Math 4315 - PDEs Home Work 2

1. Solve the following PDEs using a change of coordinates $(x, y) \rightarrow(r, s)$

$$
\begin{align*}
(i v) & 2 x u_{x}+3 y u_{y} & =x, & u(x, x)=1, \tag{iii}\\
(v) & (u+x) u_{x}+(u+y) u_{y} & =u, & \\
(v i) & u_{x}+2 u u_{y} & =1, & u(x, x)=0
\end{align*}
$$

2. Show that under the change of variables

$$
r=R(x+y), \quad s=s(x, y)
$$

the PDE

$$
u_{x}-u_{y}=0,
$$

becomes

$$
u_{s}=0 .
$$

For the following boundary conditions, show that it is possible to choose $R(x+y)$ and $s(x, y)$ such that the boundary in the (r, s) plane is $s=0$ and the two boundaries can be connected via $x=r$.
(i) $u(x, 0)=f(x)$
(ii) $u(x, 1)=f(x)$
(iii) $u(x, x)=f(x)$
(iv) $u\left(x, x^{2}\right)=f(x)$

Due: Sept. 21, 2018.

