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CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Schedule

• 11/14: Finish probability, discuss class project and multiagent 

systems (game theory)

• 11/16: Markov decision processes & reinforcement learning

• 11/21, 11/28, 11/30, 12/5: Machine learning (classification, 

regression, clustering, deep learning)

• 12/7: Project presentations and class project due

– Project code due Monday 12/4 at 2PM on Moodle.

• Final exam on 12/14
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Announcements

• HW3 out 10/31 due 11/14 (2:05pm in lecture or 

2:00pm on Moodle)

– https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

– Must be done individually (no partner)

• HW4 out this week

https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf
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Class project

• For the class project students will implement an agent for 3-player 

Kuhn poker. This is a simple, yet interesting and nontrivial, variant 

of poker that has appeared in the AAAI Annual Computer Poker 

Competition. The grade will be partially based on performance 

against the other agents in a class-wide competition, as well as final 

reports and presentations describing the approaches used. Students 

can work alone or in groups of up to 3.

• Link to play against optimal strategy for one-card poker:

– http://www.cs.cmu.edu/~ggordon/poker/

• Paper on Nash equilibrium strategies for 3-player Kuhn poker

– http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

• https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801

http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf
https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801


5

GRAPHPLAN algorithm
• Graphplan is an algorithm for automated planning developed by 

Avrim Blum and Merrick Furst in 1995. Graphplan takes as input 

a planning problem expressed in STRIPS and produces, if one is 

possible, a sequence of operations for reaching a goal state.

• The name graphplan is due to the use of a novel planning graph, 

to reduce the amount of search needed to find the solution from 

straightforward exploration of the state space graph.

• In the state space graph:

– the nodes are possible states,

– and the edges indicate reachability through a certain action.

• On the contrary, in Graphplan's planning graph:

– the nodes are actions and atomic facts, arranged into alternate levels,

– and the edges are of two kinds:

• from an atomic fact to the actions for which it is a condition,

• from an action to the atomic facts it makes true or false.
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GRAPHPLAN
• First level contains true atomic facts identifying the initial state.

• Lists of incompatible facts that cannot be true at the same time 

and incompatible actions that cannot be executed together are 

also maintained.

• The algorithm then iteratively extends the planning graph, 

proving that there are no solutions of length l-1 before looking 

for plans of length l by backward chaining: supposing the goals 

are true, Graphplan looks for the actions and previous states 

from which the goals can be reached, pruning as many of them 

as possible thanks to incompatibility information.

• A closely related approach to planning is the Planning as 

Satisfiability (Satplan). Both reduce the automated planning 

problem to search for plans of different fixed horizon lengths.
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Probability

• Consider a domain with three Boolean variables: Toothache, 

Cavity, Catch (the dentist’s steel probe catches in my tooth). 
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Probability

• Notice that the probabilities in the joint distribution sum 

to 1, as required by the axioms of probability.

• Axioms of probability:

1. 0 <= P(w) <= 1 for every possible world w

2. Sum over all worlds w of P(w) = 1

• For example, if we roll two dice, there are 36 possible 

worlds: (1,1), (1,2), …, (6,6). 

• If each die is fair and rolls don’t interfere with each other, then 

each world has probability 1/36.

• On the other hand, if the dice conspire to produce the same 

number, then the worlds (1,1), (2,2), (3,3), etc. might have 

higher probabilities, leaving the others with lower probabilities.



9

Probability

• Technique to calculate the probability of any 

proposition, simple or complex: identify those possible 

worlds in which the proposition is true and add up their 

probabilities. For example, there are six possible 

worlds in which cavity OR toothache holds:

– P(cavity OR toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 

0.016 + 0.064 = 0.28.

• One particularly common task is to extract the 

distribution over some subset of variables or a single 

variable. For example, adding the entries in the first 

row gives the marginal probability of cavity:

– P(cavity) = 0.108 + 0.102 + 0.072 + 0.008 = 0.2.
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Probability

• In general, for any sets of variables Y and Z, P(Y) = Σz in Z P(Y,z)

• P(Cavity) = Σz in {Catch, Toothache} P(Cavity,z)

• Conditional probability:

– P(a | b) = P(a AND b) / P(b) whenever P(b) > 0

– P(doubles | Die1 = 5) = P(doubles AND Die1 = 5)/P(Die1 = 5)

• P(cavity | toothache) = P(cavity AND toothache) / P(toothache)

= (0.108 + 0.012) / (.108 + 0.012 + 0.016 + 0.064) = 0.6.

