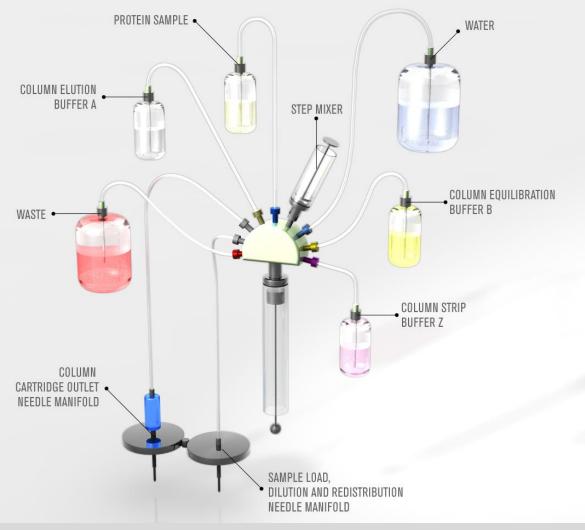
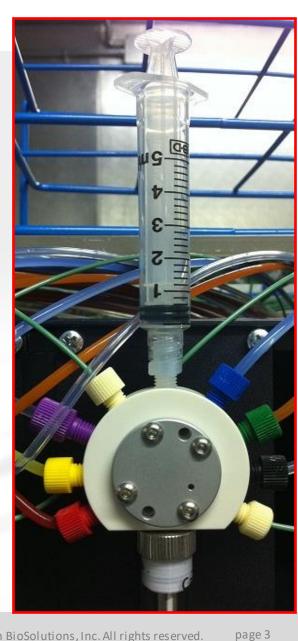
24 SAMPLES AT A TIME **8 RUNS PER DAY**

192 PURIFICATIONS PER DAY


RELIEVE YOUR **BOTTLENECKS**




- Purify 1 to 24 samples in parallel
- Eliminate known and unknown (!) sample degradation
- mg+ protein production scale
- Flexible sample volume scales from a few mL to multiple liters

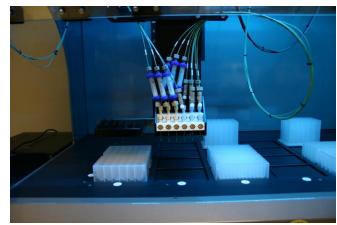
Overview

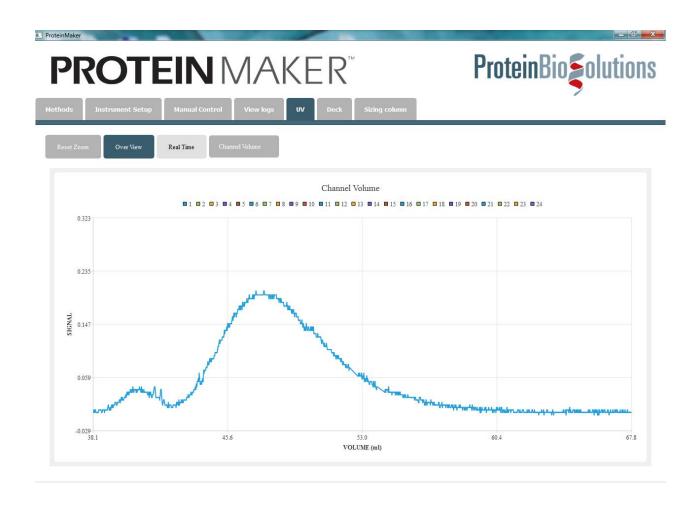
- 24 independent flow paths
- 9-port valve configuration
- Compatible with common commercial columns

Overview

PB

- 20 SBS deck positions (1 waste)
- Walk-away automation
- Perform parallel, 2-step purification of 12 samples

