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Abstract

In many settings people must give numerical scores to entities from a small discrete set. For instance,
rating physical attractiveness from 1-5 on dating sites, or papers from 1-10 for conference reviewing.
We study the problem of understanding when using a different number of options is optimal. For con-
creteness we assume the true underlying scores are integers from 1-100. We consider the case when
scores are uniform random and Gaussian. We study when using 2, 3, 4, 5, and 10 options is optimal in
these models. One may expect that using more options would always improve performance in this model,
but we show that this is not necessarily the case, and that using fewer choices—even just two—can sur-
prisingly be optimal in certain situations. While in theory for this setting it would be optimal to use all
100 options, in practice this is prohibitive, and it is preferable to utilize a smaller number of options due
to humans’ limited computational resources. Our results suggest that using a smaller number of options
than is typical could be optimal in certain situations. This would have many potential applications, as
settings requiring entities to be ranked by humans are ubiquitous.

1 Introduction

Humans rate items or entities in many important settings. For example, users of dating websites and mobile
applications rate other users’ physical attractiveness, teachers rate scholarly work of students, and reviewers
rate the quality of academic conference submissions. In these settings, the users assign a numerical (integral)
score to each item from a small discrete set. However, the number of options in this set can vary significantly
between applications, and even within different instantiations of the same application. For instance, for
rating attractiveness, three popular sites all use a different number of options. On “Hot or Not,” users rate
the attractiveness of photographs submitted voluntarily by other users on a scale of 1-10. (Figure 1!) These
scores are aggregated and the average is assigned as the overall “score” for a photograph. On the dating
website OkCupid, users rate other users on a scale of 1-5 (if a user rates another user 4 or 5 then the rated
user receives a notification). > (Figure 1 *). And on the mobile application Tinder users “swipe right” (green
heart) or “swipe left” (red X) to express interest in other users (two users are allowed to message each other
if they mutually swipe right), which is essentially equivalent to using a binary {1,2} scale. (Figure 2%).
Education is another important application area requiring human ratings. For the 2016 International Joint
Conference on Artificial Intelligence, reviewers assigned a “Summary Rating” score from -5-5 (equivalent
to 1-10) for each submitted paper. (Figure 2).%). The papers are then discussed and scores aggregated to
produce an acceptance or rejection decision based largely on the average.

'nttp://blog.mrmeyer.com/2007/are-you-hot—or-not/

2The likelihood of receiving an initial message is actually much more highly correlated with the variance—and particularly the
number of “5” ratings—than with the average rating [7].

*http://blog.okcupid.com/index.php/the-mathematics-of-beauty/

*nttps://tctechcrunch2011.files.wordpress.com/2015/11/tinder-two. jpg

‘https://easychair.org/conferences/?conf=ijcailé
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Figure 1: Hot or Not users rate attractiveness 1-10; OkCupid users rate attractiveness 1-5.
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Figure 2: Tinder users rate attractiveness 1-2; IJCAI reviewers rate papers -5-5.

Despite the importance and ubiquity of the problem, there has been little fundamental research done
on the problem of determining the optimal number of options to allow in such settings. We study a model

in which users have a underlying integral ground truth score for each item in {1,...,n} and are required
to submit an integral rating in {1,...,k}, for & << n. (For ease of presentation we use the equivalent
formulation {0,...,n — 1}, {0,...,k — 1}.) We use two generative models for the ground truth scores: a

uniform random model in which the fraction of scores for each value from 0 to n — 1 is chosen uniformly at
random (by choosing a random value for each and then normalizing), and a model where scores are chosen
according to a Gaussian distribution with a given mean and variance. We then compute a “compressed”
score distribution by mapping each full score s from {0,...,n — 1} to {0, ...,k — 1} by applying
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We then compute the average “compressed” score aj, and compute its error e according to
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where a is the ground truth average. The goal is to pick argminge;. While there are many possible genera-
tive models and cost functions, these seemed like the most natural.

