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Sets with large additive energy and symmetric sets ∗

Shkredov I.D. and Sergey Yekhanin

Annotation.

We show that for any set A in a finite Abelian group G that has at least c|A|3 solutions to

a1 + a2 = a3 + a4, ai ∈ A there exist sets A′ ⊆ A and Λ ⊆ G, Λ = {λ1, . . . , λt}, t ≪ c−1 log |A|

such that A′ is contained in
{∑t

j=1 εjλj | εj ∈ {0,−1, 1}
}

and A′ has ≫ c|A|3 solutions to

a′1 + a′2 = a′3 + a′4, a
′
i ∈ A′. We also study so–called symmetric sets or, in other words, sets of large

values of convolution.

1 Introduction

Let G be a finite Abelian group. For sets A,B ⊆ G let E(A,B) denote their additive energy

E(A,B) := |{a1 + b1 = a2 + b2 : a1, a2 ∈ A, b1, b2 ∈ B}| .

We write E(A) in place of E(A,A). For a set Λ = {λ1, . . . , λt} in G let Span (Λ) denote the set{∑t
j=1 εjλj

∣∣∣ εj ∈ {0,−1, 1}
}
. A set A satisfying E(A) ≥ c|A|3 for some constant c, is called

a set of large additive energy. Sets of large additive energy are very important in additive
combinatorics [7]. In [5] T. Sanders obtained the following result about such sets.

Theorem 1.1 Let G be a finite Abelian group, A ⊆ G be a set, and c ∈ (0, 1]. Suppose

E(A) ≥ c|A|3; then there exist sets A1 ⊆ A and Λ ⊆ G, such that |Λ| ≪ c−1 log |A|, A1 ⊆
Span (Λ) and |A1| ≥ 2−2c1/2|A|.

A slightly weaker version of the theorem above (with with c1/2+ε instead of c1/2) was ob-
tained in [10] using so–called (C, β)–connected sets. In [5] Sanders also considered a stronger
restriction on the set A, namely |A + A| ≤ c−1|A|, and obtained an improvement of theo-
rem 1.1 in this setting (see theorem 1.2 below). He also found an interesting generalization of
theorem 1.1 for the case of two different sets A and B.

Theorem 1.2 Let G be a finite Abelian group, A,B ⊆ G be two sets, and c ∈ (0, 1].
Suppose |A+B| ≤ c−1|A|; then there is a set Λ ⊆ G, |Λ| ≪ c−1 log |A| such that B ⊆ Span (Λ).

Applications of the theorem above can be found in [6]. In the current paper we obtain
an extension of Theorem 1.1 for the case of two different sets A and B. We also obtain a
refinement of the theorem in the case A = B.
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Theorem 1.3 Let G be a finite Abelian group, A,B ⊆ G be two sets, and c ∈ (0, 1].
Suppose E(A,B) ≥ c|A||B|2; then there exist sets B1 ⊆ B and Λ ⊆ G, |Λ| ≪ c−1 log |A| such
that B1 ⊆ Span (Λ) and

E(A,B1) ≥ 2−5E(A,B). (1)

In particular, |B1| ≥ 2−3c1/2|B|.
Note 1.4 The result above yields an improvement of Theorem 1.1. Indeed, suppose that

in the previous theorem we have B = A. Let A1 = B1. Then E(A,A1) ≥ 2−5E(A). Using the
Cauchy–Schwartz inequality, we get

E(A1) ≥ 2−10E(A) .

Therefore |A1| ≥ 2−4c1/3|A| and the exponent is sharp (see below).

In what follows we give three proofs of theorem 1.3. In section 2 we give the first (Fourier
analytic) proof. In section 3 we establish a result on large values of convolution of two sets
(theorem 3.1). We then give the second proof of theorem 1.3. Our proof relies on an idea of
Sanders [6]. We do not use the Fourier transform and get slightly weaker bounds. Later we
generalize theorem 3.1, and rely on that generalization to obtain the last proof of (a small
refinement of) theorem 1.3. Again, we do not use the Fourier method.

Our results concerning the structure of sets of large values of convolution are of independent
interest. Our results on sets with large additive energy are considerably weaker than the
implications of the polynomial Freiman–Ruzsa conjecture [2].

We conclude with few comments regarding the notation used in this paper. For a positive
integer n, we set [n] = {1, . . . , n}. All logarithms are base 2. Signs ≪ and ≫ are the usual
Vinogradov’s symbols. Finally, with a slight abuse of notation we use the same letter to denote
a set S ⊆ G and its characteristic function S : G → {0, 1}.

