	21735
$\begin{aligned} & \text { SM-61 } \\ & \text { SM-62 } \end{aligned}$	$\begin{aligned} & 21734 \\ & 21733 \end{aligned}$

Shape "N",

Tapered End 90° Included

Specialty Midget Mills ${ }^{\circledR}$

Junior Mills ${ }^{\circledR}$

1/8" Shank Diameter - 1-5/8" Overall Length

These Popular tools are used for finishing the intricate patterns and parts, with surfaces difficult to reach with the large Midget Mills®. Junior Mills ${ }^{\circledR}$ are recommended for metal, wood, and plastic part finishing. Use them in place of grinding wheels or mounted points, they will cut faster, make real chips, and leave excellent finishes. Tools can be reground many times.

Junior Mills ${ }^{\circledR}$

Head Dia.	Head Length	Nose Point, Flat or Radius	ToolShape
$3 / 1^{\prime \prime}$	$5 / 8^{\prime \prime}$	-	Cylindrical, Plain End
$3 / 16^{\prime \prime}$	$5 / 8^{\prime \prime}$	-	Cylindrical, End Cutting
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	-	Cylindrical, Plain End
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	-	Cylindrical, End Cutting
$1 / 8^{\prime \prime}$	$3 / 32^{\prime \prime}$	-	Ball
$1 / 4^{\prime \prime}$	$3 / 16^{\prime \prime}$	-	Ball
$3 / 16^{\prime \prime}$	$5 / 8^{\prime \prime}$	-	Cylindrical, Ball Nose
$3 / 16^{\prime \prime}$	$5 / 8^{\prime \prime}$	P	Cone Forward Angle
$3 / 16^{\prime \prime}$	$3 / 8^{\prime \prime}$	-	Olive
$1 / 8^{\prime \prime}$	$5 / 16^{\prime \prime}$	$.031^{\prime \prime}$	Tree, Rounded Nose
$3 / 16^{\prime \prime}$	$3 / 8^{\prime \prime}$	$.047^{\prime \prime}$	Tree, Rounded Nose
$3 / 16^{\prime \prime}$	$3 / 8^{\prime \prime}$	-	Flame
$3 / 8^{\prime \prime}$	$3 / 64^{\prime \prime}$	-	Wheel, Cylindrical, Plain End
$3 / 8^{\prime \prime}$	$3 / 64^{\prime \prime}$	-	Wheel, Cylindrical, End Cutting
$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	-	Inverted Cone, Plain End
$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	-	Inverted Cone, End Cutting
$3 / 16^{\prime \prime}$	$11 / 64^{\prime \prime}$	-	Ball
$1 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	-	Cylindrical, Plain End
$1 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	-	Cylindrical, End Cutting
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	-	Cylindrical, Ball Nose
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$.031^{\prime \prime}$	Cone Forward Angle
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	-	Olive
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$.063 \prime \prime$	Tree, Rounded Nose
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	-	Flame
$1 / 4^{\prime \prime}$	$1 / 16^{\prime \prime}$	-	Wheel, Side Cutting, Double Angle
$1 / 8^{\prime \prime}$	$11 / 64^{\prime \prime}$	-	Flame
$1 / 8^{\prime \prime}$	$13 / 32^{\prime \prime}$	F	Cone Forward Angle
$1 / 8^{\prime \prime}$	$1 / 2^{\prime \prime}$	-	Cylindrical, Ball Nose

H.S.S. Tool Name	EDP Order Number
JR-1	22721
JR-1-EC	22724
JR-2	22722
JR-2-EC	22725
JR-3	22726
JR-4	22727
JR-5	22730
JR-6	22741
JR-7	22732
JR-8	22734
JR-9	22735
JR-10	22738
JR-11	22745
JR-11-EC	22746
JR-12	22743
JR-12-EC	22744
JR-13	22728
JR-14	22720
JR-14-EC	22723
JR-15	22731
JR-16	22742
JR-17	22733
JR-18	22736
JR-19	22739
JR-20	22747
JR-21	22737
JR-22	22740
JR-23	22729

