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Motivation

 The case for energy recovery in engine powered vehicles
« Carbon dioxide emissions legislation

* Fuel economy
» The increasing degree of electrification in vehicle propulsion

 The challenge
* Propulsion systems are already well integrated
« Energy transfers already calculated
« After-treatment conditions critical and finely tuned

e The opportunity
e Our understanding of energy management
* Optimal conditions and the on-line/off-line split of design effort
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* The potential for energy recovery in vehicles
* Energy recovery methods — a comparison

* The integration process — defining the
requirement

 The progression of modelling — supporting the
iIntegration process

e Analysis leads to design guidelines — and choice
of heat exchange architecture

o Optimisation — off-line and on-line
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The Energy Available
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Methods of Energy Recovery

Mechanical or electrical turbo-compound
» Additional expansion energy

Rankine Cycle
e Separate vapour power cycle

Thermoelectric
Themoacoustic

Joule (or Brayton) cycle
» A closed form of the gas turbine cycle

Stirling Cycle
Thermophotovoltaic

=
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A comparison

SR
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TURBOCOMPOUND TURBOCOMPOUND

= Efficiency Costs @ Maturity ™ Packaging

Energies 2014, 7, 5273-5290; doi:10.3390/en7085273
Arnaud Legros et al, Comparison and Impact ....
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A diesel engine
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The Integration Process?

 The application
e Sources of energy - Temperature, gas flow rate
e Constraints - Temperature change, pressure drop
e Duty cycle
 The requirement — power, current, when?
* Choice of heat exchange architectures
e Stages of modelling
e Screening — Design — Analysis
 Manufacturing considerations
e Control methods
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A Duty Cycle —the Non-Road Transient

Cycle (NRTC)
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The modelling progression (1)

e Closed form solutions F=Are/A

o “$ per W metrics ...",
Shannon Yee at al.
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The modelling progression (2)
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The modelling progression (2)
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The modelling progression (3)
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Heat exchanger construction
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Investigating spreading resistance
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Creating a design guide — an example

1. Use plain fins.

2. The selection of channel width should consider the

TEM dimensions.

3. Channel height should not be less than 10mm.
4. Fin thickness can be set at about 0.2 mm.

5. Use high fin density under t
pressure drop and heat exc

6. The choice of fin density wil

ne constraints of
nanger weight.

also rely on the

manufacturing processes available.
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The choice of heat exchange architecture
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Sumeet Kumar, Stephen D. Heister, Xianfan Xu,, James R. Salvador,
And Gregory P. Meisner, Thermoelectric Generators ....,
Journal of ELECTRONIC MATERIALS, 2013 ‘
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Octagonal design

Thin Channels

No Fins Crose Fine Square Cells
Spider Net Fins Spider Net Fins Spider Net Fins Thin Channels with Fins
(Two Channels) (Four Channels) (six Channels)
\\“"” T
\\ ,/ ALLLEET
72
LTI
TS
L0 11N

Loughborough
University




Performance comparison

benchmark (with fins)
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An optimisation exercise

The test engine
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Using a TEG model

The validated model

The model forms part of
the optimisation “loop”

Gas Flow Rate [/min] o™  Gas In Temperature [ C]
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The Optimisation Process
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Parameters Parameters

!

Gas In Flow Rate

(from a cycle) 5

Maximum

Engine Speed Engine Torque

(from a cycle)

Electrical Power
TEG >

Engine

BSFC

(from a cycle)

Gas In Temperature
(from a cycle) > |

|

Number
of Modules

P

Compute Saved
Fuel Rate & Fuel
Mass for a Cycle

—

Saved Fuel Mass
(for a cycle)

B Loughborough
University



The Exhaust System

Oxidation catalyst

Urea injection SCR converter
"AdthP" Clean
Exhaust flow exhaust flow
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Fabian Frobenius, Gerd Gaiser, Ulrich Rusche, Bernd Weller,
Thermoelectric Generators for the Integration ..., Journal of
Electronic Materials, September 2015 c bﬂl.'ghb.“mugh
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Integration on a heavy duty truck

Exhaust flow




 The integration process is not unique to TEG — and
adopts the character of “host” product development
process

 Requirements fundamental — includes constraints
 Modelling is fundamental to the integration process

* Deployment of optimisation for both design and
operation can be supported by a family of models

 The key challenges are characterisation and
modelling
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