

Setting the Standard for Automation™

FERTILIZERMEET 201716THDECEMBER 2017

Advanced Analysers for Syn Gas Optimisation

Presenter: Jiwan Jain

Standards Certification Education & Training Publishing Conferences & Exhibits

The International Society of Automation Delhi Section

Syngas production methods

- The most common method is via reforming of natural gas
 - Steam Methane Reforming (SMR), the most common method in use
 - Partial Oxidation (POX)
 - Autothermal Reforming (ATR)
- Gasification of various feedstocks (common in areas that do not have natural gas and have high coal reserves, such as China)
 - Coal •

Current methods of Syn Gas analysis

Typical composition picture for Syngas from Methane Reforming

- Single probe can do total measurement
- Only spectroscopic technique that can analyze H₂, N₂, O₂
- Complete baseline separation
- Spectrum has the simplicity of a chromatogram
- Use peak areas for concentrations (no complex models to maintain)

Applications – Ammonia Production*

Ammonia Plant Applications

	Stream Service	Key Measurement Parameter	Pressure* (barg)	Temperature* (°C)	Recommended Sampling Interface
1	Natural Gas Feed to Reformer	Carbon Number	26	25	OptoAST
2	Fuel Gas to Reformer Furnace	BTU	6	40	OptoAST
3	Syngas from Primary Reformer	Composition/CH4	36	800	OptoDRS
4	Syngas from Secondary Reformer/ Inlet to HT Shift Converter	Composition/CO	35	370	OptoDRS
6	HT Shift Converter Outlet/LT Shift Converter Inlet	Composition/CO	34	445	OptoDRS
6	LT Shift Converter Outlet/CO ₂ Absorber Inlet	Composition/CO2	32	220	OptoDRS
0	CO ₂ Absorber Outlet/Methanator Inlet	Composition/CO ₂	31	25	OptoAST
8	Methanator Outlet/Purified Syngas	Composition/H ₂ /N ₂	30	330	OptoAST
9	Feed to Synthesis Loop	H ₂ /N ₂ Ratio	57	400	OptoAST
10	Synthesis Loop Recycle Gas	Composition/ Impurities	220	440	OptoAST
0	Synthesis Loop Purge Gas	CH ₄ Impurities	150	25	OptoAST

Typical composition picture for Ammonia Synthesis Loop Recycle

- Single probe can do total measurement
- Only spectroscopic technique that can analyze H₂, N₂, O₂
- Complete baseline separation
- Spectrum has the simplicity of a chromatogram
- Use peak areas for concentrations (no complex models to maintain)

SpectraSensors

Vibrational

energy

Infrared

absorptio

TDLAS

Slide 8

Basics of Raman Spectroscopy

- Molecular bonds vibrate
- Different bonds have different strength, or energy
- Raman scatter involves transfer of energy to these bonds
- There are three main types of Raman scattering
 - Rayleigh No change in wavelength
 - Stokes Raman Shift to lower energy (red-shifted)
 - Anti-Stokes Shift to higher energy (blue-shifted)
- The color shift is unique to each chemical species
- The Optograf[™] Analyzer uses Stokes Raman

12/12/2017 **SpectraSensors**

Stokes

Raman

scattering

Anti

stokes

Raman

scattering

Rayleigh

scattering

What Does a Raman Spectrum Look Like?

- Raman data are plotted as Raman Shift versus Intensity
- Raman shift is the amount of energy transferred to a bond
- Rayleigh scatter has no energy transfer, so has a Raman Shift of 0.
- Stokes and Anti-stokes lines have the same Raman Shift values
- Anti-stokes peaks are less intense

NOTE: Ratio of Anti-stokes to Stokes line intensities can be used to measure temperature

What about the Raman Spectrum of a Gas Mixture?

- Simple molecular gases

 (e.g. CO, CO₂, H₂, N₂, NH₃)
 have simple Raman spectra,
 often a single peak
- Raman scatter from each type of molecule in the sample results in a different wavelength (color) of light emitted from the sample
- The Optograf analyzer measures all of these gases simultaneously, separating them 'by color'
- Simple spectra allow for the use of simple 'Methodbased' analysis of mixtures

Raman Scattering – How is Raman Data Generated?

- Laser light of a specific wavelength interacts with molecules
- A number of scattered photons are shifted in wavelength due to specific energy transfer to molecules in the sample

Raman Scattering – How is Raman Data Collected?

The Optograf Analyzer

Slide 13

12/12/2017

Optograf Base Unit (18"W x 10"D x 32"H) Fiberoptic Sensor = Sample Interface Light Signal 1 Light Signal 2 **Pipe-centric Enabler** Endress+Hauser

SpectraSensors

The complete Raman solution

Syngas Installation Example – Fieldside mounting arrangement of Raman Pro

Optograf Installation Example – Base Unit

Slide 16

12/12/2017

Optograf™ Analyzer for Syngas – Advantages

- Reliability of a spectroscopic system (no critical moving parts)
- Unique spectroscopic capability of measuring the diatomics H₂, N₂
- Transparent to moisture vapor streams do not have to be bone dry
- Speciation similar to a GC but without valves, columns, carrier gas
- Maintenance skill level required is less than that for a GC
- No consumables
- No time penalty for update times when analyzing multiple streams; all streams analyzed simultaneously
- No regular calibration required
- No chemometrics modelling or model maintenance is required

Syngas Pipe-Centric Analysis – Advantages

- More reliable analysis: sampling and conditioning at the sample tap (no sample transport and conditioning issues at the analyzer/shelter)
- Reduces infrastructure costs
 - Minimize sample conditioning working at line pressure
 - Sample transport no need heat traced tubing
 - No shelter in many parts of the world a shelter is optional
- Sampling and measuring at line temperature/pressure provides for better opportunities to return sample to the process (no flaring)
- Analysis update times are reduced (no lag time, no sample transport)
- Improved safety, as any hazardous/explosive or toxic samples are contained at the sampling point

Services

Thank you very much for your attention

