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CAP 5993/CAP 4993

Game Theory

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Announcements

• HW2 out today – due 2/21
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WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10 …

11

12

20

21

22
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Gambit functionality and approaches

• http://gambit.sourceforge.net/gambit13/contents.html
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Chicken
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Maxmin security

L R

T 2, 1 2, -20

M 3, 0 -10, 1

B -100, 2 3, 3
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Maxmin and minmax strategies for 

two-player general-sum games

• Let G be an arbitrary two-player game 

G = ({1,2}, A1 x A2, (u1, u2)).

• Define the zero-sum game in which P1’s utility is 

unchanged and P2’s utility is the negative of P1’s.

G’ = ({1,2}, A1 x A2, (u1, -u1)).

• By Minmax Theorem every strategy for player 1 which 

is part of a Nash equilibrium strategy profile for G’ is a 

maxmin strategy for player 1 in G’.

– P1’s maxmin strategy is independent of P2’s utility function.

– So P1’s maxmin strategy is the same in G and G’.

• Same idea to compute minmax strategy for P2.



9

Identifying dominated strategies

• Works because we do not need to check every mixed-strategy 

profile of the other players.

• If ui(si, a-i) < ui(ai, a-i), for all a-i then there cannot exist any 

mixed-strategy profile s-i for which ui(si, s-i) >= ui(ai, s-i), 

because of linearity of expectation. 

• Can the algorithm be modified for weak dominance?
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Domination by a mixed strategy
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• Strict domination

Maximize ….

Subject to Σj in Ai pj ui(aj, a-i) > ui(si, a-i) for all a-i in A-i

Σj in Ai pj = 1

pj >= 0 for all j in Ai

• Valid?
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Domination by a mixed strategy

• Strict domination

Minimize  Σj in Ai pj

Subject to Σj in Ai pj ui(aj, a-i) >= ui(si, a-i) for all a-i in A-i

pj >= 0 for all j in Ai

• Weak domination

Maximize Σa-i in A-i [(Σj in Ai pj * ui(aj, a-i)) - ui(si, a-i) 

Subject to Σj in Ai pj ui(aj, a-i) >= ui(si, a-i) for all a-i in A-i

pj >= 0 for all j in Ai

Σj in Ai pj = 1
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• It requires only polynomial time to iteratively remove 

dominated strategies until the game has been 

maximally reduced (i.e., no strategy is dominated for 

any player). A single step of this process consists of 

checking whether every pure strategy of every player is 

dominated by any other mixed strategy which requires 

us to solve at worst Σi in N |Ai| linear programs. Each 

step removes one pure strategy for each player, so there 

can be at most Σi in N (|Ai| - 1) steps.
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1. (Strategy elimination) Does there exist some elimination path 

under which the strategy si is eliminated?

2. (Reduction identity) Given action subsets A’i subset of Ai, for 

each player i, does there exist a maximally reduced game 

where each player i has the actions A’i?

3. (Reduction Size) Given constants ki for each player i, does 

there exist a maximally reduced game where each player i has 

exactly ki actions? 

• Theorem: For iterated strict dominance, the strategy elimination, 

reduction identity, uniqueness and reduction size problems are 

in P. For iterated weak dominance, these problems are NP-

complete.
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Computing Nash equilibria of two-

player zero-sum games

• Consider the game G = ({1,2}, A1 x A2, (u1, u2)).

• Let U*i be the expected utility for player i in equilibrium (the 

value of the game); since the game is zero-sum, U*1 = - U*2.

• Recall that the Minmax Theorem tells us that U*1 holds constant 

in all equilibria and that it is the same as the value that player 1 

achieves under a minmax strategy by player 2.

• Using this result, we can formulate the problem of computing a 

Nash equilibrium as the following optimization:

Minimize U*1

Subject to Σk in A2 u1,(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

• Note that all of the utility terms u1(*) are constants while the 

mixed strategy terms sk
2 and U*1 are variables. 



17

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

• First constraint states that for every pure strategy j of player 1, his expected 

utility for playing any action j in A1 given player 2’s mixed strategy s1 is at 

most U*1. Those pure strategies for which the expected utility is exactly U*1

will be in player 1’s best response set, while those pure strategies leading to 

lower expected utility will not.

• As mentioned earlier, U*1 is a variable; we are selecting player 2’s mixed 

strategy in order to minimize U*1 subject to the first constraint. Thus, player 

2 plays the mixed strategy that minimizes the utility player 1 can gain by 

playing his best response.  
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

• The final two constraints ensure that the variables sk
2 are 

consistent with their interpretation as probabilities. Thus, we 

ensure that they sum to 1 and are nonnegative. 
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• v_ = 1 and v^ = 1. Player 1 can guarantee that he will 

get a payoff of a least 1 (using the maxmin strategy M), 

while player 2 can guarantee that he will pay at most 1 

(by way of minmax strategy R).

• So the value v=1.