Carbide Junior-Mill Single Cut	
Tool	
Name	EDP Order Number
JR-1-W	22821
JR-1-EC-W	22824
JR-2-W	22822
JR-2-EC-W	22825
JR-3-W	22826
JR-4-W	22828
JR-5-W	22830
JR-6-W	22841
JR-7-W	22832
JR-8-W	22834
JR-9-W	22835
JR-10-W	22838
JR-11-W	22845
JR-11-EC-W	22846
JR-12-W	22843
JR-12-EC-W	22844
JR-13-W	22827
JR-14-W	22820
JR-14-EC-W	22823
JR-15-W	22831
JR-16-W	22842
JR-17-W	22833
JR-18-W	22836
JR-19-W	22839
JR-20-W	22847
JR-21-W	22837
JR-22-W	22840
JR-23-W	22829

E-Mail:severancetool@sbcglobal.net

Lab Mills ${ }^{\text {TM }} 3 / 32^{\prime \prime}$ Shank Diameter - 1-5/8" Overall Length

Lab Mills are made in nine shapes to accomplish almost any small milling operation. Each shape is offered in six different head diameters. Specify shape and diameter when ordering. Set No. 60, EDP\# 2966 (pictured above) - 12 tools of selected shapes and sizes ($3 / 32^{\prime \prime}$ and $3 / 16^{\prime \prime}$ diameters). Ideal for small and micro part milling, deburring, and finishing. Severance Lab Mills ${ }^{\mathrm{TM}}$ are manufactured of high quality High Speed Steel and will outlast several ordinary dental lab style burrs with the added advantage that Severance Lab Mills ${ }^{\mathrm{TM}}$ can be reground to as good as new many times. Lab Mills ${ }^{\mathrm{TM}}$ speed production for manufacturers of jewelry, diesel injectors, aircraft parts, die castings, dies, molds, electronic equipment, medical components, dental lab, missle and space components, exc.

Head Dia.	Flute Length	Nose Point, Flat, or Radius	Severance Tool Name	EDP Order Number

Ball

$1 / 16^{\prime \prime}$	$.047 "$	-	LM1-062	22620
$3 / 32^{\prime \prime}$	$.078^{\prime \prime}$	-	LM1-093	22621
$1 / 8^{\prime \prime}$	$.094^{\prime \prime}$	-	LM1-125	22622
$3 / 16^{\prime \prime}$	$.88^{\prime \prime}$	-	LM1-187	22623
$1 / 4^{\prime \prime}$	$.250^{\prime \prime}$	-	LM1-250	22624
$5 / 16^{\prime \prime}$	$.313^{\prime \prime}$	-	LM1-312	22625

Cone, Pointed Nose, 25° C/L Angle

$1 / 16^{\prime \prime}$	$.081 "$	-	LM2-062	22626
$3 / 32^{\prime \prime}$	$.122^{\prime \prime}$	-	LM2-093	22627
$1 / 8^{\prime \prime}$	$.162^{\prime \prime}$	-	LM2-125	22628
$3 / 16^{\prime \prime}$	$.244^{\prime \prime}$	-	LM2-187	22629
$1 / 4^{\prime \prime}$	$.325^{\prime \prime}$	-	LM2-250	22630
$5 / 16^{\prime \prime}$	$.407^{\prime \prime}$	-	LM2-312	22631

Wheel (Saw)

$1 / 16^{\prime \prime}$	$.016^{\prime \prime}$	-	LM3-062	22632
$3 / 32 "$	$.0199^{\prime \prime}$	-	LM3-093	22633
$1 / 8^{\prime \prime}$	$.032^{\prime \prime}$	-	LM3-125	22634
$3 / 16^{\prime \prime}$	$.046^{\prime \prime}$	-	LM3-187	22635
$1 / 4 "$	$.062^{\prime \prime}$	-	LM3-250	22636
$5 / 16^{\prime \prime}$	$.078^{\prime \prime}$	-	LM3-312	22637