We derive a closed-form expression for e, that depends on only a small number (k) of parameters of the
underlying distribution for an arbitrary distribution.® This allows us to exactly characterize the performance
of using each number of choices. In computational simulations we repeatedly compute e¢; and compare the
average values. We focus on n = 100 and k& = 2, 3,4, 5, 10, which we believe are the most natural and
interesting choices for initial study.

One could argue that this model is somewhat “trivial” in the sense that it would be optimal to set k = n
to permit all the possible scores, as this would result in the “compressed” scores agreeing exactly with the
full scores. However, there are several reasons that would lead us to prefer to select k& << n in practice (as
all of the examples previously described have done), thus making this “thought experiment” worthwhile.
It is much easier for a human to assign a score from a small set than from a large set, particularly when
rating many items under time constraints. We could have included an additional term into the cost function
e, that explicitly penalizes larger values of k, which would have a significant effect on the optimal value
of k (providing a favoritism for smaller values). However the selection of this function would be somewhat
arbitrary and would make the model more complex, and we leave this for future study. Given that we do not
include such a penalty term, one may expect that increasing k will always decrease ey, in our setting. While
the simulations show a clear negative relationship, we show that smaller values of k actually lead to smaller
ey, surprisingly often. These smaller values would receive further preference with a penalty term.

The most closely related theoretical work studies the impact of using finely grained numerical grades
(100, 99, 98) vs. coarse letter grades (A, B, C) [5]. They conclude that if students care primarily about their
rank relative to the other students, they are often best motivated to work by assigning them coarse categories
than exact numerical scores. In a setting of “disparate” student abilities they show that the optimal absolute
grading scheme is always coarse. Their model is game-theoretic; each player (student) selects an effort
level, seeking to optimize a utility function that depends on both the relative score and effort level. Their
setting is quite different from ours in many ways. For one, they study a setting where it is assumed that the
underlying “ground truth” score is known, yet may be disguised for strategic reasons. In our setting the goal
is to approximate the ground truth score as closely as possible.

While we are not aware of prior theoretical study of our problem, there have been experimental studies
on the optimal number of options on a “Likert scale” [10, 12, 18, 4, 6]. The general conclusion is that “the
optimal number of scale categories is content specific and a function of the conditions of measurement.” [8]
There has been study of whether including a “mid-point” option (i.e., the middle choice from an odd number)
is beneficial. One experiment demonstrated that the use of the mid-point category decreases as the number
of choices increases: 20% of respondents choose the mid-point for 3 and 5 options while only 7% did for
7,9,...,19 [13]. They conclude that it is preferable to either not include a mid-point at all or use a large
number of options. Subsequent experiments demonstrated that eliminating a mid-point can reduce social
desirability bias which results from respondents’ desires to please the interviewer or not give a perceived
socially unacceptable answer [8]. There has also been significant research on questionnaire design and the
concept of “feeling thermometers,” particularly from the fields of psychology and sociology [17, 14, 9, 3,
11, 15]. One study concludes: “in the measurement of satisfaction with various domains of life, 11-point
scales clearly are more reliable than comparable 7-point scales” [1]. Another study shows that “people are
more likely to purchase gourmet jams or chocolates or to undertake optional class essay assignments when
offered a limited array of 6 choices rather than a more extensive array of 24 or 30 choices” [16].

SFor theoretical simplicity we theoretically study a continuous version where scores are chosen according to a distribution over
(0,n) (though the simulations are for the discrete version) and the compressed scores are over {0, ...,k — 1}. In this setting we
use a normalization factor of 7 instead of ”T’l for the ey, term. Continuous approximations for large discrete spaces have been
studied in other settings; for instance, they have led to simplified analysis and insight in poker games with continuous distributions
of private information [2].



2 Theoretical characterization

Suppose scores are given by continuous pdf f (with cdf F') on (0, 100), and we wish to compress them to
two options, {0, 1}. Scores below 50 are mapped to 0, and above 50 to 1. The average of the full distribution

isay = FE[X]| = f;ﬂ% x f(x)dx. The average of the compressed version is

50 100
CLQZ/ 00f(x)dm+/ 1f(x)dx =1 — F(50).