• P(!cavity | toothache) = P(!cavity AND toothache) / P(toothache)

= (0.016 + 0.064) / (.108 + 0.012 + 0.016 + 0.064) = 0.4.

• These two values sum to 1 as they should. This can be viewed as 

normalization.
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Independence

• Let us expand the full joint distribution by adding a fourth 

variable, Weather. The full joint distribution then becomes 

P(Toothache, Catch, Cavity, Weather), which has 2 x 2 x 2 x 4 = 

32 entries. It contains four “editions” of the table shown, one for 

each kind of weather. 

• How do these editions relate to each other and to the original 

three-variable table? For example, P(toothache, catch, cavity, 

cloudy) vs. P(toothache, catch, cavity)?

• We can use the product rule:

P(toothache, catch, cavity, cloudy) 

= P(cloudy | toothache, catch, cavity) * P(toothache, catch, cavity).
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Probability

• Now, unless one is in the deity business, one should not imagine 

that one’s dental problems influence the weather. And for indoor 

dentistry, at least, it seems safe to say that the weather does not 

influence the dental variables.

• Therefore, the following assertion seems reasonable:

P(cloudy | toothache, catch, cavity) = P(cloudy).

• From this, we can deduce

P(toothache, catch, cavity, cloudy) = P(cloudy)P(toothache, 

catch, cavity).

• A similar equation exists for every entry in P(toothache, catch, 

cavity, weather). In fact, we can write the general equation:

P(toothache, catch, cavity, weather) = P(toothache, catch, cavity) P(weather)
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Probability

• Thus, the 32-element table for four variables can be 

constructed from one 8-element table and one 4-

element table. This decomposition is illustrated 

schematically in next slide. The property we used is 

called independence (also marginal independence 

and absolute independence). In particular, the weather 

is independent of one’s dental problems. Independence 

between propositions a and b can be written as:

– P(a|b) = P(a) or

– P(b|a) = P(b) or

– P(a AND b) = P(a)P(b)
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Independence
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Independence

• Independence assertions are usually based on knowledge of the 

domain. As the toothache-weather example illustrates, they can 

dramatically reduce the amount of information necessary to 

specify the full joint distribution. If the complete set of variables 

can be divided into independent subsets, then the full joint 

distribution can be factored into separate joint distributions on 

those subsets. For example, the full joint distribution on the 

outcome of n independent coin flips, P(C1,…, Cn) has 2n entries, 

but it can be represented as the product of n single-variable 

distributions P(Ci). In a more practical vein, the independence of 

dentistry and meteorology is a good thing, because otherwise the 

practice of dentistry might require intimate knowledge of 

meteorology, and vice versa.
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Independence

• When they are available, then, independence assertions can help 

in reducing the size of the domain representation and the 

complexity of the inference problem. Unfortunately, clean 

separation of entire sets of variables by independence is quite 

rare. Whenever a connection, however indirect, exists between 

two variables, independence will fail to hold. Moreover, even 

independent subsets can be quite large—for example, dentistry 

might involve dozens of diseases and hundreds of symptoms, all 

of which are interrelated. To handle such problems, we need more 

subtle methods than the straightforward concept of independence.
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Bayes’ Rule

• Recall the product rule: P(a AND b) = P(a | b)P(b), or 

equivalently, P(a AND b) = P(b|a)P(a)

• Equating the two right-hand sides and dividing by P(a), we get

– P(b|a) = P(a|b)P(b)/P(a)

• This equation is known as Bayes’ rule (also Bayes’ law or 

Bayes’ theorem). This simple equation underlies most modern 

AI systems for probabilistic inference.
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Bayes’ rule

• On the surface, Bayes’ rule does not seem very useful. It allows 

us to compute the single term P(b|a) in terms of three terms: 

P(a|b), P(b), and P(a). That seems like two steps backwards, but 

Bayes’ rule is useful in practice because there are many cases 

where we do have good probability estimates for these three 

numbers and need to compute the fourth. Often, we perceive as 

evidence the effect of some unknown cause and we would like 

to determine that cause. In that case, Bayes’ rule becomes

– P(cause | effect) = P(effect | cause) P(cause) / P(effect)
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Bayes’ rule