Bud Shape

$1 / 16^{\prime \prime}$	$.087 " \prime$	-	LM4-062	22638
$3 / 32^{\prime \prime}$	$.130^{\prime \prime}$	-	LM4-093	22639
$1 / 8^{\prime \prime}$	$.178^{\prime \prime}$	-	LM4-125	22640
$3 / 16^{\prime \prime}$	$.261 "$	-	LM4-187	22641
$1 / 4^{\prime \prime}$	$.348^{\prime \prime}$	-	LM4-250	22642
$5 / 16^{\prime \prime}$	$.435^{\prime \prime}$	-	LM4-312	22643

[^0]| Head
 Dia. | Flute
 Length | Nose
 Point, Flat,
 or Radius | Severance
 Tool
 Name | EDP
 Order
 Number |
| :---: | :---: | :---: | :---: | :---: |

Pear Shape CONTINUED

$3 / 16^{\prime \prime}$	$.300^{\prime \prime}$	-	LM5-187	22647
$1 / 4^{\prime \prime}$	$.400^{\prime \prime}$	-	LM5-250	22648
$5 / 16^{\prime \prime}$	$.500^{\prime \prime}$	-	LM5-312	22649

Tree, Rounded Nose

$1 / 16^{\prime \prime}$	$.125^{\prime \prime}$	$.018^{\prime \prime}$	LM6-062	22650
$3 / 32^{\prime \prime}$	$.188^{\prime \prime}$	$.025^{\prime \prime}$	LM6-093	22651
$1 / 8^{\prime \prime}$	$.2500^{\prime \prime}$	$.031^{\prime \prime}$	LM6-125	22652
$3 / 16^{\prime \prime}$	$.3755^{\prime \prime}$	$.047^{\prime \prime}$	LM6-187	22653
$1 / 4^{\prime \prime}$	$.500^{\prime \prime}$	$.062^{\prime \prime}$	LM6-250	22654
$5 / 16^{\prime \prime}$	$.625^{\prime \prime}$	$.078^{\prime \prime}$	LM6-312	22655

Inverted Cone

$1 / 16^{\prime \prime}$	$.063 "$	-	LM7-062	22656
$3 / 32^{\prime \prime}$	$.094 "$	-	LM7-093	22657
$1 / 8^{\prime \prime}$	$.125^{\prime \prime}$	-	LM7-125	22658
$3 / 16^{\prime \prime}$	$.188^{\prime \prime}$	-	LM7-187	22659
$1 / 4^{\prime \prime}$	$.250^{\prime \prime}$	-	LM7-250	22660
$5 / 16^{\prime \prime}$	$.313^{\prime \prime}$	-	LM7-312	22661

Flame

$1 / 16^{\prime \prime}$	$.126^{\prime \prime}$	-	LM8-062	22662
$3 / 32^{\prime \prime}$	$.188^{\prime \prime}$	-	LM8-093	22663
$1 / 8^{\prime \prime}$	$.256^{\prime \prime}$	-	LM8-125	22664
$3 / 16^{\prime \prime}$	$.375^{\prime \prime}$	-	LM8-187	22665
$1 / 4^{\prime \prime}$	$.500^{\prime \prime}$	-	LM8-250	22666
$5 / 16^{\prime \prime}$	$.625^{\prime \prime}$	-	LM8-312	22667

CYLINDER, Plain End

$1 / 16^{\prime \prime}$	$.188^{\prime \prime}$	-	LM9-062	22668
$3 / 32^{\prime \prime}$	$.281^{\prime \prime}$	-	LM9-093	22669
$1 / 8^{\prime \prime}$	$.375^{\prime \prime}$	-	LM9-125	22670
$3 / 16^{\prime \prime}$	$.563^{\prime \prime}$	-	LM9-187	22671
$1 / 4^{\prime \prime}$	$.750 " \prime$	-	LM9-250	22672
$5 / 16^{\prime \prime}$	$.688^{\prime \prime}$	-	LM9-312	22673

E-Mail:severancetool@sbcglobal.net
Severance Tool Industries Inc. • POB 1866 • Saginaw, MI 48605
High Speed Steel
Extra Length Lab Mills ${ }^{\text {™ }}$
Surgical Mills
3/32" Shank Diameter - 2-1/2" Overall Length
Ideal for small and micro part deburring and finishing. Also know as: "Surgical Mills", or "Jordan Day ${ }^{\mathrm{TM}}$ Mills".

