Math 4315 - PDEs

Sample Test 2 - Solutions

1. Transform the following PDEs to canonical form. In the case that the type is hyperbolic, transform to both modified and regular form

$$
\begin{array}{cc}
(i) & 6 u_{x x}-5 u_{x y}+u_{y y}=0, \\
(i i) & 4 u_{x x}+12 u_{x y}+13 u_{y y}=0, \\
(i i i) & u_{x x}+4 u_{x y}+4 u_{y y}-u_{x}=1, \\
(i v) & x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}-x u_{x}-y u_{y}=0, \\
(v) & 2 y^{2} u_{x x}-5 x y u_{x y}+2 x^{2} u_{y y}=0, \\
(v i) & x^{2} u_{x x}-2 x u_{x y}+55 u_{y y}+x u_{x}=0, \tag{vi}
\end{array}
$$

1(i) The PDE to transform is

$$
6 u_{x x}-5 u_{x y}+u_{y y}=0
$$

Here $a=6, b=-5$ and $c=1$ so $b^{2}-4 a c=1>0$ so the PDE is hyperbolic. For the modified hyperbolic form, it is necessary to solve

$$
6 r_{x}^{2}-5 r_{x} r_{y}+r_{y}^{2}=0, \quad 6 s_{x}^{2}-5 s_{x} s_{y}+s_{y}^{2}=0
$$

noting that they factor

$$
\left(2 r_{x}-r_{y}\right)\left(3 r_{x}-r_{y}\right)=0, \quad\left(2 s_{x}-s_{y}\right)\left(3 s_{x}-s_{y}\right)=0
$$

Thus, solving

$$
2 r_{x}-r_{y}=0, \quad 3 s_{x}-s_{y}=0
$$

gives r and s as

$$
r=x+2 y, \quad s=x+3 y
$$

The derivatives transform as follows:
(i) $\quad u_{x}=u_{r}+u_{s}, \quad u_{y}=2 u_{r}+3 u_{s}$,
(ii)

$$
\begin{gather*}
u_{x x}=u_{r r}+2 u_{r s}+u_{s s} \\
u_{x y}=2 u_{r r}+5 u_{r s}+3 u_{s s} \\
u_{y y}=4 u_{r r}+12 u_{r s}+9 u_{s s} \tag{iv}
\end{gather*}
$$

thus transforming the PDE to modified hyperbolic form

$$
-u_{r s}=0, \quad \Rightarrow \quad u_{r s}=0
$$

1(ii). The PDE to transform is

$$
4 u_{x x}+12 u_{x y}+13 u_{y y}=0
$$

Here $a=4, b=12$ and $c=13$ so $b^{2}-4 a c=-64<0$ so the PDE is elliptic. Therefore, it is necessary to solve

$$
4 r_{x}^{2}+12 r_{x} r_{y}+13 r_{y}^{2}=0, \quad 4 s_{x}^{2}+12 s_{x} s_{y}+13 s_{y}^{2}=0
$$

using the quadratic formula. Dividing by r_{y}^{2} gives

$$
4\left(\frac{r_{x}}{r_{y}}\right)^{2}+12 \frac{r_{x}}{r_{y}}+13=0
$$

and solving gives

$$
\frac{r_{x}}{r_{y}}=\frac{-12 \pm 8 i}{8}=\frac{-3 \pm 2 i}{2}
$$

Therefore, we solve the first order PDE

$$
r_{x}=\frac{-3 \pm 2 i}{2} r_{y} \text { or } 2 r_{x}-(-3 \pm 2 i) r_{y}=0
$$

Using the method of characteristics gives

$$
\frac{d x}{2}=-\frac{d y}{-3 \pm 2 i}
$$

which leads to

$$
\begin{aligned}
& r, s=(-3 \pm 2 i) x+2 y \\
& r, s=-3 x+2 y \pm 2 x
\end{aligned}
$$