=50

So ey = |ay — 100(1 — F(50))| = |E[X] — 100 + 100F'(50)|. For three options,
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Equation 3 allows us to characterize the relative performance of choices of & for a given distribution f.
For each k it requires only knowing k statistics of f (the k¥ — 1 values of F’ (%) plus E[X]). In practice
these could likely be closely approximated from historical data for small k values.

As an example we see that es < ez iff

100 200
|E[X] — 100 + 100F(50)| < ‘E[X] — 100 + 50F <3> + 50F <3> ‘

Consider a full distribution that has half its mass right around 30 and half its mass right around 60
(Figure 3). Then ay = E[X] = 0.5-30 4 0.5 - 60 = 45. If we use & = 2, then the mass at 30 will be



mapped down to O (since 30 < 50) and the mass at 60 will be mapped up to 1 (since 60 > 50) (Figure 4).
Soaz = 0.5-0+0.5-1 = 0.5. Using normalization of 7 = 100, e2 = |45 — 100(0.5)| = |45 — 50| = 5.

If we use & = 3, then the mass at 30 will also be mapped down to 0 (since 0 < 192): but the mass

at 60 will be mapped to 1 (not the maximum possible value of 2 in this case), since % < 60 < 23—0

(Figure 4). So again a3 = 0.5-0+ 0.5-1 = 0.5, but now using normalization of 7 = 50 we have
es = |45 — 50(0.5)| = |45 — 25| = 20. So, surprisingly, in this example allowing more ranking choices
actually significantly increases error.
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Figure 3: Example distribution for which compressing with £ = 2 produces lower error than k£ = 3.
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Figure 4: Compressed distributions using k = 2 and k = 3.

If we happened to be in the case where both a2 < ay and az < ay, then we could remove the absolute

200
values and reduce the expression to see that ey < e iff ffi 100 f(z)dx < [, 3., f(x)dz. One could perform
more comprehensive analysis considering all cases to obtain better characterization and intuition for the
optimal value of k for distributions with different properties.

3 Rounding compression

An alternative model we could have considered is to use rounding to produce the compressed scores as
opposed to using the floor function from Equation 1. For instance, for the case n = 100, k = 2, instead of
dividing s by 50 and taking the floor, we could instead partition the points according to whether they are
closest to t; = 25 or to = 75. In the example above, the mass at 30 would be mapped to ¢; and the mass at
60 would be mapped to t2. This would produce a compressed average score of ay = % <25 + % <75 = 50.



No normalization would be necessary, and this would produce error of ez = |af — as| = |45 — 50| = 5,
as the floor approach did as well. Similarly, for k& = 3 the region midpoints will be ¢; = 100 , @2 = 50,

q3 = %. The mass at 30 will be mapped to ¢; = 1§0 and the mass at 60 will be mapped to g2 = 50.
This produces a compressed average score of az = 5 - 120 + 2 - 50 = 130‘ This produces an error of
e3 = lay —az| = ‘45 — %‘ = %5 = 11.67. Although the error for k& = 3 is smaller than for the floor

case, it is still significantly larger than k£ = 2’s, and using two options still outperforms using three for the
example in this new model.

In general, this approach would create £ “midpoints” {mf} mf = 71(2227,;1) For k = 2 we have
100
ay = / 25+/ 75 =75 — 50F(50)
r= xr=
e = lag— (75— 50F 50))| = |E[X] — 75 + 50F(50)]

One might wonder whether the floor approach would ever outperform the rounding approach (in the
example above the rounding approach produced lower error k¥ = 3 and the same error for £k = 2). As a
simple example to see that it can, consider the distribution with all mass on 0. The floor approach would
produce ap = 0 giving an error of 0, while the rounding approach would produce a2 = 25 giving an error
of 25. Thus, the superiority of the approach is dependent on the distribution. We explore this further in the
experiments.