L C R

T 3, -3 -5, 5 -2, 2

M 1, -1 4, -4 1, -1

B 6, -6 -3, 3 -5, 5
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

Minimize U*1

Subject to  3 * s1
2 + (-5) * s2

2 + (-2) * s3
2 <= U*1

1 * s1
2 + 4 * s2

2 + 1 * s3
2 <= U*1

6 * s1
2 + (-3) * s2

2 + (-5) * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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Linear programs

• A linear program is defined by:

– a set of real-valued variables

– a linear objective function (i.e., a weighted sum of the 

variables)

– a set of linear constraints (i.e., the requirement that a 

weighted sum of the variables must be less than or equal to 

some constant).

• Let the set of variables be {x1, x2, …, xn}, which each 

xi in R. The objective function of a linear program, 

given a set of constraints w1, w2, …, wn, is

Maximize Σn
i=1 wixi
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• Linear programs can also express minimization 

problems: these are just maximization problems with 

all weights in the objective function negated.

• Constraints express the requirement that a weighted 

sum of the variables must be greater or equal to some 

constant. Specifically, given a set of constants a1j,…, 

anj, and a constant bj, a constraint is an expression  

Σn
i=1 aijxi <= bj



23

Σn
i=1 aijxi <= bj

• By negating all constraints we can express greater-

than-or-equal constraints.

• By providing both less-than-or-equal and greater-than-

or-equal constraints with the same constants, we can 

express equality constraints.

• By setting some constants to zero, we can express 

constraints that do not involve all of the variables.

• We cannot always write strict inequality constraints, 

though sometimes such constraints can be enforced 

through changes to the objective function.
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

Minimize U*1

Subject to  3 * s1
2 + (-5) * s2

2 + (-2) * s3
2 <= U*1

1 * s1
2 + 4 * s2

2 + 1 * s3
2 <= U*1

6 * s1
2 + (-3) * s2

2 + (-5) * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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• We can solve the dual linear program to obtain a Nash 

equilibrium strategy for player 1.

Maximize U*1

Subject to Σj in A1 u1(a
j
1, a

k
2) * sj

1 >= U*1 for all k in A2

Σj in A1 s
j
1 = 1

sj
1 >= 0 for all j in A1



26

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

Minimize U*1

Subject to  3 * s1
2 + (-5) * s2

2 + (-2) * s3
2 <= U*1

1 * s1
2 + 4 * s2

2 + 1 * s3
2 <= U*1

6 * s1
2 + (-3) * s2

2 + (-5) * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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Maximize U*1

Subject to Σj in A1 u1(a
j
1, a

k
2) * sj

1 >= U*1 for all k in A2

Σj in A1 s
j
1 = 1

sj
1 >= 0 for all j in A1

Maximize U*1

Subject to a * s1
2 + b * s2

2 + c * s3
2 <= U*1

d * s1
2 + e * s2

2 + f * s3
2 <= U*1

g * s1
2 + h * s2

2 + j * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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• Duality theorem: If both a LP and its dual are 

feasible, then both have optimal vectors and the 

values of the two programs are the same.
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Why does this matter?

• Linear programs can be solved “efficiently.”

– Ellipsoid method runs in polynomial time.

– Simplex algorithm runs in worst-case exponential 

time, but runs efficiently in practice.
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• Note the following equivalent formulation of the original LP:

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  + rj
1 =  U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

rj
1 >= 0 for all j in A1

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2
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Two-player general sum games
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• Minmax Theorem does not apply, so we cannot 

formulate as a linear program. We can instead 

formulate as a Linear Complemetarity Problem (LCP).

Minimize ….. (No objective!) 

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  + rj
1 =  U*1 for all j in A1

Σj in A1 u2(a
j
1, a

k
2) * sk

2  + rk
2 =  U*2 for all k in A2

Σj in A1 s
j
1 = 1, Σk in A2 s

k
2  = 1

sj
1, s

k
2  >= 0 for all j in A1, k in A2

rj
1, r

k
2  >= 0 for all j in A1, k in A2

rj
1 * sj

1 = 0, rj
2 * sj

2 = 0 for all j in A1, k in A2
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• B. von Stengel (2002), Computing equilibria for two-

person games. Chapter 45, Handbook of Game Theory, 

Vol. 3, eds. R. J. Aumann and S. Hart, North-Holland, 

Amsterdam, 1723-1759. 
– http://www.maths.lse.ac.uk/personal/stengel/TEXTE/nashsurvey.pdf

• Longer earlier version (with more details on equivalent 

definitions of degeneracy, among other aspects): 

B. von Stengel (1996), Computing Equilibria for Two-

Person Games. Technical Report 253, Department of 

Computer Science, ETH Zürich. 

http://www.maths.lse.ac.uk/personal/stengel/TEXTE/nashsurvey.pdf
http://www.maths.lse.ac.uk/personal/stengel/TEXTE/tr-new.pdf
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• Define E = [1,…,1], e = 1, F = [1,…,1], f = 1

• Given a fixed y in Y, a best response of player 1 to y is 

a vector x in X that maximizes the expression xT(Ay). 