• The conditional probability P(effect | cause) quantifies the 

relationship in the causal direction, whereas P(cause|effect) 

describes the diagnostic direction. In a task such as medical 

diagnosis, we often have conditional probabilities on causal 

relationships (that is, the doctor knows P(symptoms| disease) 

and want to derive a diagnosis, P(disease | symptoms). For 

example, a doctor knows that the disease meningitis causes the 

patient to have a stiff neck, say, 70% of the time. The doctor 

also knows some unconditional facts: the prior probability that a 

patient has meningitis is 1/50,000, and the prior probability that 

any patient has a stiff neck is 1%. Letting s be the proposition 

that the patient has a stiff neck and m be the proposition that the 

patient has meningitis, we have:
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• Meningitis is an acute inflammation of the protective membranes covering 

the brain and spinal cord, known collectively as the meninges. The most 

common symptoms are fever, headache, and neck stiffness. Other symptoms 

include confusion or altered consciousness, vomiting, and an inability to 

tolerate light or loud noises. Young children often exhibit only nonspecific 

symptoms, such as irritability, drowsiness, or poor feeding. If a rash is 

present, it may indicate a particular cause of meningitis; for instance, 

meningitis caused by meningococcal bacteria may be accompanied by a 

characteristic rash.

• In 2015 meningitis occurred in about 8.7 million people worldwide. This 

resulted in 379,000 deaths – down from 464,000 deaths in 1990. With 

appropriate treatment the risk of death in bacterial meningitis is less than 

15%. Outbreaks of bacterial meningitis occur between December and June 

each year in an area of sub-Saharan Africa known as the meningitis belt. 

Smaller outbreaks may also occur in other areas of the world. The word 

meningitis is from Greek μῆνιγξ meninx, "membrane" and the medical suffix 

-itis, "inflammation".
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Bayes’ rule

• P(s|m) = 0.7

• P(m) = 1/50000

• P(s) = 0.01

• P(m | s) = P(s|m)P(m)/P(s) = (0.7 * 1/5000)/0.01 = 0.0014

• Thus, we expect less than 1 in 700 patients with a stiff neck to 

have meningitis. Notice that even though a stiff neck is quite 

strongly indicated by meningitis (with probability 0.7), the 

probability of meningitis in the patient remains small. This is 

because the prior probability of stiff necks is much higher than 

that of meningitis.
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Bayes’ rule for drug testing

• Suppose that a test for using a particular drug is 99% sensitive 

and 99% specific. That is, the test will produce 99% true 

positive results for drug users and 99% true negative results for 

non-drug users. Suppose that 0.5% of people are users of the 

drug. What is the probability that a randomly selected individual 

with a positive test is a user?
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Bayes’ rule for drug testing
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Bayes’ rule for drug testing

• Even if an individual tests positive, it is more likely that they do not use the 

drug than that they do. Why? Even though the test appears to be highly 

accurate, the number of non-users is large compared to the number of users. 

The number of false positives outweighs the number of true positives.

• To use concrete numbers, if 1000 individuals are tested, there are expected to 

be 995 non-users and 5 users. From the 995 non-users, 0.01 × 995 ≃ 10 false 

positives are expected. From the 5 users, 0.99 × 5 ≈ 5 true positives are 

expected. Out of 15 positive results, only 5, about 33%, are genuine.

• This illustrates the importance of base rates. Daniel Kahneman has argued 

that the formation of policy can be egregiously misguided if base rates are 

neglected when using statistics as a basis for guiding public policy.

• The importance of specificity in this example can be seen by calculating that 

even if sensitivity is raised to 100% and specificity remains at 99% then the 

probability of the person being a drug user only rises from 33.2% to 33.4%, 

but if the sensitivity is held at 99% and the specificity is increased to 99.5% 

then the probability of the person being a drug user rises to about 49.9%.
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Bayesian networks

• A Bayesian network is a directed graph in which each 

node is annotated with quantitative probability 

information. The full specification is:

1. Each node corresponds to a random variable, which may be 

discrete or continuous

2. A set of directed links or arrows connects pairs of nodes. If 

there is an arrow from node X to node Y, X is said to be a 

parent of Y. The graph has no directed cycles (and hence is 

a directed acyclic graph), or DAG. 

