Appendix B: DeSitter Cartography and first-Order Gravity

- We go back to the FS approach in Chapter XII.
- deSitter space is there described in terms of a "pure SO(4,1) gauge potential"; the field strength F vanishes.
- This leads to another deSitter cartography using only spinors.
- Contract the SO(4,1) potential A into gamma matrices:

$$A_{\mu}^{AB} \Longrightarrow \sum_{A,B} \gamma_{A} \gamma_{B} A_{\mu}^{AB} \equiv A_{\mu}$$

• Then the "pure gauge" form for A implies that it can be written as follows:

• The U's are an array of four "basis spinors". I am told that they are known in the trade as "Killing spinors", or more specifically as "parallel spinors".

Review of the FS Construction

- The FS field strength F is also contracted into gamma matrices, as a consequence of the construction for A.
- The FS action is compactly expressed in this language, especially after the B's are "integrated out". It is a linear combination of the following three terms:

Pontryagin + Nieh-Yan:

Einstein-Hilbert + Euler + cosmological constant:

Nieh-Yan + Holst:

• My favorite version of the FS formalism:

Back to the cartography:

As an example, we again specialize to the FRW structure for A and F:

F:

$$A_{\mu} = \begin{array}{c} 05 \\ N \\ O \\ A \\ A \end{array}$$

$$A_{\mu} = \begin{array}{c} 05 \\ O \\ O \\ A \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 05 \\ O \\ O \\ A \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 05 \\ O \\ O \\ A \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ A \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ A \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ A \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ A \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ A \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O \\ O \end{array}$$

$$A_{\mu} = \begin{array}{c} 01 \\ O$$

• F = 0 implies

$$C = 0$$
 $a = NK$ $K = Na$

 $K = Q = P^{Nt}$ This is the deSitter expansion:

In gamma matrix language,

$$A_t = Y_0 Y_5 N$$
 $A_x = Y_1 (Y_0 - Y_5) e^{Nt}$

- 1- -

- We will be searching for the form of U in what follows.
- Different choices of deSitter cartographies will lead to different choices of the matrix U.
- U is in some sense "the fourth root of the metric tensor".

The metric tensor g is quadratic in the tetrad e.

The tetrad e in turn is part of the SO(4,1) potential A, which is quadratic in U.

Perhaps in some sense we are building the spin two gravity theory out of spin $\frac{1}{2}$ building blocks.

- 5--

Generating the Catalogue of U's

- This was done by trial and error, and by generalizing some simple examples.
- Outline of what follows:

Toy examples: SO(3)/SO(2) and SO(2,1)/SO(1,1).

The SO(4,1)/SO(3,1) FRW deSitter metrics.

The Static deSitter metric.

The Painleve-Gullstrand metric.

The Covariant Conformal metric.

The Eddington-Finkelstein metric.

For some mathematical insights, see Derek Wise, gr-qc/0611154

A Toy Example

- The groups are SO(3) / SO(2)
- The potential A and field strength F are

$$A_{n} = \frac{20}{12} \begin{pmatrix} N & O \\ O & alt \end{pmatrix}$$

$$01 \begin{pmatrix} O & k(t) \\ O & k(t) \end{pmatrix}$$

Note: the metric here is Euclidean.

$$F_{tx} = \frac{20}{12} \begin{pmatrix} 0 \\ a-NK \\ k+Na \end{pmatrix}$$

• The condition F = 0 implies

$$a(t) = \sin Nt$$
 $K(t) = \cos Nt$

Therefore the metric is

$$ds^2 = N^2 dt^2 + sin^2 Nt dx^2 = d\theta + sin^2 \theta d\theta^2$$

- This is the surface of a sphere.
- The "time evolution" is big bang/big crunch.