For three options,
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For general n and k, analysis as above yields

ol @k—l

5Ly mhare 2 (5)

ap = Z . miy f(x)de =
2k —1 nk ni
)

>
g -1 e () ©

Like for the floor model e, requires only knowing k statistics of f. The rounding model has an advantage
over the floor model that there is no need to convert scores between different scales and perform normaliza-
tion. One drawback is that it requires knowing n (the expression for mf is dependent on n), while the floor
model does not. In our experiments we assume n = 100, but in practice it may not be clear what the agents’
ground truth granularity is and may be easier to just deal with scores from 1 to k. Furthermore, it may seem
unnatural to essentially ask people to rate items as “1—(6)0, 50, %” rather than “1, 2, 3” (though the conversion
between the score and mk could be done behind the scenes essentially circumventing the potential practical
complication). One can generahze both the floor and rounding model by using a score of s(n, k); for the

i’th region. For the floor setting we set s(n, k); = i, and for the rounding setting s(n, k); = m¥ = (221;1) .
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4 Computational simulations

The above analysis leads to the immediate question of whether the example for which es < es was a fluke
or whether using fewer choices can actually reduce error under reasonable assumptions on the generative
model. We study this question using simulations with what we believe are the two most natural models.
While we have studied the continuous setting where the full set of options is continuous over (0, n) and the
compressed set is discrete {0, ...,k — 1}, we now consider the perhaps more realistic setting where the full
set is the discrete set {0,...,n — 1} and the compressed set is the same (though it should be noted that the
two settings are likely quite similar qualitatively).

The first generative model we consider is a uniform model in which the values of the pmf for each of
the n possible values are chosen independently and uniformly at random. The second is a Gaussian model
in which the values are generated according to a normal distribution with specified mean g and standard
deviation o (values below 0 are set to 0 and above n — 1 to n — 1). This model also takes as a parameter a
number of samples s to use for generating the scores.

For our simulations we used n = 100, and considered k£ = 2, 3,4, 5, 10, which are popular and natural
values. For the Gaussian model we used s = 1000, ¢ = 50, 0 = %. For each set of simulations we
computed the errors for all considered values of k for m = 100,000 “items” (each corresponding to a
different distribution generated according to the specified model). The main quantities we are interested in
computing are the number of times that each value of k£ produces the lowest error over the m items, and the
average value of the errors over all items for each k value.

In the first set of experiments, we compared performance between using k = 2, 3,4, 5, 10 to see for how
many of the trials each value of k£ produced the minimal error. The results are in Table 1. Not surprisingly,
we see that the number of victories increases monotonically with the value of %k, while the average error
decreased monotonically (recall that we would have zero error if we set kK = 100). However, what is perhaps
surprising is that using a smaller number of compressed scores produced the optimal error in a far from
negligible number of the trials. For the uniform model, using 10 scores minimized error only around 53% of
the time, while using 5 scores minimized error 17% of the time, and even using 2 scores minimized it 5.6%
of the time. The results were similar for the Gaussian model, though a bit more in favor of larger values of
k, which is what we would expect because the Gaussian model is less likely to generate “fluke” distributions
that could favor the smaller values.

2 3 4 5 10
Uniform # victories |5564 (9265 |14870|16974|53327

Uniform average error | 1.32 | 0.86 | 0.53 | 0.41 | 0.19
Gaussian # victories |3025|7336 (14435 | 17800 | 57404

Gaussian average error | 1.14 | 0.59 | 0.30 | 0.22 | 0.10

Table 1: Number of times each value of k in {2,3,4,5,10} produces minimal error and average error values,
over 100,000 items generated according to both models.

We next explored the number of victories between just k = 2 and k = 3, with results in Table 2. Again
we observed that using a larger value of k generally reduces error, as expected. However, we find it extremely
surprising that using £ = 2 produces a lower error 37% of the time. As before, the larger k£ value performs
relatively better in the Gaussian model. We also looked at results for the most extreme comparison, k = 2
vs. k = 10 (Table 3). Using 2 scores outperformed 10 8.3% of the time in the uniform setting, which was
larger than we expected. In Figures 5-6, we present a distribution for which k£ = 2 particularly outperformed
k = 10. The full distribution has mean 54.188, while the k¥ = 2 compression has mean 0.548 (54.253 after
normalization) and k£ = 10 has mean 5.009 (55.009 after normalization). The normalized errors between the



means were 0.906 for £ = 10 and 0.048 for k = 2, yielding a difference of 0.859 in favor of k£ = 2.