The authors are grateful to T. Sanders for useful discussions.

2 Proof of the main result

Let G be a finite Abelian group, N = |G|. It is well–known [4] that the dual group Ĝ is
isomorphic to G. Let f be a function from G to C. We denote the Fourier transform of f
by f̂ ,

f̂(ξ) =
∑

x∈G

f(x)e(−ξ · x) , (2)

where e(x) = e2πix. We rely on the following basic identities

∑

x∈G

|f(x)|2 =
1

N

∑

ξ∈Ĝ

∣∣∣f̂(ξ)
∣∣∣
2

. (3)

∑

y∈G

∣∣∣∣∣
∑

x∈G

f(x)g(y − x)

∣∣∣∣∣

2

=
1

N

∑

ξ∈Ĝ

∣∣∣f̂(ξ)
∣∣∣
2

|ĝ(ξ)|2 . (4)

If
(f ∗ g)(x) :=

∑

y∈G

f(y)g(x− y)
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then

f̂ ∗ g = f̂ ĝ and (f̂ g)(x) =
1

N
(f̂ ∗ ĝ)(x) . (5)

Using (4), we can express additive energy in terms of the Fourier transform

E(A,B) =
1

N

∑

ξ

∣∣∣Â(ξ)
∣∣∣
2 ∣∣∣B̂(ξ)

∣∣∣
2

.

Our first proof of theorem 1.3 relies on the following lemma of T. Sanders [5]. (Similar
results were obtained by J. Bourgain [1] and by the first author [10].) Recall that a set
Λ = {λ1, . . . , λt} in a finite Abelian group G is called dissociated if any identity of the form∑t

j=1 εjλj = 0, where εj ∈ {0,−1, 1} yields εj = 0, j ∈ [t].

Lemma 2.1 Let G be a finite Abelian group, Q ⊆ G be a set, l be a positive integer. There

is a set Q1 ⊆ Q such that all dissociated subsets of Q1 have size at most l and for all p ≥ 2
the following holds (

1

N

∑

ξ

∣∣∣Q̂(ξ)− Q̂1(ξ)
∣∣∣
p
)1/p

≪
√

p/l · |Q| . (6)

Proof of Theorem 1.3 Apply Lemma 2.1 to the set B with parameters p = 2 + log |A|
and l = η−1c−1 log |A|, where η ∈ (0, 1] is an appropriate constant that we fix later. Write
ε(x) = B(x) − B1(x), where B1 ⊆ B is such that all dissociated subsets of B1 have size at
most l. We have

N ·E(A,B) =
∑

ξ

∣∣∣Â(ξ)
∣∣∣
2 ∣∣∣B̂(ξ)

∣∣∣
2

=
∑

ξ

∣∣∣Â(ξ)
∣∣∣
2 ∣∣∣B̂1(ξ)

∣∣∣
2

+

+

(∑

ξ

∣∣∣Â(ξ)
∣∣∣
2

B̂1(ξ)ε̂(ξ) +
∑

ξ

∣∣∣Â(ξ)
∣∣∣
2

B̂1(ξ)ε̂(ξ)

)
+
∑

ξ

∣∣∣Â(ξ)
∣∣∣
2

|ε̂(ξ)|2 =

= σ0 + σ1 + σ2 .

By the Hölder inequality, identity (3), and our choice of parameters, we have

σ2 ≤

(∑

ξ

|ε̂(ξ)|2p

)1/p

·

(∑

ξ

|Â(ξ)|
2p

p−1

)1−1/p

≪
p

l
|B|2|A||A|1/pN ≤ 2−1c|A||B|2N . (7)

Hence either σ0 or σ1 is at least 2−2c|A||B|2N . In the first case we are done. In the second
case an application of the Cauchy–Schwartz inequality yields

2−6N2E2(A,B) ≤ N · E(A,B1) · σ2 .

Combining the inequality above with (7) we get (1). This completes the proof of Theorem 1.3.

For a set Q ⊆ G let dim(Q) denote the size of the largest dissociated subset of Q. Clearly,
for any set Q ⊆ G there is a dissociated set Λ ⊆ Q such that |Λ| = dim(Q) and Q ⊆ Span (Λ).
Thus, all theorems above can be viewed as results concerning the dimension of certain subsets
of sets with large additive energy.