-) --

 For this low dimensionality the gamma matrices are 2 x 2 Pauli matrices.

$$\gamma_0 \rightarrow \delta_3 \qquad \gamma_1 \rightarrow \delta_1 \qquad \gamma_2 \rightarrow \delta_2$$

Construction of U is by common sense:

SO(2,1) / SO(1,1)

The construction is similar:

$$F=0$$
 \Rightarrow $k-Na=0$ $a-Nk=0$

Three FRW options:

Here we options:
$$R = 0 \qquad Q = e^{Nt} \qquad U = e^{\frac{\chi}{2}(\gamma_0 \gamma_1 + \gamma_1 \gamma_2)} e^{\frac{\chi t}{2} \gamma_2 \gamma_0}$$

$$R = +1 \qquad a = \cosh Nt \qquad U = e^{\frac{\chi}{2} \gamma_1 \gamma_2} e^{\frac{\chi t}{2} \gamma_2 \gamma_0}$$

$$R = -1 \qquad a = \sinh Nt \qquad U = e^{\frac{\chi}{2} \gamma_0 \gamma_1} e^{\frac{\chi t}{2} \gamma_2 \gamma_0}$$

• The k = 0 case is of special interest, because the operator in the exponent is a projection operator. $(\gamma_0 \gamma_1 + \gamma_1 \gamma_2)^2 = 0$

• -
$$(k=0)$$
 $U = \left[1 + \frac{\times}{2}(\gamma_0 \gamma_1 + \gamma_1 \gamma_2)\right] e^{\frac{Nt}{2}\gamma_0 \gamma_1}$

SO(4,1) / SO(3,1)

• The k = 0 generalization is found by analogy:

$$U = \left[1 + \frac{\vec{y} \cdot \vec{x}}{2} (\vec{y} - \vec{y})\right] e^{\frac{Nt}{2} \vec{y}_s \vec{y}_o}$$

• The k = 1 and k = -1 cases are obtained by multiplying by "angular factors", which will be ubiquitous:

$$R = +1 \qquad U = e^{\sum_{i=1}^{N} \frac{1}{2}} e^{\sum_{i=1}^{N}$$

- Note that for k = ± 1 the lower 3 x 4 part of A is nonvanishing; this is not torsion, but rather spatial curvature which is contributing.
- The conformally flat cases are obtained by a simple change of time variable:

 The static deSitter case is obtained from k = ± 1 by keeping the angular factors in place but permuting the other two factors:

$$- \left[ds^2 = \cos^2 \chi \ dt^2 - dx^2 - \sin^2 \chi \left(d\theta^2 + \sin^2 \theta \ d\phi^2 \right) \right] N = 1$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

The Painleve-Gullstrand Metric

- Do the SO(2,1) / SO(1,1) case first:
- General form for the gauge potential A:

$$A_{\mu} = 12 \begin{pmatrix} 1 & 0 \\ -x & 1 \\ k(x) & k(x) \end{pmatrix}$$

Compute F and set it to zero. The result is

$$f = -x$$
 $K = +1$

This form of U invites the correct generalization:

$$U = e^{\frac{t}{2}yy} \left[1 + \frac{y \cdot x}{2} (y - y) \right]$$

The Covariant Conformal Metric

- Again, go to SO(2,1) /SO(1,1) first:
- General form for A:

$$A_{\mu} = \frac{20}{12} \begin{pmatrix} a(\tau) & 0 \\ 0 & a(\tau) \\ k(t,x) & k(t,x) \end{pmatrix}$$

• The F = 0 conditions are;

$$\frac{1}{2}a' + ak = 0$$
 $\frac{1}{2}a' - ak = 0$ $\frac{2k}{2t} - \frac{2k}{2k} - a^2 = 0$

• We know part of the answer: $a = 1 / (1 - \tau^2)$. Therefore

$$A_{\mu} = \frac{20}{12} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -X & t \end{pmatrix} \cdot \frac{1}{(1-T^{2})}$$

From this, guess U:

$$\overline{U} = \frac{1 + \gamma_2(\gamma_t t - \gamma_1 x)}{\sqrt{1 - \tau^2}}$$

The generalization is direct and pretty:

$$U = \frac{1}{\sqrt{1-T^2}} \left[1 + \sqrt[3]{s} \left(\sqrt[3]{s} t - \vec{\gamma} \cdot \vec{x} \right) \right]$$

The explicit expression for A is also pretty:

Eit expression for A is also pretty:
$$A_{\mu} = \begin{array}{c} 50 & 1 & 0 & 0 \\ 15 & 0 & 1 & 0 & 0 \\ 25 & 0 & 0 & 0 & 1 \\ 25 & 0 & 0 & 0 & 1 \\ 35 & 0 & 0 & 0 & 1 \\ -x & t & 0 & 0 & 0 \\ 02 & -y & 0 & t & 0 \\ 03 & -z & 0 & 0 & t \\ 23 & 0 & -z & y & 0 \\ 03 & -z & 0 & 0 & -x & 12 \\ 0 & -y & x & 0 & 0 \\ t & x & y & z \end{array}$$

The Eddington-Finkelstein Metric

Again, retreat to SO(2,1) / SO(1,1) first:

- The metric is $ds^2 = dt^2 dx^2 x^2(dt dx)^2$
- The "dyad" is

$$C_{\mu} = \frac{20}{21} \left(\begin{array}{c} 1 & \frac{\chi}{1-\chi} \\ \chi & 1 + \frac{\chi^{2}}{1-\chi} \end{array} \right)$$

• The answer is not worked out.