2 3

Uniform number of victories | 36805 | 63195
Uniform average error 1.31 | 0.86

Gaussian number of victories | 30454 | 69546
Gaussian average error 1.13 | 0.58

Table 2: Results for £ = 2 vs. 3.

2 10

Uniform number of victories | 8253 | 91747
Uniform average error 1.32| 0.19

Gaussian number of victories | 4369 | 95631
Gaussian average error 1.13 | 0.10

Table 3: Results for £ = 2 vs. 10.
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Figure 5: Example distribution where compressing with & = 2 produces significantly lower error than

k = 10. The full distribution has mean 54.188, while the £k = 2 compression has mean 0.548 (54.253 after
normalization) and the £ = 10 compression has mean 5.009 (55.009 after normalization). The normalized
errors between the means were 0.906 for £ = 10 and 0.048 for k = 2, yielding a difference of 0.859 in favor
of k = 2.

We next repeated the extreme k£ = 2 vs. 10 comparison, but we imposed a restriction that the k¥ = 10
option could not give a score below 3 or above 6 (Table 4). (If it selected a score below 3 then we set it to
3, and if above 6 we set it to 6). For some settings, for instance paper reviewing, extreme scores are very
uncommon, and we strongly suspect that the vast majority of scores are in this middle range. Some possible
explanations are that reviewers who give extreme scores may be required to put in additional work to justify
their scores and are more likely to be involved in arguments with other reviewers (or with the authors in the
rebuttal). Reviewers could also experience higher regret or embarrassment for being “wrong” and possibly
off-base in the review by missing an important nuance. In this setting using £ = 2 outperforms &k = 10
nearly % of the time in the uniform model.

We also considered the situation where we restricted the k& = 10 scores to fall between 3 and 7 (as
opposed to 3 and 6). Note that the possible scores range from 0-9, so this restriction is asymmetric in that
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Figure 6: Compressed distribution for k£ = 2 vs. 10.

the lowest three possible scores are eliminated while only the highest two are. This is motivated by the
intuition that raters may be less inclined to give extremely low scores which may hurt the feelings of an
author (for the case of paper reviewing). In this setting, which is seemingly quite similar to the 3—6 setting,
k = 2 produced lower error 93% of the time in the uniform model!

2 10

Uniform number of victories | 32250 | 67750
Uniform average error 1.31 | 0.74

Gaussian number of victories | 10859 | 89141
Gaussian average error 1.13 | 0.20

Table 4: For £ = 10 only scores 3—6 permitted.

We next repeated these experiments for the rounding compression function. There are several interesting
observations from Table 6. In this setting, & = 3 is the clear choice, performing best in both models (by a
large margin for the Gaussian model). The smaller values of k perform significantly better with rounding
than flooring (as indicated by lower errors) while the larger values perform significantly worse, and their
errors seem to approach 0.5 for both models. Taking both compressions into account, the optimal overall
approach would still be to use flooring with £ = 10, which produced the smallest average errors of 0.19
and 0.1 in the two models, while using £ = 3 with rounding produced errors of 0.47 and 0.24. The 2 vs. 3
experiments produced very similar results for the two compressions (Table 7). The 2 vs. 10 results were quite
different, with 2 performing better almost 40% of the time with rounding, vs. less than 10% with flooring
(Table 8). In the 2 vs. 10 truncated 3—-6 experiments 2 performed relatively better with rounding for both
models (Table 9), and for the 2 vs. 10 truncated 3—7 experiments k = 2 performed better nearly all the time
(Table 10).

2 10

Uniform number of victories | 93226 | 6774
Uniform average error 1.31 | 0.74

Gaussian number of victories | 54459 | 45541
Gaussian average error 1.13 | 1.09

Table 5: For k = 10 only scores 3—7 permitted.



2 3 4 5 10
Uniform # victories | 15766 | 3317521386 | 19995 | 9678

Uniform average error | 0.78 | 0.47 | 0.55 | 0.52 | 0.50
Gaussian # victories | 13262 6487010331 | 9689 | 1848

Gaussian average error | 0.67 | 0.24 | 0.50 | 0.50 | 0.50

Table 6: Number of times each value of k& produces minimal error and average error values, over 100,000
items generated according to both models with rounding compression.