3. Each node Xi has a conditional probability distribution 

P(Xi |Parents(Xi)) that quantifies the effect of the parents on 

the node.
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Bayesian networks

• The topology of the network—the set of nodes and links–

specifies the conditional independence relationships that hold in 

the domain, in a way that will be made precise shortly. The 

intuitive meaning of an arrow is typically that X has a direct 

influence on Y, which suggests that causes should be parents of 

effects. It is usually easy for a domain expert to decide what 

direct influences exist in the domain—much easier, in fact, than 

actually specifying the probabilities themselves. Once the 

topology of the Bayesian network is laid out, we need only 

specify a conditional probability distribution for each variable, 

given its parents. We will see that the combination of the 

topology and the conditional distributions suffices to specify 

(implicitly) the full joint distribution for all the variables.
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Bayesian networks
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Bayesian networks

• Recall the simple world consisting of the variables 

Toothache, Cavity, Catch, and Weather. We argued 

that Weather is independent of the other variables; 

furthermore, we argued that Toothache and Catch are 

conditionally independent, given Cavity. These 

relationships are represented by the Bayesian network 

structure shown above. Formally, the conditional 

independence of Toothache and Catch, given Cavity, is 

indicated by the absence of a link between Toothache 

and Catch, whereas no direct causal relationship exists 

between Toothache and Catch.
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Bayesian network

• Now consider the following example. You have a new 

burglar alarm installed at home. It is fairly reliable at 

detecting a burglary, but also responds on occasion to 

minor earthquakes. You also have two neighbors, John 

and Mary, who have promised to call you at work 

when they hear the alarm. John nearly always calls 

when he hears the alarm, but sometimes confuses the 

telephone ringing with the alarm and calls then, too. 

Mary, on the other hand, likes rather loud music and 

often misses the alarm altogether. Given the evidence 

of who has or has not called, we would like to estimate 

the probability of a burglary. 
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Bayesian network
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Bayesian network

• The network structure shows that burglary and 

earthquakes directly affect the probability of the 

alarm’s going off, but whether John and Mary call 

depends only on the alarm. The network thus 

represents our assumptions that they do not perceive 

burglaries directly, they do not notice minor 

earthquakes, and they do not confer before calling.
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Bayesian network

• The conditional distributions are shown as a conditional 

probability table, or CPT. Each row in a CPT contains the 

conditional probability of each node value for a conditioning 

case. A conditioning case is just a possible combination of 

values for the parent nodes—a miniature possible world. Each 

row must sum to 1, because the entries represent an exhaustive 

set of cases for the variable. For Boolean variables, once you 

know that the probability of a true value is p, the probability of 

false must be 1-p, so we often omit the second number. In 

general, a table for a Boolean variable with k Boolean parents 

contains 2k independently specifiable probabilities. A node with 

no parents ha sonly one row, representing the prior probabilities 

of each possible value of the variable.
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Bayesian network
• Notice that the network does not have nodes corresponding to 

Mary’s currently listening to loud music or to the telephone 

ringing and confusing John. These factors are summarized in the 

uncertainty associated with the links from Alarm to JohnCalls and 

MaryCalls. This shows both laziness and ignorance in operation: 

it would be a lot of work to find out why those factors would be 

more or less likely in any particularly case, and we have no 

reasonable way to obtain the relevant information anyway. The 

probabilities actually summarize a potentially infinite set of 

circumstances in which the alarm might fail to go off (high 

humidity, power failure, dead battery, cut wires, a dead mouse 

stuck inside the bell, etc.) or John or Mary might fail to call and 

report it (out to lunch, on vacation, temporarily deaf, passing 

helicopter, etc.). In this way, a small agent can cope with a very 

large world, at least approximately. The degree of approximation 

can be improved if introduce additional relevant information.
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Bayesian network

• There are two ways in which one can understand the 

semantics of Bayesian networks. The first is to see the 

network as a representation of the joint probability 

distribution. The second is to view it as an encoding of 

a collection of conditional independence statements. 