-15-

Summary

	(u, v, w)	Metric	Parallel spinors
Covariant	$t = \frac{v}{w+1}$	$ds^{2} = \frac{1}{(1-z^{2})^{2}} (dt^{2} - dx^{2} - dy^{2} - dz^{2})$	
Conformal	$\overrightarrow{X} = \frac{\overrightarrow{Y}}{W+1}$	$C^{2} = t^{2} - x^{2} - y^{2} - z^{2}$	$T = \frac{\left[1 + \gamma_5 \left(\gamma_c t - \overline{\gamma}, \overline{\chi}\right)\right]}{\sqrt{\left(1 - T^2\right)^2}}$
Painleve - Gullstrand	$W+V=e^{t}$ $W\cdot V=e^{t}(-r^{2})$	ds=dt-(dx-xdt)-(dy-ydt) (dz-zdt)	,
Eddington - Finkelstein	$W+V=(1+r)e^{(t-r)}$ $W-V=(1-r)e^{-(t-r)}$	$ds^{2} = dt^{2} - dr^{2} - r^{2}(dt - dr)^{2} + dy^{2} + sin^{2}ydz^{2}$	T = ?
Static	r = sin x w = cos x cosh t V = cos x sinh t	$ds^{2} = \cos^{2} x dt^{2} - dx^{2} - \sin^{2} x (dy^{2} + \sin^{2} y dz^{2})$ $= (1 - r^{2}) dt^{2} - dr^{2} - r^{2} (dy^{2} + \sin^{2} y dz^{2})$ $= (1 - r^{2}) dt^{2} - dr^{2} - r^{2} (dy^{2} + \sin^{2} y dz^{2})$	J=e 2232 YX 4 XX 2 XX X

Summary (continued)

	(u,v,w)	- Metric	Parallel Spinors	
Closed FRW (k=+1)	V = sinh t W = cosh t cos x r = cosh t sin x	$ds^{2} = dt^{2} - \cosh^{2}t \left[dx^{2} + \sin^{2}x (dy^{2} + \sin^{2}y dz^{2}) \right]$ $= dt^{2} - \cosh^{2}t \left[\frac{dr^{2}}{(1-r^{2})} + r^{2} (dy^{2} + \sin^{2}y dz^{2}) \right]$		
Open FRW (k=-1)	W = cosh t V = sinh t cosh x Y = sinh t sinh x	$ds^{2} = dt^{2} - \sinh^{2}t \left[dx^{2} + \sinh^{2}x \left(dy^{2} + \sin^{2}y dz^{2} \right) \right]$ $= dt^{2} - \sinh^{2}t \left[\frac{dr^{2}}{(1+r^{2})} + r^{2} \left(dy^{2} + \sin^{2}y dz^{2} \right) \right]$	U= e 23 = 1/2 = 2012 = 2502	
Flat FRW (k=0)	$W+V=e^{t}$ $W-V=e^{t}-p^{2}e^{t}$ $Y=pe^{t}$	$ds^{2} = dt^{2} - e^{2t} (dx^{2} + dy^{2} + dz^{2})$ $e^{2} = (x^{2} + y^{2} + z^{2})$	$\overline{U} = \left[1 + \frac{\overrightarrow{y} \cdot \overrightarrow{x}}{Z}(y_s - y_o)\right] e^{y_s y_o} \frac{t}{2}$	
Flat Conformal	$W+V = -\frac{1}{t}$ $W-V = -t + \frac{t^2}{t}$ $Y = -\frac{t}{t}$	1 / 112 / 2 12 12	$\vec{U} = \left[1 + \frac{\vec{y} \cdot \vec{x}}{2} (\vec{y}_s - \vec{y}_o)\right] \left(-\frac{\vec{t}}{t}\right)^{\frac{\gamma_s}{2}}$	