where we choose

$$
r=-3 x+2 y, \quad s=2 x .
$$

The derivatives transform as follows:
(i) $u_{x}=-3 u_{r}+2 u_{s}, \quad u_{y}=2 u_{r}$,
(ii) $\quad u_{x x}=9 u_{r r}-12 u_{r s}+4 u_{s s}$,
(iii) $\quad u_{x y}=-6 u_{r r}+4 u_{r s}$,
(iv)

$$
u_{y y}=4 u_{r r},
$$

thus transforming the PDE to elliptic form

$$
16 u_{r r}+16 u_{s s}=0 \quad \Rightarrow \quad u_{r r}+u_{s s}=0 .
$$

1(iii). The PDE to transform is

$$
u_{x x}+4 u_{x y}+4 u_{y y}-u_{x}=1 .
$$

Here $a=1, b=4$ and $c=4$ so $b^{2}-4 a c=0$ so the PDE is parabolic

Therefore, it is necessary to solve

$$
r_{x}+2 r_{y}=0
$$

Using the method of characteristics gives

$$
\frac{d x}{1}=\frac{d y}{2}
$$

which leads to

$$
r=2 x-y, \quad s=y,
$$

noting that the choice for s is arbitrary. The derivatives transform as follows:

$$
\begin{array}{cc}
(i) & u_{x}=2 u_{r}, \quad u_{y}=-u_{r}+u_{s}, \\
(i i) & u_{x x}=4 u_{r r}, \\
(i i i) & u_{x y}=-2 u_{r r}+2 u_{r s}, \\
(i v) & u_{y y}=u_{r r}-2 u_{r s}+u_{s s},
\end{array}
$$

thus transforming the PDE to parabolic form

$$
u_{s s}-\frac{u_{r}}{2}=\frac{1}{4} .
$$

1(iv). The PDE to transform is

$$
x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}-x u_{x}-y u_{y}=0 .
$$

Here $a=x^{2}, b=2 x y$ and $c=y^{2}$ so $b^{2}-4 a c=0$ so the PDE is parabolic Therefore, it is necessary to solve

$$
x^{2} r_{x}+x y r_{y}=0, \quad \Rightarrow \quad x r_{x}+y r_{y}=0 .
$$

Using the method of characteristics gives

$$
\frac{d x}{x}=\frac{d y}{y} ; d r=0
$$

which leads to

$$
r=\frac{y}{x}, \quad s=y
$$

noting that the choice for s is arbitrary. The derivatives transform as follows:

$$
\begin{array}{cc}
(i) & u_{x}=-\frac{y}{x^{2}} u_{r}, \quad u_{y}=\frac{1}{x} u_{r}+u_{s}, \\
(i i) & u_{x x}=\frac{y^{2}}{x^{4}} u_{r r}+\frac{2 y}{x^{3}} u_{r}, \\
(i i i) & u_{x y}=-\frac{y}{x^{3}} u_{r r}-\frac{y}{x^{2}} u_{r s}-\frac{1}{x^{2}} u_{r}, \\
\text { (iv) } & u_{y y}=\frac{1}{x^{2}} u_{r r}+\frac{2}{x} u_{r s}+u_{s s},
\end{array}
$$

thus transforming the PDE to parabolic form

$$
y^{2} u_{s s}-y u_{s}=0 \Rightarrow u_{s s}-\frac{1}{s} u_{s}=0
$$

1(v) The PDE to transform is

$$
2 y^{2} u_{x x}-5 x y u_{x y}+2 x^{2} u_{y y}=0 .
$$

Here $a=2 y^{2}, b=-5 x y$ and $c=2 x^{2}$ so $b^{2}-4 a c=9 x^{2} y^{2}>0$ for $x y \neq 0$ so the PDE is hyperbolic. For modified hyperbolic form, it is necessary to solve

$$
2 y^{2} r_{x}^{2}-5 x y r_{x} r_{y}+2 x^{2} r_{y}^{2}=0, \quad 2 y^{2} s_{x}^{2}-5 x y s_{x} s_{y}+2 x^{2} s_{y}^{2}=0
$$

noting that they factor

$$
\left(2 y r_{x}-x r_{y}\right)\left(y r_{x}-2 x r_{y}\right)=0, \quad\left(2 y s_{x}-x s_{y}\right)\left(y s_{x}-2 x s_{y}\right)=0 .
$$