2 3

Uniform number of victories | 33585 | 66415
Uniform average error 0.78 | 0.47

Gaussian number of victories | 18307 | 81693
Gaussian average error 0.67 | 0.24

Table 7: k = 2 vs. 3 with rounding compression.

2 10

Uniform number of victories | 37225 | 62775
Uniform average error 0.78 | 0.50

Gaussian number of victories | 37897 | 62103
Gaussian average error 0.67 | 0.50

Table 8: k = 2 vs. 10 with rounding compression.

2 10

Uniform number of victories | 55676 | 44324
Uniform average error 0.79 | 0.89

Gaussian number of victories | 24128 | 75872
Gaussian average error 0.67 | 0.34

Table 9: £ = 2 vs. 10 with rounding compression. For £ = 10 only scores permitted between 3 and 6.

2 10

Uniform number of victories | 99586 | 414
Uniform average error 0.78 | 3.50

Gaussian number of victories | 95692 | 4308
Gaussian average error 0.67 | 1.45

Table 10: k = 2 vs. 10 with rounding compression. For k£ = 10 only scores permitted between 3 and 7.

S Experiments

The empirical analysis of ranking based datasets depends on the availability of large amounts of data depict-
ing different types of real scenarios. For our experimental setup we used two different datasets from “Rating
and Combinatorial Preference Data” of http://www.preflib.org/data/. One of these datasets
contains 675,069 ratings on scale 1-5 of 1,842 hotels from Trip Advisor website. Other consists of 398 ap-
proval ballots and subjective ratings on a 20-point scale collected over 15 potential candidates for the 2002
French Presidential election. The rating was provided by students at Institut d’Etudes Politiques de Paris.
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For each set of experiments, we computed the errors for all considered values of k for these “items”. The
main quantities we are interested in computing are the number of times that each value of k produces the
lowest error over the items, and the average value of the errors over all items for each k value.

In the first set of experiments, the dataset contains different types of rating based on the price, quality of
rooms, proximity of location, cleanliness, availability of service from front desk etc and finally overall rating
provided by the users scraped from Trip advisor. We compared performance between using k = 2,3,4,5
to see for how many of the trials each value of k£ produced the minimal error using the floor approach.
The results are in Table 11. Surprisingly, we see that the number of victories sometimes decreases with the
increase in value of k, while the average error decreased monotonically (recall that we would have zero error
if we set k to the actual maximum rating point). Like for £ = 2 vs k = 4, the number of victories increases
for some cases compared to k = 2 vs k = 3. The number of victories between £k = 2 vs k = 3,k = 2 vs
k =4, and k = 2 vs kK = 5 are shown in Table 13.

Average error |k=2| 3 4

Overall 1.04 |1 0.31 |0.15
Price 1.07 10.27 | 0.14
Rooms 1.06 [ 0.32]0.16
Location 1.47 10.4210.16

Cleanliness 143 10401 0.16
Front Desk 1.34 10.33]0.14
Service 1.24 10.32]0.14
Business Service | 0.96 | 0.28 | 0.18

Table 11: Average error using floor approach for hotel ratings.

Minimal error |[k=2] 3 4

Overall 235 1450 | 1157
Price 181 | 518 | 1143
Rooms 254 1406 | 1182
Location 111 | 2311500

Cleanliness 122 | 302 | 1418
Front Desk 120 | 387 | 1335
Service 140 | 403 | 1299
Business Service | 316 | 499 | 1027

Table 12: Number of times each k produces minimal error.

We next explored rounding to generate the rating. For different value of k € {2,3,4}, all the ratings
provided by users was compressed with the computed k midpoints and the average score was calculated.
Table 14 shows the average error induced by the compression which performs better than the floor approach
for this dataset.

An interesting observation found for rounding is that using £ = n = 5 was outperformed by using k = 4
for some of the ratings. Also # of victories was higher in some case as shown in Table 17.