See Page 83 for our popular 12 piece Set No. 80 (EDP\# 29680)

$\left.$| Head
 Diameter
 Inches | | Number
 MM | Teeth |
| :---: | :---: | :---: | :--- | :--- | :---: |\quad| Group |
| :--- |
| Nomenclature |\quad| Severance |
| :---: |
| Tool |
| Name |\quad| EDP |
| :---: |
| Order |
| Number | \right\rvert\,

High Speed Steel

Ball Nose Deburring Cutters

1/4" Shank Diameter

The Plain style is ideal for use in portable power tools for deburring holes as shown in the table. They produce approximately a 45° chamfer. When thrusting the tool into the hole at an angle, a large area of the mill is useful and not just a narrow circle.
The style With Guide is especially suited for deburring of oil holes in crankshafts because the guide on the end prevents the mill from slipping out of the hole and marring the bearing surface.

Plain

Head Dia.	Hole Size
$3 / 16^{\prime \prime}$	$1 / 8^{\prime \prime}$
$1 / 4^{\prime \prime}$	$3 / 16^{\prime \prime}$
$3 / 8^{\prime \prime}$	$1 / 4^{\prime \prime}$
$1 / 2^{\prime \prime}$	$3 / 8^{\prime \prime}$
$5 / 8^{\prime \prime}$	$7 / 16^{\prime \prime}$

Severance Tool Name	EDP Order Number
BBC	00240
CBC	00241
ECC	00242
GDC	00243
IEC	00244

With Guide

Severance Tool Name	EDP Order Number
BBC-G	00245
CBC-G	00246
ECC-G	00247
GDC-G	00248
IEC-G	00249

Carbide d-burrs ${ }^{\mathrm{TM}}$

For heavy, fast, stock removal of Aluminum see Sever-Cuts ${ }^{\mathrm{TM}}$ on pages 8-18.

Head Dia.	Flute Length	Nose Flat or Radius	Shape	Tooth Style	Severance Taol Name	EDP Order Number
$1 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$	-	Cyl. Flat End	EFHC	CIA-W-HB	22160
$1 / 2^{\prime \prime}$	$1 "$	-	Cyl. Flat End	EFHC	GLA-W-HB	22149
$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	-	Ball	EFHC	CCB-W-HB	22161
$1 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$	-	Cyl. Ball Nose	EFHC	CIC-W-HB	22158
$1 / 2^{\prime \prime}$	$1 "$	-	Cyl. Ball Nose	EFHC	GLC-W-HB	22162
$1 / 4^{\prime \prime}$	$3 / 8^{\prime \prime}$	F	Tapered, Radius Nose	EFHC	CEH-W-HB	22163
$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$.068^{\prime \prime}$	Tree, Radius Nose	EFHC	CGR-W-HB	22159
$1 / 2^{\prime \prime}$	$1 "$	$.125^{\prime \prime}$	Tree, Radius Nose	EFHC	GLR-W-HB	22164

Carbide

Bore Mills ${ }^{\text {TM }}$

Severance Bore Mills ${ }^{\mathrm{TM}}$ are designed with a special fine double cut, to be used in place of mounted grinding wheels in jig grinding applications. Their convex shape provides rapid stock removal on cast iron, steel, nonferrous and many nonmetallic materials. Bore Mills ${ }^{\mathrm{TM}}$ are operated at the same speeds and feeds as grinding wheels and are capable of producing surface finishes in the 10 to 12 micro-inch range.