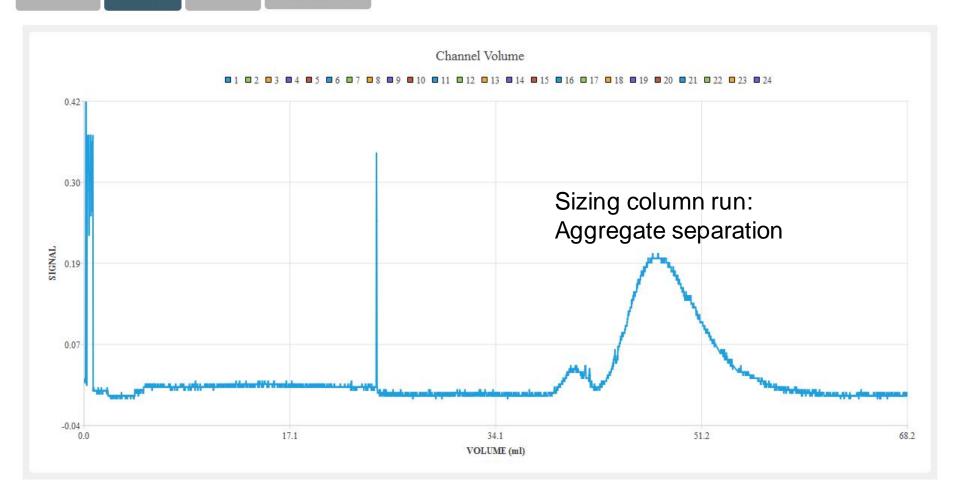

Flexible column sizes and locations



Now with optional 24 channel UV monitoring system!

Individual UV Flow cell block for each of 24 channels:

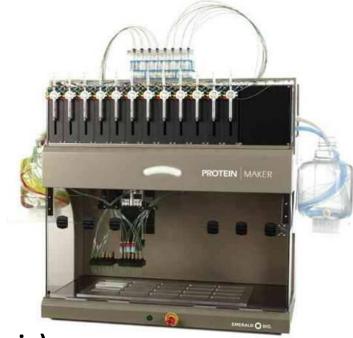
PROTEIN MAKER


Methods Instrument Setup Manual Control View logs UV Deck Sizing column

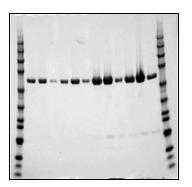
Reset Zoom

Over View

Real Time


Channel Volume

Protein Maker™: Purification Automation

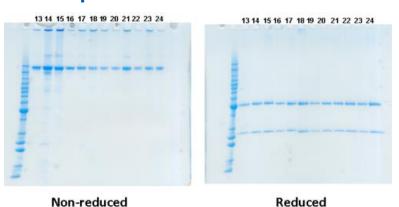


High-throughput Protein Purification

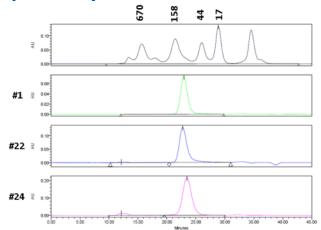
- Operation Modes:
 - 1. Production Mode (up to 24 proteins, 1 resin)
 - 2. Scouting Mode (up to 24 resin types, 1 protein)
 - 3. Multi-column (automated 2 step purification)
- Common Applications / Uses:
 - 1. Antibody Production
 - 2. Crystallography Prep
 - 3. No Risk Scale-up

12 protein variants purified in parallel

Antibody production/screening:

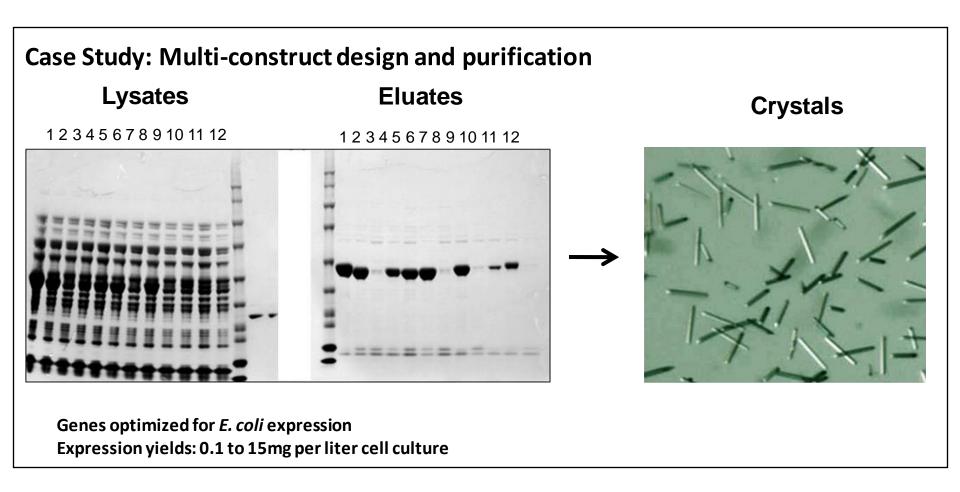

Purify mg+ amounts of up to 24 antibodies in parallel using up to or more than 1L

Case Study: Purification of Engineered Antibodies


- Had: Fully humanized antibody against a viral antigen target, with high affinity for wild type target but no affinity to a prevalent naturally occurring variant
- Goal: improve affinity for variant without loss of affinity for wild type

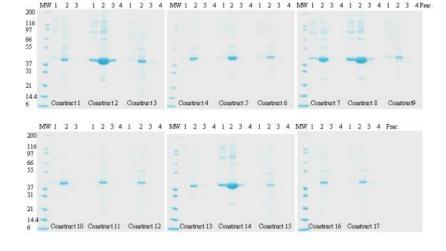
Purified 50mL each for 24 mutations (expression in CHO cells) using 1 mL HiTrap Protein A column. Yield (2-10 mg) provided sufficient material for biophysical characterization (analytical SEC/LS, SDS-PAGE, DSC) as well as affinity measurement.

Example SDS-PAGE: Mutants 13-24


Example analytical SEC: Mutants 1, 22, and 24

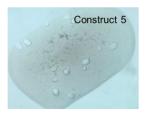
Production of multiple constructs:

Parallel processing enables scaled-up purification of multiple constructs (internal deletion variants) to access those with high crystallizability



Production of multiple constructs:

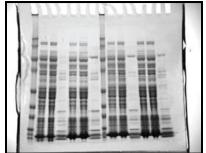
Parallel processing enables more efficient route to protein crystals


Case Study: Production of Kinase X – 17 constructs

Parallel nickel affinity purification (4-fraction elution)

9 constructs selected for his-tag removal and crystal screening

Parallel Lysis scouting:

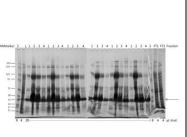

Test 12 different lysis buffer conditions followed by small scale IMAC purification to scale up and move forward with the strong purifiers

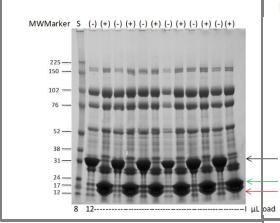
Case Study: Parallel testing of Lysis Conditions

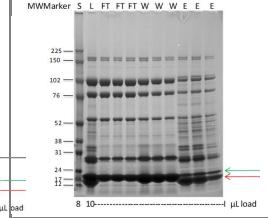
Example: Cytochrome P450 (CYP51A) insoluble in standard lysis buffer Result: of 12 lysis buffers 2 yield soluble CYP51A (CHAPS/bOG + 500 mM NaCl)

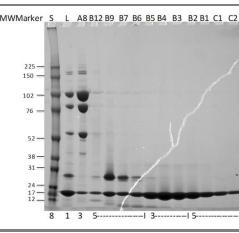
Acta Cr	vst (2011	F67	1015-1021
Acta Ci	y Ji. (1013 1021

