Handout chapter 10 and 11
Wrapper Classes Examples:

ArrayLists

1)

2)

3)

4)

5) Other ArrayList Examples:

[image:]

[image:]

[image:]

Iterators:
[image:]
[image:]

[image:]

[bookmark: _GoBack]
image11.png

image12.png
Example 5

//8wap two values in list, indexed at i and j.
public static void swap(List<E> list, int i, int j)
3

E temp = list.get(i);

list.set(i, list.get(j));

list.set(j, temp);
¥

Example 6

//Print all negatives in list a.
//Precondition: a contains Integer values.
public static void printNegs(List<Integer> a)
58

System.out.printin("The negative values in the list are: ");

for (Integer i : a)

if (i.intValue() < 0)
System.out.println(i);

image13.png
Example 7

//Change every even-indexed element of strList to the empty string.
//Precondition: strList contains String values.

public static void changeEvenToEmpty(List<String> strList)
58

boolean even = true;
int index = 0;
while (index < strList.size())

T
if (even)
strList.set(index, "");
index++;
even = l!even;
x

image14.png
Definition of an Iterator

An iterator is an object whose sole purpose is to traverse a collection, one element
at a time. During iteration, the iterator object maintains a current position in the
collection, and is the controlling object in manipulating the elements of the collection.

The Iterator<E> Interface

The package java.util provides a generic interface, Iterator<E>, whose methods are
hasNext, next, and remove. The Java Collections API allows iteration over each of its
collections classes.

image15.png
THE METHODS OF Tterator<E>

boolean hasNext()
eturns true if there’s at least one more element to be examined, false otherwise.

E next()

Returns the next e}
NoSuchElementException.

lement in the iteration. If no elements remain, the method throws a

void remove()
Deletes from the collection the last element that was returned by next. This method
can be called only once per call to next. Tt throws an I1legalStateException if the
next method has not yet been called, or if the remove method has already been called

after the last call to next.

image17.png
NOTE

1. Only classes that allow iteration can use the for-each loop. This is because the
loop operates by using an iterator. Thus, the loop in the above example is
equivalent to

for (String str : list) //mo iterator in sight:!
System.out.println(str);

2. Recall, however, that a for-each loop cannot be used to remove elements from
the list. The easiest way to “remove all occurrences of ...” from an ArrayList
is tO use an iterator.