Head Dia.	Shank Dia.	Overall Length	Severance Tool Name	EDP Order Number
$.047^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	BM-3-W	00250
$.078^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	BM-5-W	00251
$.109^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	BM-7-W	00252
$.125^{\prime \prime}$	$3 / 16^{\prime \prime}$	$2^{\prime \prime}$	BM-8-W	00253
$.172^{\prime \prime}$	$3 / 16^{\prime \prime}$	$2^{\prime \prime}$	BM-11-W	00254

Head Dia.	Shank Dia.	Overall Length	Severance Tool Name	EDP Order Number
$.250^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2^{\prime \prime}$	BM-16-W	00255
$.312^{\prime \prime}$	$5 / 16^{\prime \prime}$	$2^{\prime \prime}$	BM-20-W	00256
$.375^{\prime \prime}$	$3 / 8^{\prime \prime}$	$2^{\prime \prime}$	BM-24-W	00257
$.500^{\prime \prime}$	$1 / 2^{\prime \prime}$	$2^{\prime \prime}$	BM-32-W	00258

NOTE: All Bore Mills ${ }^{\text {TM }}$ are TiN coated at no extra Charge.

Carbide
 Micro-Mills ${ }^{\text {TM }}$

Micro-Mills ${ }^{\mathrm{TM}}$ are similar in application to the Bore Mills ${ }^{\mathrm{TM}}$, but are used for finishing in the 6 to 8 micro-inch range. Micro-Mills ${ }^{\mathrm{TM}}$ are designed with a fine cut with chip breakers. These mills are intended for applications where there is a light amount of stock removal required and work best on ferrous, non-work hardening materials. Micro-Mills ${ }^{\mathrm{TM}}$ should not be oscillated. Cut on the in-feed and burnish on the out-feed. Both Micro-Mills ${ }^{\mathrm{TM}}$ and Bore Mills ${ }^{\mathrm{TM}}$ will outlast grinding wheels, particularly on demanding operations such as chamfering and counter-boring.

Head Dia.	Shank Dia.	Overall Length	Severance Tool Name	EDP Order Number
$.047^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	MW-4	21120
$.065^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	MW-5	21130
$.078^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	MW-6	21121
$.096^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	MW-7	21131
$.109^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	MW-8	21122
$.127^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	MW-9	21132
$.130^{\prime \prime}$	$3 / 16^{\prime \prime}$	$2^{\prime \prime}$	MW-10	21123
$.158^{\prime \prime}$	$3 / 16^{\prime \prime}$	$2^{\prime \prime}$	MW-11	21133
$.172^{\prime \prime}$	$3 / 16^{\prime \prime}$	$2^{\prime \prime}$	MW-12	21124

Head Dia.	Shank Dia.	Overall Length	Severance Tool Name	EDP Order Number
$.190^{\prime \prime}$	$3 / 16^{\prime \prime}$	$2^{\prime \prime}$	MW-13	21134
$.195^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2^{\prime \prime}$	MW-14	21125
$.219^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2^{\prime \prime}$	MW-16	21126
$.253^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2^{\prime \prime}$	MW-18	21135
$.281^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2 \prime$	MW-20	21127
$.312^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2^{\prime \prime}$	MW-22	21136
$.344^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2^{\prime \prime}$	MW-24	21128
$.375^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2^{\prime \prime}$	MW-28	21137
$.469^{\prime \prime}$	$1 / 4^{\prime \prime}$	$2^{\prime \prime}$	MW-32	21129

[^1]

* $1 / 2$ " tools have $1 / 4^{\prime \prime}$ alloy steel, hardened shanks; all $1 / 4$ " tools are solid carbide.

Die Mills

Die Mills are made with the shank and the cutting head of the same diameter. They are used extensively in template work, where the shank serves as a guide, and in other profiling operations. Die Mills may be reground many times for a long service life. When reground by Severance, a portion of the shank is reduced to match the new cutting diameter.