Conditions:	Low Salt	High Salt	Detergent 1	Detergent 2
рН 6.0	50mM MES 250mM NaCl 5% Glycerol 0.5mM TCEP	50mM MES 1M NaCl 5% Glycerol 0.5mM TCEP	50mM MES 500mM NaCl 5% Glycerol 0.5mM TCEP 1% CHAPS	50mM MES 500mM NaCl 5% Glycerol 0.5mM TCEP 1% BOG
рН 7.5	50mM HEPES 250mM NaCl 5% Glycerol 0.5mM TCEP	50mM HEPES 1M NaCl 5% Glycerol 0.5mM TCEP	50mM HEPES 500mM NaCl 5% Glycerol 0.5mM TCEP 1% CHAPS	50mM HEPES 500mM NaCl 5% Glycerol 0.5mM TCEP 1% BOG
рН 8.0	50mM TRIS 250mM NaCl 5% Glycerol 0.5mM TCEP	50mM TRIS 1M NaCl 5% Glycerol 0.5mM TCEP	50mM TRIS 500mM NaCl 5% Glycerol 0.5mM TCEP 1% CHAPS	50mM TRIS 500mM NaCl 5% Glycerol 0.5mM TCEP 1% BOG

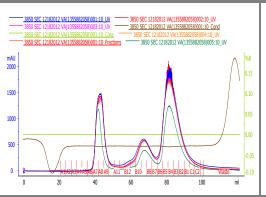


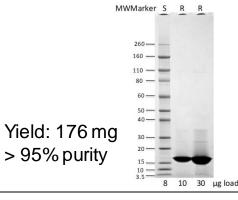

Risk-free Scale-up via parallelization:


6 x 5 mL Column Bed Volume Parallel Purification


Ni-affinity Chromatography Fusion Protein Cleavage

2nd Ni-affinity Chromatography Size Exclusion Chromatography




Situation

Increased purification from 20 mg to > 100 mg

Options

- Develop protocol for 5 x scale up
- Repeat 5-6 x of the original purifications
- Run multiple small-scale purifications in parallel Protein Maker

No need for traditional "scale-up" if you use Protein Maker

Scouting Mode

Parallel resin scouting:

Scouting a variety of resins (up to 24) for optimization of 1 protein

Case Study: Scouting Mode with a Step-Gradient Protocol

<u>Glu-PGS</u> – Antibody affinity column

A. Equilibration Buffer: 20 mM Tris pH 8, 100mM NaCl, 0.5% NP40 B. Elution Buffer: Equilibration buffer 1 plus 50 μ M EYMPTD peptide

<u>HiTrap SP Sepharose</u> – Cation exchange resin

A. Equilibration Buffer: 20 mM MES pH 6.0

B. Elution Buffer: Equilibration buffer plus 1 M NaCl

<u>HiTrap Q Sepharose</u> – Anion exchange resin

A. Equilibration Buffer: 20 mM Tris pH 8

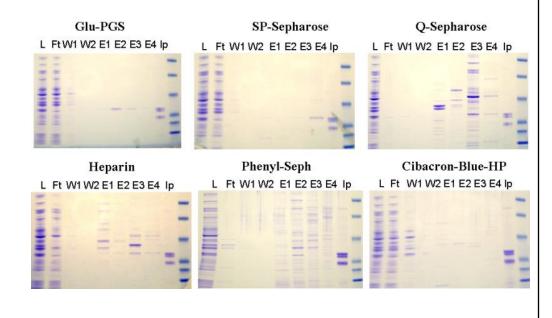
B. Elution Buffer: Equilibration buffer 1 plus 1 M NaCl