That is, x is a solution to the LP:

Maximize xT(Ay) 

Subject to Ex = e, x >= 0

• The dual of this LP with variables u:

Minimize eTu

Subject to ETu >= Ay
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• So a minmax strategy y of player 2 (minimizing the maximum 

amount she has to pay) is a solution to the LP

Minimize eTu

Subject to Fy = f

ETu – Ay >= 0

y >= 0

• Dual LP:

Maximize fTv

Subject to Ex = e

FTv – BTx <= 0

x >= 0
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• Theorem: The game (A,B) has the Nash 

equilibrium (x,y) if and only if for suitable u,v

Ex = e

Fy = f

ETu – Ay >= 0

FTv – BTx >= 0

x, y >= 0
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• This is called a linear complementarity program. 

• Best algorithm is Lemke Howson Algorithm.

– Does NOT run in polynomial time. Worst-case exponential.

• Computing a Nash equilibrium in these games is 

PPAD-complete, unlike for two-player zero-sum 

games where it can be done in polynomial time.
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• Assume disjoint strategy sets M and N for both players. Any 

mixed strategy x in X and y in Y is labeled with certain elements 

if M union N. These labels denote the unplayed pure strategies 

of the player and the pure best responses of his or her opponent. 

For i in M and j in N, let

– X(i) = {x in X| xi = 0},

– X(j) = {x in X| bjx >= bkx for all k in N}

– Y(i) = {y in Y | aiy >= aky for all k in M}

– Y(j) = {y in Y | yj = 0}

• Then x has label k if x in X(k) (i.e., x is a best response to 

strategy k for player 2), and y has label k if y in Y(k), for k in M 

Union N. 
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• Theorem: The game (A,B) has the Nash 

equilibrium (x,y) if and only if for suitable u,v

Ex = e

Fy = f

ETu – Ay >= 0

FTv – BTx >= 0

x, y >= 0
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• Complementarity condition: requires that whenever an action is 

played by a given player with positive probability (i.e., 

whenever an action is in the support of a given player’s mixed 

strategy), then the corresponding slack variable must be zero. 

Under this requirement, each slack variable can be viewed as the 

player’s incentive to deviate from the corresponding action. 

Thus, the complementarity condition captures the fact that, in 

equilibrium, all strategies that are played with positive 

probability must yield the same expected payoff, while all 

strategies that lead to lower expected payoffs are not played. 
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• Clearly, the best-response regions X(j) for j in N are polytopes 

whose union is X. Similarly, Y is the union of the sets Y(i) for i 

in M. Then a Nash equilibrium is a completely labeled pair (x,y) 

since then by Theorem 2.1, any pure strategy k of a player is 

either a best response or played with probability zero, so it 

appears as a label of x or y.

• Theorem: A mixed strategy pair (x,y) in X x Y is a Nash 

equilibrium of (A,B) if and only if for all k in M Union N either 

x in X(k) or y in Y(k) (or both).
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• For the following game, the labels of X and Y are:

L R

T 0, 1 6, 0

M 2, 0 5, 2

B 3, 4 3, 3
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• The equilibria are:

– (x1,y1) = ((0,0,1),(1,0)), where x1 has the labels 1, 2, 

4 (and y1 has the remaining labels 3 and 5),

– (x2,y2) = ((0,1/3,2/3),(2/3,1/3)), with labels 1, 4, 5 

for x2

– (x3,y3) = ((2/3,1/3,0),(1/3,2/3)), with labels 3, 4, 5 

for x3
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• This “inspection” is effective at finding equilibria of games of 

size up to 3x3. It works by inspecting any point x for P1 with m 

labels and checking if there is a point y having the remaining n 

labels. A game is “nondegenerate” if any x has at most m labels 

and every y has at most n labels.

• “Most” games are nondegenerate, since having an additional 

label imposes an additional equation that will usually reduce the 

dimension of the set of points having these labels by one. Since 

the complete set X has dimension m-1, we expect no points to 

have more than m labels. This will fail only in exceptional 

cirtcumstances if there is a special relationship between the 

elements of A and B.
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n-player general-sum games

• For n-player games with n >= 3, the problem of computing an 

NE can no longer be expressed as an LCP. While it can be 

expressed as a nonlinear complementarity problem, such 

problems are often hopelessly impractical to solve exactly. 

• Can solve sequence of LCPs (generalization of Newton’s 

method). 

– Not globally convergent

• Formulate as constrained optimization (minimization of a 

function), but also not globally convergent (e.g., hill climbing, 

simulated annealing can get stuck in local optimum)

• Simplicial subdivision algorithm (Scarf)

– Divide space into small regions and search separately over the regions.

• Homotopy method (Govindan and Wilson)

– n-player extension of Lemke-Howson Algorithm
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Next class

• Go over HW1.

• Lemke Howson algorithm details.

• Algorithms for extensive-form games.

• Game Theory Explorer software package.
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Assignment

• HW2 out today, due 2/21.

• Reading for next class: Gambit software 

http://gambit.sourceforge.net/gambit13/contents.html


