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Appendix B: DeSitter Cartography and
first-Order Gravity

We go back to the FS approach in Chapter XiIl.

deSitter space is there described in terms of a “pure SO(4,1) gauge
potential”; the field strength F vanishes.

This leads to another deSitter cartography using only spinors.

Contract the SO(4,1) potential A into gamma matrices:

ABB
A = PNAA A = A
Then the “pure gauge’ form for A |mpI|es that |t can be written as follows:
The U’s are an array of four “basns spinors”. | am told that they are known
in the trade as “Killing spinors”, or more specifically as “parallel spinors”.



Review of the FS Construction

* The FS field strength F is also contracted into gamma matrices, as a consequence
of the construction for A.

* The FS action is compactly expressed in this language, especially after the B’s are
“integrated out” . It is a linear combination of the following three terms:

Pontryagin + Nieh-Yan:

& =T FAF

Einstein-Hilbert + Euler + cosmological constant:

L, = Tr U FAF
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* My favorite version of the FS formalism:

) DL
L= G\G wth G=C F

Nieh-Yan + Holst:



Back to the cartography:

As an example, we again specialize to the FRW structure for A

and F:
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This is the deSitter expansion::
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In gamma matrix language,
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We will be searching for the form of U in what follows.

Different choices of deSitter cartographies will lead to different choices of the
matrix U.

U is in some sense “the fourth root of the metric tensor”.

The metric tensor g is quadratic in the tetrad e.
The tetrad e in turn is part of the SO(4,1) potential A, which is quadraticin U.

Perhaps in some sense we are building the spin two gravity theory out of spin %
building blocks.



Generating the Catalogue of U’s

* This was done by trial and error, and by generalizing some simple
examples.

e Qutline of what follows:

Toy examples: SO(3)/SO(2) and SO(2,1)/S0(1,1).
The SO(4,1)/50(3,1) FRW deSitter metrics.

The Static deSitter metric.

The Painleve-Gulistrand metric.

The Covariant Conformal metric.

The Eddington-Finkelstein metric.

For some mathematical insights, see Derek Wise, gr-qc/0611154



A Toy Example
The groups are SO(3) / SO(2)
The potential A and field strength F are
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Note: the metric here is Euclidean.

The condition F = 0 implies

a(t) =smnt  K(t)=cosNE Nt =T

Therefore the metr[c is
. T o.q g
As = def"l- ENE Ax =B +In B dlf

This is the surface of a sphere.

The “time evolution” is big bang/big crunch.




For this low dimensionality the gamma matrices are 2 x 2
Pauli matrices.
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Construction of U is by common sense:
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50(2,1) / SO(1,1)

» The construction is similar:

F=0 = K-Na=©
& —NK =O

 Three FRW options: ,
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* The k =0 case is of special interest, because the operator in the
exponent is a projection operator 2
CLY+I%y = 0
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SO(4,1) / SO(3,1)
The k = 0 generalization is found by analogy:
U = (: | + _E;ZZ(Y;—}Q] Q%ZI%

The k=1 and k = -1 cases are obtained by multiplying by
“angular factors”, which will be ubiquitous:

B==+1 U=e""



Note that for k =+ 1 the lower 3 x4 part of A is
nonvanishing; this is not torsion, but rather spatial curvature
which is contributing.

The conformally flat cases are obtained by a simple change
of time variable:
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The static deSitter case is obtained from k = + 1 by keeping
the angular factors in place but permuting the other two

factors: S vy
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The Painleve-Gullstrand Metric
 Dothe SO(2,1)/S0(1,1) case first: _
x)
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* General form for the gauge potential A: A}A = |2 (—x 1
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 Compute F and set it to zero. The result is

£ = —x
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* Then guess the answer for U:

* This form of U invites the correct generalization:
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The Covariant Conformal Metric

Again, go to SO(2,1) /SO(1,1) first:

General form for A: oo [@l?) o
A = |2 o d('c)
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The F = 0 conditions are; t %X,
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We know part of the aﬁswer: a=1/(1-1"2). Therefore
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From this, guess U:
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* The generalization is direct and pretty:
l .
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* The explicit expression for A is also pretty:




The Eddington-Finkelstein Metric

e Again, retreat to SO(2,1) / SO(1,1) first:
* The metricis  ds*= At — " — X'(df - dx)

* The “dyad” is

e The answer is not worked out.



Summary
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Summary (continued) .
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