<u>Heparin Sepharose</u> – Cation exchange resin

A. Equilibration Buffer: 20 mM MES pH 6.0

B. Elution Buffer: Equilibration buffer plus 1 M NaCl

<u>HiTrap Phenyl Sepharose</u> – hydrophobic interaction

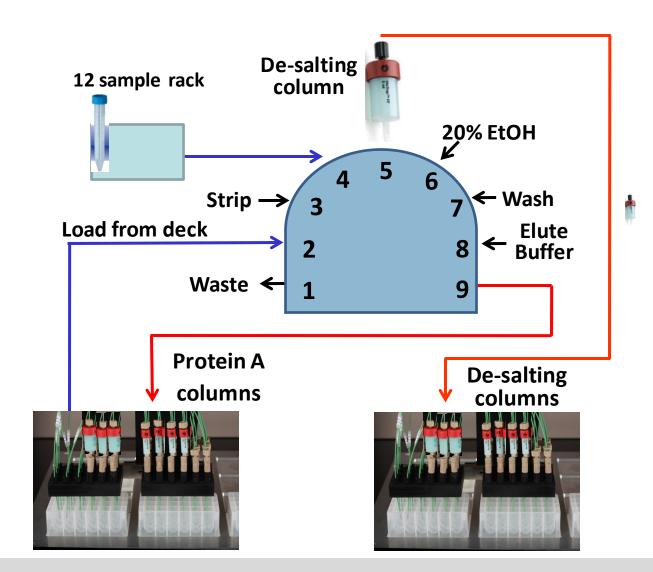

A. Equilibration Buffer: 20 mM Tris pH 8, 1M NH4SO4

B. Elution Buffer: 5 mM Tris pH 8

HiTrap Blue Sepharose - affinity column

A. Equilibration Buffer: 20 mM Tris pH 8

B. Elution Buffer: Equilibration buffer 1 plus 1 M NaCl

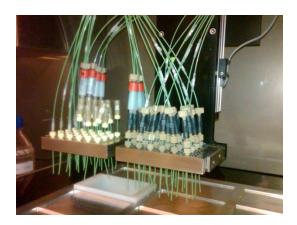


Multi-Column purification

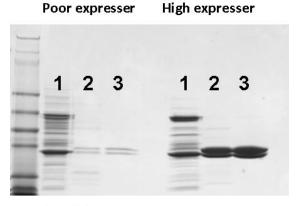
2-column Purification Schematic:

- 12 Protein A columns (1 ml)
- 12 Desalting columns (5 ml)
- Load volume: 50 ml (from sample rack)
- Run time: 2.5 h unattended operation
- Run includes column regeneration

Complex Purification Mode



2-step Purification:


Ni and Protein A 2-step Fab purification

Case Study: Need medium scale throughput of 2-step protocol

- Ni purification (GE His-Trap FF) of His-tagged Fabs alone requires additional purification, particularly for low-producing proteins, but generally results in high yield
- Ni requires buffer exchange post purification
- Protein A (GE Hi-Trap FF) is added in series to increase purity and remove requirement for buffer exchange Customized Potential Protocol:
- Syringes 1-12: Load Ni, wash, and elute with 200 mM imidazole-containing buffer
- Syinges 13-24: Load Ni eluate, wash, elute with pH 2.8 buffer with immediate post-column neutralization

Syringes 1-4 His-Trap FF (right); syringes 13-16 Hi-Trap Protein A FF (left)

- 1: cell-free extract
- 2: Ni-purified
- 3: Ni and Protein A-purified

Customer Feedback

OPPORTUNITY COSTS

Make the best use of your time, money and equipment: "The Protein Maker™ enables us to make the best use of our time and purification equipment by saving our single channel systems for complex purification experiments while the Protein Maker™ quickly works through our routine and/or high-throughput purifications."

Shrink your project timelines: "The parallelization of the Protein Maker™ enables one technician to purify more protein constructs in one day than could be done in a week by that same person. The practical result is that we can isolate the desired protein construct in four weeks faster on average for every project. That is extremely valuable!"

Enable new strategies: "Parallel purification of 12-24 protein samples enables new and otherwise impractical screening and scouting techniques that we wouldn't attempt without the Protein Maker™ and have lead to key successes."

INTANGIBLES

Pleasing your colleagues, clients and project leaders: "Just knowing that we have this capability in house gives me the confidence to tell the end users of the proteins we produce that I can get them their pure protein in two weeks...when they would expect it to take six or more."