Thus, solving

$$
2 y r_{x}-x r_{y}=0, \quad y s_{x}-2 x s_{y}=0
$$

gives r and s as

$$
r=x^{2}+2 y^{2}, \quad s=2 x^{2}+y^{2} .
$$

The derivatives transform as follows:
(i) $\quad u_{x}=2 x u_{r}+4 x u_{s}, \quad u_{y}=4 y u_{r}+2 y u_{s}$,
(ii) $u_{x x}=4 x^{2} u_{r r}+16 x^{2} u_{r s}+16 x^{2} u_{s s}+2 u_{r}+4 u_{s}$,
(iii) $\quad u_{x y}=8 x y u_{r r}+20 x y u_{r s}+8 x y u_{s s}$,
(iv) $\quad u_{y y}=16 y^{2} u_{r r}+16 y^{2} u_{r s}+4 y^{2} u_{s s}+4 u_{r}+2 u_{s}$,
thus transforming the PDE to modified hyperbolic form

$$
u_{r s}-\frac{s u_{r}+r u_{s}}{(2 r-s)(2 s-r)}=0 .
$$

1(vi). The PDE to transform is

$$
x^{2} u_{x x}-2 x u_{x y}+5 u_{y y}+x u_{x}=0
$$

Here $a=x^{2}, b=-2 x$ and $c=5$ so $b^{2}-4 a c=-16 x^{2}<0$ for $x \neq 0$ so the PDE is elliptic.
Therefore, it is necessary to solve

$$
x^{2} r_{x}^{2}-2 x r_{x} r_{y}+5 r_{y}^{2}=0, \quad x^{2} s_{x}^{2}-2 x s_{x} s_{y}+5 s_{y}^{2}=0
$$

using the quadratic formula. Dividing by r_{y}^{2} gives

$$
x^{2}\left(\frac{r_{x}}{r_{y}}\right)^{2}-2 x \frac{r_{x}}{r_{y}}+5=0
$$

and solving gives

$$
\frac{r_{x}}{r_{y}}=\frac{2 x \pm 4 x i}{2 x^{2}}=\frac{1 \pm 2 i}{x}
$$

Therefore, we solve the first order PDE

$$
x r_{x}-(1 \pm 2 i) r_{y}=0
$$

Using the method of characteristics gives

$$
\frac{d x}{x}=-\frac{d y}{1 \pm 2 i}
$$

which leads to

$$
\begin{aligned}
& r, s=(1 \pm 2 i) \ln x+y \\
& r, s=\ln x+y \pm 2 \ln x
\end{aligned}
$$

where we choose

$$
r=\ln x+y, \quad s=2 \ln x .
$$

The derivatives transform as follows:

$$
\begin{equation*}
u_{x}=\frac{1}{x} u_{r}+\frac{2}{x} u_{s}, \quad u_{y}=u_{r} \tag{i}
\end{equation*}
$$

(ii) $\quad u_{x x}=\frac{1}{x^{2}} u_{r r}+\frac{4}{x^{2}} u_{r s}+\frac{4}{x^{2}} u_{s s}-\frac{1}{x^{2}} u_{r}-\frac{2}{x^{2}} u_{s}$,
(iii) $\quad u_{x y}=\frac{1}{x} u_{r r}+\frac{2}{x} u_{r s}$,
(iv)

$$
u_{y y}=u_{r r},
$$

thus transforming the PDE to elliptic form

$$
4 u_{r r}+4 u_{s s}=0, \quad \Rightarrow \quad u_{r r}+u_{s s}=0
$$