By note 1.4, theorem 1.3 yields an improvement of theorem 1.1. Nevertheless the method
from [10] is surprisingly sharp. Indeed, the argument there proceeds in two steps. Firstly, one

3



finds a (C, β)–connected subset of A of size approximately c1/2|A| (see [10] for appropriate
definitions). Secondly, one proves that any connected set belongs to a span of a set of size
O(c−1 log |A|). It is not hard to verify that the bound used on the second step is sharp. The
argument used on the first step also cannot be improved. We are grateful to T. Sanders for
pointing us to the following example (see also [9], theorem 4.1).

Let G = (Z/2Z)n. For a linear subspace H of G, let supp (H) = {i ∈ [n] | ∃x ∈ H, xi 6= 0}
denote the support of H. Set A =

⋃t
i=1Hi to be a union of t linear subspaces {Hi}i∈[t]

that have the same size h ≫ t and disjoint supports. It is not hard to show (see [9] for
details) that th3 ≤ E(A) ≪ th3 = (th)3/t2 and any connected subset of A has cardinality
O(h) = O((th)/(t2)1/2).

Observe that the exponent of c in note 1.4 is the best possible. Indeed, set G = (Z/2Z)n,
and set A = H

⊔
Λ, where H is a linear subspace of size approximately c1/3|Λ|, and Λ is a

dissociated set. Now E(A) ≫ c|A|3 and for every set A1 ⊆ A such that dim(A1) ≪ c−1 log |A|,
|A1| ≪ c1/3|A| necessarily holds.

3 Large values of convolution

The following theorem bounds the dimension of symmetric sets [7], or in other words, sets of
large values of convolution.

Theorem 3.1 Let G be a finite Abelian group, A,B ⊆ G be two sets. Let σ ≥ 1 be a

positive real number. Finally, let

S = {x ∈ G : (A ∗ (−B))(x) ≥ σ} .

Then

dim(S) ≪ max{|A|, |B|} · σ−1 · log(min{|A|, |B|}) . (8)

Proof. Assume |B| ≤ |A|. Let Λ be the largest dissociated subset of S, |Λ| = dim(S). Consider
a simple bipartite graph G = (V,E) with parts A and B and colors λ ∈ Λ on edges. A vertex
a ∈ A is connected to a vertex b ∈ B by an edge colored λ ∈ Λ if and only if a− b = λ. Note
that all edges incident to a certain vertex have different colors. Also note that |E| ≥ σ|Λ|.

For an edge e ∈ E, let col(e) ∈ Λ denote its color. Let C = {e1, . . . , ek} ⊆ Ek be an
arbitrary k-long cycle in G. We have

∑

i∈[k]

(−1)icol(ei) = 0. (9)

Let ei, i ∈ [k] be an arbitrary edge of C. We say that ei is a special edge, if for all j ∈ [k]
such that i 6= j we have col(ei) 6= col(ej). We say that C is a special cycle, if one (or more) of its
edges are special. Observe that if C is a special cycle; then (9) gives a non-trivial dependence
between the elements of Λ. Thus to prove theorem 3.1 it suffices to establish the following

Lemma 3.2 Suppose in the setting above we have |Λ| > 16|A|σ−1 log |B|; then there is a

special cycle of length at most 4 log |B| in G.

Our proof of lemma 3.2 relies on the following lemma of Erdös [3][p. 74, lemma 7.1].

Lemma 3.3 Let Γ = (V,E) be a finite simple graph, d be a positive integer, and |E| >
(d− 1)|V |. Then Γ has a subgraph of minimum degree at least d.
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Proof of Lemma 3.2 We apply the Erdös’ lemma to the graph G to obtain a sub-graph
G′. Note that the degree of every vertex of G′ is at least d = 2−2σ|Λ||A|−1. By the assumption
of the lemma we have d > 4 log |B|. To find a special cycle in G′, we pick an arbitrary node
v0 ∈ G′ ∩A and start carefully constructing a binary sub-tree of G′ rooted at v0.

We assign every node in our sub-tree (other v0) a color, which is the color of the edge that
comes from its parent. We gradually extend the depth of our binary tree trying to keep the
following invariant satisfied: ”For every node v in the tree: The color of v is different from

the colors of all ancestors and siblings of ancestors of v.”
Below is the pseudo-code of our tree construction procedure. Here Tree denotes the set

of nodes that are already in the tree (initially Tree = {v0}). Further, for any v ∈ Tree,
F (v) denotes the set of colors that includes the color of v as well as the colors of all ancestors
and siblings of ancestors of v. We repeat the following procedure incrementing the value of i
starting with i = 0 :

1. For every node v at depth i Do

2. Begin

3. Pick v1 and v2 to be two children of v such that
4. col({v, v1}) 6∈ F (v) and col({v, v2}) 6∈ F (v)
5. (If no two such children exist Abort.)
6. If (v1 ∈ Tree) or (v2 ∈ Tree) Then Abort.