The two views are equivalent, but the first turns out to 

be helpful in understanding how to construct networks, 

whereas the second is helpful in designing inference 

procedures.
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Bayesian network

• Viewed as a piece of “syntax,” a Bayesian network is a 

directed acyclic graph with some numeric parameters 

attached to each node. One way to define what the 

network means—its semantics—is to define the way in 

which it represents a specific joint distribution over all 

the variables. To do this, we first need to retract 

(temporarily) what we said earlier about the parameters 

associated with each node. We said that those 

parameters correspond to conditional probabilities 

P(Xi|Parents(Xi)); this is a true statement, but until we 

assign semantics to the network as a whole, we should 

think of them just as numbers θ(Xi|Parents(Xi)). 
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Bayesian networks

• A generic entry in the joint distribution is the probability of a 

conjunction of particular assignments to each variable, such as 

P(X1 = x1 AND … AND Xn = xn). We use the notation P(x1,…, xn) 

as an abbreviation for this. The value of this entry is given by the 

formula:

P(x1,..., xn) = ∏n
i=1 θ(xi|Parents(xi)),

• Where parents(Xi) denotes the values of Parents(xi) that appear in 

x1,…, xn. Thus, each entry in the joint distribution is represented 

by the product of the appropriate elements of the conditional 

probability tables (CPTs) in the Bayesian network. 
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Bayesian networks

• From this definition, it is easy to prove that the parameters 

θ(xi|Parents(xi)), are exactly the conditional probabilities 

P(xi|Parents(xi)), implied by the joint distribution (homework 

exercise). Hence, we can rewrite the equation as

P(x1,..., xn) = ∏n
i=1 P(xi|Parents(xi)).

• In other words, the tables we have been calling conditional 

probability tables really are conditional probability tables 

according to the semantics defined in the equation.
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Bayesian network

• To illustrate this, we can calculate the probability that the alarm 

has sounded, but neither a burglary nor an earthquake has 

occurred, and both John and Mary call. We multiply entries from 

the joint distribution (using single-letter names for the variables):

• P(j, m, a, !b,!e) = P(j|a)P(m|a)P(a|!b AND !e)P(!b)P(!e) = 0.90 * 

0.70 * 0.001 * 0.999 * 0.998 = 0.000628.

• We explained earlier that the full joint distribution can be used to 

answer any query about the domain. If a Bayesian network is a 

representation of the joint distribution, then it too can be used to 

answer any query, by summing all the relevant joint entries. 
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Bayesian networks

• Recall the equation: 

P(x1,..., xn) = ∏n
i=1 P(xi|Parents(xi)).

• The next step is to explain how to construct a Bayesian network in 

such a way that the resulting joint distribution is a good 

representation of a given domain. We will now show that the 

equation implies certain conditional independence relationships that 

can be used to guide the knowledge engineer in constructing the 

topology of the network. First, we rewrite the entries in the joint 

distribution in terms of conditional probability, using product rule:

• P(x1,..., xn) = P(xn | xn-1,…,x1)P(xn-1,…, x1).

• Then we repeat the process, reducing each conjunctive probability 

to a conditional probability and a smaller conjunction. 
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Bayesian networks

• We end up with one big product:

• P(x1,..., xn) = P(xn | xn-1,…,x1) P(xn-1 | xn-2,…,x1),*…* 

P(x2|x1)P(x1) = ∏n
i=1 P(xi|xi-1,…,x1).

• This identity is called the chain rule. It holds for any set of 

random variables. Comparing it with the previous equation, we 

see that the specification of the joint distribution is equivalent to 

the general assertion that, for every variable Xi in the network,

• P(Xi|Xi-1,…, X1) = P(Xi|Parents(Xi)),

• Provided that Parents(Xi) is a subset of {Xi-1,…, X1}. This last 

condition is satisfied by numbering the nodes in a way that is 

consistent with the partial order implicit in the graph structure.
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Bayesian networks

• This new equation says that the Bayesian network is a correct 

representation of the domain only if each node is conditionally 

independent of its other predecessors in the node ordering, given 

its parents. We can satisfy this condition with this methodology: 

– Nodes: First determine the set of variables that are required to model the 

domain. Now order them, {X1,…, Xn}. Any order will work, but the 

resulting network will be more compact if the variables are ordered such 

that causes precede effects. 

– Links: For i = 1 to n do:

• Choose, from X1,…, Xi-1, a minimal set of parents for Xi, such that the 

equation is satisfied. 

• For each parent insert a link from the parent to Xi.