Next level of experiment was done on 2002 French Presidential Election. This dataset had both the
approval ballots and the subjective ratings of the candidates by each of the voters. Voter’s rated the potential
candidates on a scale of 20 where 0.0 is the lowest possible rating and -1.0 indicates missing rating value.
For the experiment, we have only considered ratings of the candidates. The # of victories and minimal error
while using floor were consistent for all comparison of k values resulting in higher error for lower value of k
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# of victories | k=2vs3 2vs4 2vs5
Overall 243, 1599 | 277, 1565 | 5, 1837
Price 187, 1655 | 211, 1631 | 4, 1838
Rooms 275, 1567 | 283, 1559 | 10, 1832
Location 126, 1716 | 122, 1720 | 11, 1831
Cleanliness 126, 1716 | 141, 1701 | 5, 1837
Front Desk 130, 1712 | 133, 1709 | 8, 1834
Service 153, 1689 | 152, 1690 | 11, 1831
Business Service | 368, 1474 | 329, 1513 | 22, 1820

Table 13: Number of times k£ value produces minimal error.

Average error |k=2| 3 4
Overall 0.50 | 0.28 | 0.15
Price 0.48 | 0.31(0.15
Rooms 0.48 [ 0.30|0.16
Location 0.63 |10.41]0.22
Cleanliness 06 | 04 |0.21
Front Desk 0.5510.39|0.21
Service 0.52 10.36 | 0.18
Business Service | 0.39 [0.36 | 0.18

Table 14: Average error using rounding approach.

Minimal error |k=2] 3 4
Overall 82 | 1321628
Price 92 | 74 | 1676
Rooms 152 | 81 | 1609
Location 93 | 52 | 1697
Cleanliness 79 | 44 | 1719
Front Desk 89 | 50 | 1703
Service 102 | 29 | 1711
Business Service | 246 | 123 | 1473

Table 15: Number of times k£ minimizes error with rounding.

# of victories | k=2vs3 2vs4 2vs5
Overall 161, 1681 | 113, 1729 | 486, 1356
Price 270, 1572 | 101, 1741 | 385, 1457
Rooms 344, 1498 | 173, 1669 | 575, 1267
Location 275, 1567 | 109, 1733 | 344, 1498
Cleanliness 210, 1632 | 90, 1752 | 289, 1553
Front Desk 380, 1462 | 95,1747 | 332, 1510
Service 358, 1484 | 109, 1733 | 399, 1443
Business Service | 870,972 | 278, 1564 | 853, 989
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Table 16: Number of times k£ minimizes error with rounding.




Overall Average error | 0.15, 0.21

# of victories | 1007, 835

Price Average error | 0.15, 0.17

# of victories | 955, 887

Rooms Average error | 0.15, 0.23

# of victories | 1076, 766

Location Average error | 0.22, 0.22
# of victories | 694, 1148

Cleanliness Average error | 0.21, 0.19
# of victories | 653, 1189

Average error | 0.21, 0.17

Front Desk # of victories | 662, 1180
Service Average error | 0.18, 0.18

# of victories | 827, 1015

Business Service Average error | 0.18, 0.31
# of victories | 1233, 609

Table 17: # victories and average error for rounding, k in {4,5}.

for each individual candidate. On the other hand, # of victories and minimal error with rounding compression
only produces minimal error for just one of the instance of k£ = 2, rests of the minimal error were produced
by the highest value of ki.e k = 10.

Average error 2 3 4 5 8 | 10
Francois Bayrou 3.18| 1.5 [0.94|0.66| 0.3 | 0.2
Olivier Besancenot 1.7 1 0.8 0.5 |035[0.16| 0.1
Christine Boutin 1.15/0.5410.34|0.24|0.11{0.07
Jacques Cheminade |0.64| 0.3 |10.19/0.13|0.06|0.04
Jean-Pierre Chevenement|3.69|1.74|1.09|0.77|0.35|0.23
Jacques Chirac 3.48(1.64]1.03/0.72(0.33|0.21

Robert Hue 2.3911.12] 0.7 |0.49(0.22|0.14
Lionel Jospin 5.4512.57(1.61|1.13/0.52|0.33
Arlette Laguiller 2.2 11.04]0.65]0.46]0.21]0.13
Brice Lalonde 1.5310.7210.45|0.32|0.14{0.09
Corine Lepage 2.2411.0610.67(0.47(0.22(0.14
Jean-Marie Le Pen 0.4 10.19(0.12|0.08 | 0.04 | 0.02
Alain Madelin 1.9310.91]0.57| 0.4 [0.18(0.12
Noel Mamere 3.6811.7411.09|0.770.35]0.23

Bruno Maigret 0.31{0.15{0.09|0.06 |0.03|0.02

Table 18: Average error of floor approach for French election.