7. Else

8. Begin

9. T ree := Tree ∪ {v1, v2}
10. F (v1) := F (v) ∪ {col ({v, v1}) , col ({v, v2})}
11. F (v2) := F (v) ∪ {col ({v, v1}) , col ({v, v2})}
12. End

13. End

The lower bound on d that we have implies that while we construct the first 2 log |B| levels
of our tree we will always be able to find two edges emanating from a node that have suitable
colors. (In other words, no abort on line 5 of the pseudo-code will occur while i ≤ 2 log |B|.)
Now observe that all odd depth nodes in the tree we construct belong to the set B. Therefore
our tree construction algorithm will necessarily discover some cycle C and abort (at line 6 of
the pseudo-code) at some depth i ≤ 2 log |B|. We claim that C is special cycle. Indeed, let v∗
be the node of the smallest depth in C. It not hard to check that both edges incident to v∗ in
C are special. This concludes the proof of lemma and theorem 3.1.

Note 3.4 An appropriate version of Chang’s theorem (see [6] or [11]) implies a bound for
dim(S) that is weaker than (8). Specifically, it yields

dim(S) ≪ |A||B| · σ−2 · log(min{|A|, |B|}) .

Note 3.5 Inequality (8) is the best possible. To see this let G = (Z/2Z)n. Let B be
a subspace, and let A = B ∔ Λ, where Λ is a dissociated set. Now σ ∼ |B| and dim(S) ∼
|Λ|+dim(B). One can get a similar example with E(B) = o(|B|3), setting A = H∔Λ1∔Λ2 and
B = H∔Λ1, where Λ1,Λ2 are dissociated sets and H is a subspace (note that by construction
sets A and B are connected).

We now proceed to the second
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Proof of Theorem 1.3. Let

Sj = {x ∈ G : c2j−2|B| ≤ (A ∗B)(x) < c2j−1|B|} , j ∈ [s] , s ≪ log(1/c) .

By assumption E(A,B) ≥ c|A||B|2. Hence

s∑

j=1

∑

x∈Sj

(A ∗B)2(x) ≥ 2−1c|A||B|2 .

Put cj =
1

|A||B|2

∑
x∈Sj

(A ∗B)2(x). Then

2−1c ≤

s∑

j=1

cj ≤ c (10)

and by definition of Sj, we have cj ≤ c2j−1. Fix j ∈ [s] such that cj ≥ (2s)−1c > 0. We have

∑

x∈Sj

(A ∗B)(x) =
∑

x

B(x)(Sj ∗ (−A))(x) ≥ 2−j+1 cj
c
|A||B| . (11)

Let
B1 = {x ∈ B : (Sj ∗ (−A))(x) ≥ 2−jcjc

−1|A|} .

By Theorem 3.1 the following holds

dim(B1) ≪ max{|Sj|, |A|} · |A|
−12

jc

cj
· log |A| .

Since (c2j−2)2|B|2|Sj| ≤ cj |A||B|2 it follows that |Sj| ≤ 16 · 2−2jcjc
−2|A|. If max{|Sj|, |A|} =

|Sj|; then
dim(B1) ≪ c−12−j log |A| ≪ c−1 log |A| .

Now consider the case max{|Sj|, |A|} = |A|. We have

dim(B1) ≪ 2js log |A| ≪ c−1 log(c−1) log |A| .

Since ∑

x∈Sj

(A ∗B1)(x) ≥ 2−jcjc
−1|A||B|

it follows that ∑

x∈Sj

(A ∗B1)(x)(A ∗B)(x) ≥ 2−2cj|A||B|2 .

Here the definition of Sj was used. By the Cauchy–Schwartz inequality and the definition of
cj , we obtain

E(A,B1) ≥ 2−4s−1E(A,B) ≫ log−1(c−1) ·E(A,B) .

This completes the proof.

We now generalize theorem 3.1 to the case of more than two sets.