• CPTs: Write down the conditional probability table, P(Xi|Parents(Xi)).
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Bayesian networks

• Intuitively, the parents of node Xi should contain all those nodes in 

X1,.., Xi-1 that directly influence Xi. For example, suppose we have 

completed the network in the figure except for the choice of parents 

for MaryCalls. MaryCalls is certainly influenced by whether there 

is a Burglary or an Earthquake, but not directly influenced. 

Intuitively, our knowledge of the domain tells us that these events 

influence Mary’s calling. Formally speaking, we believe that the 

following conditional independence statement holds:

– P(MaryCalls|JohnCalls, Alarm, Earthquake, Burglary) = 

P(MaryCalls|Alarm).

• Thus, Alarm will be the only parent node for MaryCalls.
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Bayesian network construction

• Because each node is connected only to earlier nodes, this 

construction method guarantees that the network is acyclic. 

Another important property of Bayesian networks is that they 

contain no redundant probability values. If there is no 

redundancy, then there is no chance for inconsistency: it is 

impossible for the knowledge engineer or domain expert to create 

a Bayesian network that violates the axioms of probability.
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Exact inference in Bayesian networks

• The basic task for any probabilistic inference system is to 

compute the posterior probability distribution for a set of query

variables, given some observed event—that is, some assignment 

of values to a set of evidence variables. To simplify the 

presentation, we will consider only one query variable at a time; 

the algorithms can easily be extended to queries with multiple 

variables. We will use the notation: X denotes the query variable, 

E denotes the set of evidence variables E1,…, Em, and e is a 

particular observed event; Y will denote the nonevidence, 

nonquery variables Y1,…,Ym (called the hidden variables). Thus, 

a complete set of variables is X = {X} Union E Union Y. A 

typical query asks for the posterior probability distribution P(X|e).
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Inference in Bayesian networks

• In the burglary network, we might observe the event in which 

JohnCalls = true, and MaryCalls = true. We could then ask for, 

say, the probability that a burglary has occurred:

– P(Burglary | JohnCalls = true, MaryCalls = true) 

= <0.284, 0.716> (for <true,false>).

• Now we will see exact algorithms for computing posterior 

probabilities and will consider the complexity of this task. It 

turns out that the general case is intractable.
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Bayesian network

• We saw that any conditional probability can be computed by 

summing terms from the full joint distribution. More 

specifically, a query P(X|e) can be answered using the equation, 

which we repeat here:

• P(X|e) = α P(x|e) = α∑y P(x,e,y).

• Now a Bayesian network gives a complete representation of the 

full joint distribution. More specifically, we showed that the 

terms P(x,e,y) in the joint distribution can be written as products 

of conditional probabilities from the network. Therefore, a query 

can be answered using a Bayesian network by computing sums 

of products of conditional probabilities from the network. 
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Bayesian network
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Bayesian network

• Consider the query P(Burglary | JohnCalls = true, MaryCalls = 

true). The hidden variables for this query are Earthquake and 

Alarm. We now see that:

• P(B|j,m) = α P(B,j,m) = α ∑e ∑a P(B,j,m,e,a).

• The semantics of Bayesian networks then gives us an expression 

in terms of CPT entries. For simplicity, we do this just for 

Burglary = true:

• P(b|j,m) = α ∑e ∑a P(b)P(e)P(a|b,e)P(j|a)P(m|a). 

• To compute this expression, we have to add four terms, each 

computed by multiplying five numbers. In the worst case, where 

we have to sum out almost all the variables, the complexity of the 

algorithm for a network with n Boolean variables is O(n 2n).
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Bayesian network

• An improvement can be made from the following simple 

observation: the P(b) term is a constant and can be moved 

outside the summations over a and e, and the P(e) term can be 

moved outside the summation over a. Hence, we have

• P(b|j,m) = α P(b)∑e P(e) ∑a P(a|b,e)P(j|a)P(m|a). 

• This expression can be evaluated by looping through the 

variables in order, multiplying CPT entries as we go. For each 

summation, we also need to loop over the variable’s possible 

values. The structure of this computation is shown in the figure. 

Using the numbers, we obtain P(b|j,m) = α <0.00059224, 

0.0014919> ~= <0.284,0.716>.

• That is, the chance of a burglary, given calls from both 

neighbors, is about 28%.
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Bayesian network
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Bayesian network



52

Homework for next class

• Chapter 17 from Russel/Norvig

• HW3 due today

• HW4 out this week

• Next lecture: Markov decision processes and 

reinforcement learning


