Calculus 3 - Surface Integrals over Vector Fields

Recall the section on the tangent plane. We created two vectors with two tangent lines. If the surface is $z=f(x, y)$ then the tangent vectors are

$$
\begin{equation*}
\vec{u}=<1,0, f_{x}>, \quad \vec{v}=<0,1, f_{y}>. \tag{1}
\end{equation*}
$$

We evaluate these at some point (a, b).

We now cross these two vectors to get the normal so

$$
\vec{n}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \tag{2}\\
1 & 0 & f_{x}(a, b) \\
0 & 1 & f_{y}(a, b)
\end{array}\right|=<-f_{x}(a, b),-f_{y}(a, b), 1>
$$

The equation of the tangent plane is then (where $c=f(a, b)$)

$$
\begin{equation*}
-f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)+(z-c)=0 \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-(z-c)=0 \tag{4}
\end{equation*}
$$

If the surface is given implicitly, say by $G(x, y, z)=0$, then the partial derivatives are given as

$$
\begin{equation*}
z_{x}=-\frac{G_{x}}{G_{z}}, \quad z_{y}=-\frac{G_{y}}{G_{z}} \tag{5}
\end{equation*}
$$

and the equation of the tangent plane is

$$
\begin{equation*}
-z_{x}(z, b)(x-a)-z_{y}(a, b)(y-b)+(z-c)=0 \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{x}(a, b, c)(x-a)+G_{y}(a, b, c)(y-b)+G_{z}(a, b, c)(z-c)=0 \tag{7}
\end{equation*}
$$

Unit Normal to Surface

We now define the unit normal \vec{N} to a surface given by $G(x, y, z)=0$ as

$$
\begin{equation*}
\vec{N}=\frac{\nabla G}{\|\nabla G\|} \tag{8}
\end{equation*}
$$

where the gradient of G is given by $\nabla G=\left\langle G_{x}, G_{y}, G_{z}\right\rangle$. We can also orient the normal as to point outward or inward and would simply multiply (8) by -1 .

Example 1. Find the unit normal to the unit sphere

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=1 \tag{9}
\end{equation*}
$$

Here $G=x^{2}+y^{2}+z^{2}-1$ so $\nabla G=\langle 2 x, 2 y, 2 z\rangle$

$$
\begin{equation*}
\|\nabla G\|=\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}=\sqrt{4\left(x^{2}+y^{2}+z^{2}\right)}=2 \tag{10}
\end{equation*}
$$

and the unit normal is $\vec{N}=\frac{\langle 2 x, 2 y, 2 z\rangle}{2}=\langle x, y, z\rangle$.

Flux

One of the principal applications of surface integrals over vector fields is fluid flow through a surface. Consider an oriented surface S submerged in a fluid having a continuous velocity field \vec{F}. Let $d S$ be a small area on the surface over which \vec{F} is nearly constant. Then the amount of field crossing this surface per unit time is approximated by $\vec{F} \cdot \vec{N} d S$ and adding up the element gives

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S \tag{11}
\end{equation*}
$$

Def ${ }^{n}$ If \vec{F} is a continuous vector field define on an oriented surface S wit hunit normal \vec{N}, the the surface integral over S is

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S \tag{12}
\end{equation*}
$$

which is called Flux of \vec{F} across S.

Example 2. Taken from a Berkeley midterm.
Find the flux \vec{F} across S where $\vec{F}=\langle x, y, z\rangle$ and the surface S is the boundary of the solid enclosed by the plane $x+y+z=1$ and the $x y, x z$ and $y z$ planes.
Soln: First we find the unit normal. Since the surface is given as $x+y+z=$ 1 we create G as $G=x+y+z-1$. So $\nabla G=\langle 1,1,1\rangle$ and the unit normal is given by

$$
\begin{equation*}
\vec{N}=\frac{\nabla G}{\|\nabla G\|}=\frac{\langle 1,1,1\rangle}{\sqrt{3}} . \tag{13}
\end{equation*}
$$

Next, we calculate $d S$. Since the surface is given by $z=1-x-y$ then

$$
\begin{equation*}
d S=\sqrt{1+f_{x}^{2}+f_{y}^{2}} d A_{x y}=\sqrt{1+1+1} d A_{x y} \tag{14}
\end{equation*}
$$

Now the flux integral becomes

$$
\begin{align*}
\iint_{S} \vec{F} \cdot \vec{N} d S & =\iint_{R_{x y}}\langle x, y, z\rangle \cdot \frac{\langle 1,1,1\rangle}{\sqrt{3}} \sqrt{3} d A_{x y} \\
& =\iint_{R_{x y}}(x+y+z) d A_{x y} \\
& =\iint_{R_{x y}} 1 d A_{x y} \tag{15}\\
& =\int_{0}^{1} \int_{0}^{1-x} 1 d y d x \\
& =\left.\int_{0}^{1} y\right|_{0} ^{1-x} d x \\
& =\int_{0}^{1}(1-x) d x \\
& =x-\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}
\end{align*}
$$

Example 3.