6 Conclusion

Settings in which humans must rate items or entities from a small discrete set of options are ubiquitous. We
have singled out several important applications—rating attractiveness for dating websites, assigning grades
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Average error 2 3 4 5 8 | 10
Francois Bayrou 1.65|0.7310.91]0.75{0.48 | 0.62
Olivier Besancenot 3.8812.39(2.14| 1.7 |1.31|1.25
Christine Boutin 3.8712.39|1.84| 1.5 | 0.9 |0.86
Jacques Cheminade |4.34|2.72|2.07|1.65|1.02|0.88

Jean-Pierre Chevenement | 1.47 |0.65| 1.2 |0.82|0.55|0.61

Jacques Chirac 1.64| 1.0 |1.13]0.88[0.55|0.64
Robert Hue 251(1.27]1.14(1.09|0.67 |0.77
Lionel Jospin 0.3310.49|0.87/0.670.51|0.63
Arlette Laguiller 2.6211.34(1.34|1.02| 0.6 |0.63
Brice Lalonde 345 1.9 |1.55|1.21|0.66|0.78

Corine Lepage 2.8911.59]1.56|1.16(0.79|0.87
Jean-Marie Le Pen 4.9213.26(2.55[2.06/1.39| 1.2

Alain Madelin 3.18 1.8 [1.52]1.17]0.72| 0.7
Noel Mamere 2.0211.55(1.77/1.44({1.29|1.41
Bruno Maigret 4.88(3.23(2.4611.99/1.28]| 1.1

Table 19: Average error using rounding approach.

to students, and reviewing academic papers. The number of available options can vary considerably, even
within different instantiations of the same application. For instance, we saw that three popular sites for
attractiveness rating use completely different systems: Hot or Not uses a 1-10 system, OkCupid uses 1-5
“star” system, and Tinder uses a binary 1-2 “swipe” system.

Despite the problem’s importance, we have not seen it studied theoretically previously. Our goal is to
select k£ to minimize the average (normalized) error between the compressed average score and the ground
truth average. We studied two natural models for generating the scores. The first is a uniform model where
the scores are selected independently and uniformly at random, and the second is a Gaussian model where
they are selected according to a more structured procedure that gives preference for the options near the
center. We provided a closed-form solution for continuous distributions with arbitrary cdf. This allows us to
characterize the relative performance of choices of k for a given distribution. We saw that, counterintuitively,
using a smaller value of k£ can actually produce lower error: for some distributions (even though we know
that as k approaches n the error approaches 0): we presented specific distributions for which using k£ = 2
outperforms 3 and 10.

In our simulations, we observed that performance generally improves monotonically with k as expected,
and more so for the Gaussian model than uniform. However, we observe that small k values can be optimal
a non-negligible amount of the time, which is perhaps counterintuitive. Using k£ = 2 outperformed 10 8.3%
of the time, and when we restricted £ = 10 to only assign values between 3 and 7 inclusive, k = 2 actually
produced lower error 93% of the time! This could correspond to a setting where raters are ashamed to assign
extreme scores (particularly extreme low scores). For smaller £ rounding leads to significantly lower error
than flooring, with k£ = 3 the clear optimal choice, while for larger k rounding leads to much larger error.

A future avenue is to extend our analysis to better understand specific distributions for which different &
values are optimal, while our simulations are in aggregate over many distributions. Application domains will
have distributions with different properties, and improved understanding will allow us to determine which &
is optimal for the types of distributions we expect to encounter. This improved understanding can be coupled
with further data exploration.
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