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Motivation 

• The case for energy recovery in engine powered vehicles  
• Carbon dioxide emissions legislation 
• Fuel economy 
• The increasing degree of electrification in vehicle propulsion  

• The challenge  
• Propulsion systems are already well integrated  
• Energy transfers already calculated 
• After-treatment conditions critical and finely tuned  

• The opportunity  
• Our understanding of energy management  
• Optimal conditions and the on-line/off-line split of design effort 



Agenda 

• The potential for energy recovery in vehicles 
• Energy recovery methods – a comparison  
• The integration process – defining the 

requirement 
• The progression of modelling – supporting the 

integration process 
• Analysis leads to design guidelines – and choice 

of heat exchange architecture 
• Optimisation – off-line and on-line 

 
 
 



Caterpillar D10T2  

P = 513 kW 
 
𝐻̇𝐻𝑒𝑒= 600kW 

Exhaust gas = 210 kW 
Coolant = 12kW 

Energy recoverable 
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Methods of Energy Recovery 

• Mechanical or electrical turbo-compound 
• Additional expansion energy 

• Rankine Cycle 
• Separate vapour power cycle 

• Thermoelectric 
• Themoacoustic 
• Joule (or Brayton) cycle 

• A closed form of the gas turbine cycle 

• Stirling Cycle 
• Thermophotovoltaic 

 
 



Energies 2014, 7, 5273-5290; doi:10.3390/en7085273 
Arnaud Legros et al, Comparison and Impact ….  

A comparison 



A diesel engine 



The Integration Process? 

• The application  
• Sources of energy - Temperature, gas flow rate 
• Constraints - Temperature change, pressure drop 
• Duty cycle 

• The requirement – power, current, when? 
• Choice of heat exchange architectures 
• Stages of modelling  

• Screening – Design – Analysis 
• Manufacturing considerations 

• Control methods 
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A Duty Cycle – the Non-Road Transient 
Cycle (NRTC) 

NRTC  
The first 600 sec 



The modelling progression (1) 

• Closed form solutions  
•  “$ per W metrics …”,  

Shannon Yee at al.  
• Motivation to provide to compact 

solutions to support a cost 
evaluation 
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The modelling progression (2) 

• Based on physical 
parameters and 
empirical correlations 

• Requires a set of 
governing equations 
for modules, heat 
exchange and 
electrical power 

• Typically 50-100 
equations  

Zhijia Yang, Song Lan  - Loughborough University 



The modelling progression (2) 

Validation at three 
different exhaust flow 
conditions. 

Variation of power with 
fill ratio at different 
exhaust temperatures 



The modelling progression (3) 



Heat exchanger construction 



Investigating spreading resistance 



Creating a design guide – an example 

1. Use plain fins.  
2. The selection of channel width should consider the 

TEM dimensions.  
3. Channel height should not be less than 10mm.  
4. Fin thickness can be set at about 0.2 mm.   
5. Use high fin density under the constraints of 

pressure drop and heat exchanger weight.  
6. The choice of fin density will also rely on the 

manufacturing processes available. 



The choice of heat exchange architecture 

Sumeet Kumar, Stephen D. Heister, Xianfan Xu,, James R. Salvador, 
And Gregory P. Meisner, Thermoelectric Generators ….,  
Journal of ELECTRONIC MATERIALS, 2013 



Octagonal design  



Performance comparison 



An optimisation exercise 

Distribution of torque points The test engine 



Using a TEG model  

 Gas In
… ...
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 Gas Out

The validated model 
 
The model forms part of 
the optimisation “loop” 

The TEG pattern 



The Optimisation Process 

TEG
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The Exhaust System 

Oxidation catalyst
SCR converterUrea injection

“Adblue”
Exhaust flow
NOx

Clean 
exhaust flow

Heat 
exchanger

Coolant flow

Fabian Frobenius, Gerd Gaiser, Ulrich Rusche, Bernd Weller, 
Thermoelectric Generators for the Integration …, Journal of 
Electronic Materials, September 2015 



Integration on a heavy duty truck 

Exhaust flow 



Observations 

• The integration process is not unique to TEG – and 
adopts the character of “host” product development 
process 

• Requirements fundamental – includes constraints  
• Modelling is fundamental to the integration process  
• Deployment of optimisation for both design and 

operation can be supported by a family of models 
• The key challenges are characterisation and 

modelling 
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