Carbide
 Die Mills

High Speed Steel
 Die Mills

Head Dia.	Shank Dia.	Flute Style
$3 / 32^{\prime \prime}$	$3 / 32^{\prime \prime}$	Standard Cut
$1 / 8^{\prime \prime}$	$1 / 8^{\prime \prime}$	Double Cut
$1 / 8^{\prime \prime}$	$1 / 8^{\prime \prime}$	Standard Cut
$1 / 8^{\prime \prime}$	$1 / 8^{\prime \prime}$	Standard Cut
$5 / 32^{\prime \prime}$	$3 / 16^{\prime \prime}$	DoubleCut
$5 / 32^{\prime \prime}$	$3 / 16^{\prime \prime}$	Standard Cut
$3 / 16^{\prime \prime}$	$3 / 16^{\prime \prime}$	Double Cut
$3 / 16^{\prime \prime}$	$3 / 16^{\prime \prime}$	Standard Cut
$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	DoubleCut
$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$	Standard Cut
$5 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$	DoubleCut
$5 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$	Standard Cut
$3 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	DoubleCut
$3 / 8^{\prime \prime}$	$3 / 8^{\prime \prime}$	Standard Cut
$7 / 16^{\prime \prime}$	$7 / 16^{\prime \prime}$	DoubleCut
$7 / 16^{\prime \prime}$	$7 / 16^{\prime \prime}$	StandardCut
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	DoubleCut
$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	Standard Cut

Flute Length	Overall Length	Severance Tool Name	EDP Order Number
-	-	-	-
$1 / 2^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	4A-DIE-W	17260
$1 / 2^{\prime \prime}$	$1-1 / 2^{\prime \prime}$	AGA-DIE-W	17262
-	-	-	-
$1 / 2^{\prime \prime}$	$2^{\prime \prime}$	5A-DIE-W	17264
$1 / 2^{\prime \prime}$	$2^{\prime \prime}$	$5 G A-D I E-W$	17266
$3 / 4^{\prime \prime}$	$2^{\prime \prime}$	6A-DIE-W	17268
$3 / 4^{\prime \prime}$	$2^{\prime \prime}$	BJA-DIE-W	17270
$3 / 4^{\prime \prime}$	$2^{\prime \prime}$	8A-DIE-W	17272
$3 / 4^{\prime \prime}$	$2^{\prime \prime}$	CJA-DIE-W	17274
$13 / 16^{\prime \prime}$	$2^{\prime \prime}$	10A-DIE-W	17276
$3 / 4^{\prime \prime}$	$2^{\prime \prime}$	DJA-DIE-W	17278
$1^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	12A-DIE-W	17280
$1^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	ELA-DIE-W	17282
$1^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	14A-DIE-W	17284
$1^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	FLA-DIE-W	17286
$1^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	16A-DIE-W	17288
$1^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	GLA-DIE-W	17290

Flute Length	Overall Length	Severance Tool Name	EDP Order Number
$1 / 4^{\prime \prime}$	$1-5 / 8^{\prime \prime}$	$3 / 32$ CA-DIE	17310
-	-		
$1 / 2^{\prime \prime}$	$1-5 / 8^{\prime \prime}$	AGA-DIE	17312
$1-1 / 2^{\prime \prime}$	$3^{\prime \prime}$	APA-DIE	17314
-	-	-	-
-	-	-	-
-	-	-	-
$3 / 4^{\prime \prime}$	$2^{\prime \prime}$	BJA-DIE	17316
-	-	-	-
$3 / 4^{\prime \prime}$	$2-1 / 4^{\prime \prime}$	CJA-DIE	17318
-	-	-	-
$3 / 4^{\prime \prime}$	$2-1 / 4^{\prime \prime}$	DJA-DIE	17320
-	-	-	-
$7 / 8^{\prime \prime}$	$2-1 / 4^{\prime \prime}$	EKA-DIE	17322
-	-	-	-
$7 / 8^{\prime \prime}$	$2-1 / 4^{\prime \prime}$	FLA-DIE	17324
-	-	-	-
$1^{\prime \prime}$	$2-1 / 2^{\prime \prime}$	GLA-DIE	17326

[^0]: Pear Shape

 | $1 / 16^{\prime \prime}$ | $.100 "$ | - | LM5-062 | 22644 |
 | :---: | :---: | :---: | :---: | :---: |
 | $3 / 32^{\prime \prime}$ | $.150 "$ | - | LM5-093 | 22645 |
 | $1 / 8^{\prime \prime}$ | $.206^{\prime \prime}$ | - | LM5-125 | 22646 |

[^1]: NOTE: All Micro-Mills ${ }^{\text {TM }}$ are TiN coated at no extra charge.