Theorem 3.6 Let G be a finite Abelian group, k ≥ 2 be a positive integer, A1, . . . , Ak ⊆ G,

|A1| ≤ |A2| ≤ · · · ≤ |Ak| be sets, and σ ≥ 1 be a real number. Let

S = {x ∈ G : (A1 ∗ · · · ∗ Ak−2 ∗ Ak ∗ (−Ak−1))(x) ≥ σ} .
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Then

dim(S) ≪ |A1| . . . |Ak−2||Ak| · σ
−1 · log |Ak−1| . (12)

Proof. Let Λ ⊆ S be the maximal dissociated subset. Consider a simple bipartite graph
G = (V,E) with parts A := A1 × . . .× Ak−2 × Ak and B := Ak−1 and colors λ ∈ Λ on edges.
A vertex (a1, . . . , ak−2, ak) ∈ A is connected to a vertex b ∈ B by an edge colored λ ∈ Λ if and
only if a1 + . . . ak−2 + ak − b = λ. Note that |E| ≥ σ|Λ|. Also note that all edges incident to
a certain vertex a ∈ A have different colors. Finally observe that for any vertex b ∈ B, there
exist edges of at least deg(b)/(|A1| . . . |Ak−2|) different colors that are incident to b. The latter
observation follows from the fact that

max
λ∈Λ, b∈B

(A1 ∗ · · · ∗ Ak−2 ∗ Ak)(λ+ b) ≤ |A1| . . . |Ak−2| . (13)

To proceed we need in a simple generalization of the Erdös lemma.

Lemma 3.7 Let Γ = (V,E) be a finite simple bipartite graph with parts V1 and V2. Suppose
d1, d2 are positive integers such that |E| > (d1 − 1)|V1| + (d2 − 1)|V2|; then Γ has a bipartite

subgraph with parts V ′
1 ⊆ V1, V

′
2 ⊆ V2 such that

min
v′
1
∈V ′

1

deg(v′1) ≥ d1 , and min
v′
2
∈V ′

2

deg(v′2) ≥ d2 .

Proof. Take any minimal bipartite subgraph Γ′ = (V ′, E ′) of Γ such that |E(Γ′)| > (d1 −
1)|V1(Γ

′)| + (d2 − 1)|V2(Γ
′)|, where V1(Γ

′) ⊆ V1, V2(Γ
′) ⊆ V2 are the parts of Γ′. It is easy to

see that Γ′ has the required properties. This completes the proof of the lemma.

To prove theorem 3.6 we apply the generalized Erdös’ lemma to G, and obtain a bi-
partite subgraph G′ with parts A′ ⊆ A, B′ ⊆ B such that for all a′ ∈ A′ and b′ ∈ B′,
deg(a′) ≥ 2−2σ|Λ|/(|A1| . . . |Ak−2||Ak|) and deg(b′) ≥ 2−2σ|Λ|/|Ak−1|. Next we apply the (tree
construction) argument from the proof of theorem 3.1 to the graph G′. It is not hard to see
that argument yields a non-trivial dependency between the elements of Λ provided

σ|Λ|

|A1| . . . |Ak−2||Ak|
≫ log |Ak−1|

and
σ|Λ|

|Ak−1||A1| . . . |Ak−2|
≫ log |Ak−1|

This concludes the proof.

We now give our third proof of theorem 1.3. In fact we prove a slightly stronger result (see
the inequality (14) below).

Proof of Theorem 1.3. Without a loss of generality assume |A| ≥ |B|. By assumption
E(A,B) ≥ c|A||B|2. It follows that

∑

x

(B ∗ A ∗ (−A))(x)B1(x) ≥ 2−1c|A||B|2 , (14)

where B1 = {x ∈ B : (B ∗ A ∗ (−A))(x) ≥ 2−1c|A||B|}. Theorem 3.6 yields dim(B1) ≪
c−1 log |A|. Combining the inequality (14) and the Cauchy–Schwartz inequality, we get
E(A,B1) ≫ 2−2c|A||B|2 and the theorem follows.
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If in theorem 3.6 some extra information on the additive energy of the sets Aj is available;
then the bound (12) can be refined for k ≥ 3 (see [11]). The example of Note 3.5 shows that
the corresponding estimates in [11] are sharp.

Note 3.8 Let k be a positive integer and Λ = {λ1, . . . , λt} ⊆ G be a set. We say that Λ
belongs to the family Λ(k) if any identity of the form

t∑

j=1

εjλj = 0 , εj ∈ {0,±1} ,
t∑

j=1

|εj| ≤ k ,

yields εj = 0, j ∈ [t]. For E ⊆ G let dimk(E) denote the cardinality of the largest subset
of E that belongs to the family Λ(k). We remark that the results above will still hold if one
replaces dim(S) with dimk(S), say, for k = O(log |G|). (For Theorem 1.3 see [8]).
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