Find the flux \vec{F} across S where $\vec{F}=\langle y, x, z\rangle$ and the surface S is the boundary of the solid enclosed by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.

Soln: First we find the unit normal. Since the surface is given as $z=1-$ $x^{2}-y^{2}$ we created G as $G=x^{2}+y^{2}+z-1$. So $\nabla G=\langle 2 x, 2 y, 1\rangle$ and the unit normal is given by

$$
\begin{equation*}
\vec{N}=\frac{\nabla G}{\|\nabla G\|}=\frac{\langle 2 x, 2 y, 1\rangle}{\sqrt{1+4 x^{2}+4 y^{2}}} \tag{16}
\end{equation*}
$$

Next, we calculate $d S$. Since the surface is given by $z=1-x^{2}-y^{2}$ then

$$
\begin{equation*}
d S=\sqrt{1+f_{x}^{2}+f_{y}^{2}} d A_{x y}=\sqrt{1+4 x^{2}+4 y^{2}} d A_{x y} . \tag{17}
\end{equation*}
$$

Now the flux integral becomes

$$
\begin{align*}
\iint_{S} \vec{F} \cdot \vec{N} d S & =\iint_{R_{x y}}\langle y, x, z\rangle \cdot \frac{\langle 2 x, 2 y, 1\rangle}{\sqrt{1+4 x^{2}+4 y^{2}}} \sqrt{1+4 x^{2}+4 y^{2}} d A_{x y} \\
& =\iint_{R_{x y}}(4 x y+z) d A_{x y} \\
& =\iint_{R_{x y}}\left(4 x y+1-x^{2}-y^{2}\right) d A_{x y} \tag{18}\\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(4 r^{2} \sin \theta \cos \theta+1-r^{2}\right) r d r d \theta \\
& =\frac{\pi}{2}
\end{align*}
$$

Example 4. Taken from John Hopkins University.
Find the flux \vec{F} across S where $\vec{F}=\langle x, x y, x y z\rangle$ through the unit cube $0 \leq x \leq 1,0 \leq y \leq 1$ and $0 \leq z \leq 1$.

Soln: Since there are 6 sides to the cube we must do all 6 fluxes separately. The nice thing is that the unit normal's are easy to pick off and so are $d S$.

Top: \quad Here $\vec{N}=\langle 0,0,1\rangle$. Since $z=1$, then $\vec{F}=\langle x, x y, x y\rangle$ and $\vec{F} \cdot \vec{N}=$ $\langle 0,0,1\rangle \cdot\langle x, x y, x y\rangle=x y$

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S=\int_{0}^{1} \int_{0}^{1} x y d y d x=\frac{1}{4} \tag{19}
\end{equation*}
$$

Bottom: Here $\vec{N}=\langle 0,0,-1\rangle$. Since $z=0$, then $\vec{F}=\langle x, x y, 0\rangle$ and $\vec{F} \cdot \vec{N}=\langle 0,0,-1\rangle \cdot\langle x, x y, 0\rangle=0$

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S=\int_{0}^{1} \int_{0}^{1} 0 d y d x=0 \tag{20}
\end{equation*}
$$

Right: Here $\vec{N}=\langle 0,1,0\rangle$. Since $y=1$, then $\vec{F}=\langle x, x, x z\rangle$ and $\vec{F} \cdot \vec{N}=$ $\langle 0,1,0\rangle \cdot\langle x, x, x z\rangle=x y$

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S=\int_{0}^{1} \int_{0}^{1} x d z d x=\frac{1}{2} \tag{21}
\end{equation*}
$$

Left: Here $\vec{N}=\langle 0,-1,0\rangle$. Since $y=0$, then $\vec{F}=\langle x, 0,0\rangle$ and $\vec{F} \cdot \vec{N}=$ $\langle 0,-1,0\rangle \cdot\langle x, 0,0\rangle=0$

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S=\int_{0}^{1} \int_{0}^{1} 0 d z d x=0 \tag{22}
\end{equation*}
$$

Front: \quad Here $\vec{N}=\langle 1,0,0\rangle$. Since $x=1$, then $\vec{F}=\langle 1, y, y z\rangle$ and $\vec{F} \cdot \vec{N}=$ $\langle 1,0,0\rangle \cdot\langle 1, y, y z\rangle=1$

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S=\int_{0}^{1} \int_{0}^{1} 1 d z d y=1 \tag{23}
\end{equation*}
$$

Back: \quad Here $\vec{N}=\langle-1,0,0\rangle$. Since $x=0$, then $\vec{F}=\langle 0,0,0\rangle$ and $\vec{F} \cdot \vec{N}=$ $\langle-1,0,0\rangle \cdot\langle 0,0,0\rangle=0$

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S=\int_{0}^{1} \int_{0}^{1} 0 d z d y=0 \tag{24}
\end{equation*}
$$

So the total flux through the cube is

$$
\begin{equation*}
\iint_{S} \vec{F} \cdot \vec{N} d S=\frac{1}{4}+0+\frac{1}{2}+0+1+0=\frac{7}{4} \tag{25}
\end{equation*}
$$

