Cherokee County Rural Water District #9 2016 Annual Drinking Water Quality Report

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality of water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. Our water source is surface water from Ft. Gibson Lake. Cherokee County Rural Water District #9 is in the planning stages of upgrading existing facilities to aid in the compliance of the future D.E.Q. regulations. This report shows our water quality and what it means. If you have any questions about this report or concerning your water utility, please contact our office at 918-772-2915. The District's address is P.O. Box 382, Hulbert, OK 74441. We want our valued customers to be informed about their water district. You are welcome to attend any of our regularly scheduled meetings. They are held at 7:00 p.m., on the second Thursday of each month at the Rural Water District #9 Water Plant, Sunset Valley, Hulbert, OK.

Cherokee County Rural Water District #9 routinely monitors for constituents in your drinking water according to Federal and state laws. The following table shows the results of our monitoring for the period of January 1, 2016 to December 31, 2016. (Some of our data may be more than one year old because the state allows us to monitor for some contaminants less often than once per year.)

Microbiological Contaminants: (1) Total organic carbon (TOC) has no health effects. However, total organic carbon provides a medium for the formation of disinfection byproducts. These byproducts include trihalomethanes (THMs) and haloacetic acids (HAAs). Drinking water containing these byproducts in excess of the MCL may lead to adverse health effects, liver, or kidney problems, or nervous system effects, and may lead to an increased risk of getting cancer. Inorganic Contaminants: (2)Nitrate. Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.

Volatile Organic Contaminants: (3) Haloacetic Acids. Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer. (4) TTHMs [Total Trihalomethanes]. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water before we treat it include:

- *Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- *Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- *Pesticides and herbicides, which may come from a variety of sources such as agriculture and residential uses.
- *Radioactive contaminants, which are naturally occurring.

*Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants &potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a significant increased risk of having the described health effect.

In our continuing efforts to maintain a safe and dependable water supply it may be necessary to make improvements in your water system. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary in order to address these improvements.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

We at Rural Water District #9 work around the clock to provide top quality water to every tap. Please call our office at 918-772-2915 if you have questions.

U)
ú
Ħ
ŧ
Я
뻣
뒮
片
ы
8
U
-
Μ,
7
ñ
3
Б.
ŏ

	ი	tion		tion.		tion.		tion		tion.			ge from deposits.	ditive Fe from	from iral		, w		
Likely Source of Contamination	Water additive used to control microbes	By-product of drinking water disinfection	of an evaluation to	By-product of drinking water disinfection	of an evaluation to	By-product of drinking water disinfection.	of an evaluation to	r-product of drinking water disinfection	of an evaluation to	By-product of drinking water disinfection.	of an evaluation to	Likely Source of Contamination	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.	Runoff from fertilizer use; Leaching fro septic tanks, sewage; Erosion of natural deposits.	Likely Source of Contamination	Decay of natural and man-made deposits	Erosion of natural deposits.	Erosion of natural deposits.
Violation Li	N We	N (g	may be part c	Z Z	may be part o	ă Z	be part	N By	may be part	Z.	be part	Violation L	Z	N	ደ	Violation L	N	Z	N
Units	mdd	qdđ	some results	qđđ	some results	qđđ	some results may	qđđ	some results	qđđ	some results may	Units	wdd	шdd	шđđ	Units	mrem/yr	pCi/L	pCi/L
MCL	MRDL = 4	60	because	60	ed because s	09	because	80		80		MCL	2	4.0	10	MCL	4	ĸ	15
MCLG	MRDLG = 4	No goal for the total	Highest Level Detected	No goal for the total	Level Detected because	No goal for the total	Level Detec	No goal for the total	Level Detected because	No goal for the total	t Level Detected because	MCLG	2	ਰ	10	MCLG	0	. 0	0
ange of Levels Detected	1 - 1	13.2 - 75.5	calculating the Highest cur in the future	ru.	calculating the Highest ur in the future	1.2 - 75.5	have been used for calculating the Highest Level Detected sampling should occur in the future	8.45 - 97	ting the Highest the future	76	for calculating the Highest	Range of Levels Detected	0.063 - 0.063	0.1 - 0.1	0.238 - 0.238	Range of Levels Detected	3.63 - 3.63	0.588 ~ 0.588	0.255 - 0.255
Highest Level Range of Detected Detec	1	34	for calcul	34	used for calcula should occur in t	34	sed for calcula	47	sed for calculations	47		e]	0.063	0.1	0.238	Highest Level Detected	3.63	0.588	0.255
Collection Date	2016	2016			ay have been u	2016			nay have been used ince sampling should	2016	lay have been to		06/18/2013	06/18/2013	2016	Collection Date	03/20/2014	03/20/2014	03/20/2014
Disinfectants and Disinfection By- Products	Chlorine	Haloacetic Acids (HAA5)	Not all sample results may have been used determine where compliance sampling should	Haloacetic Acids (HAAS)	Not all sample results may have been used for calculation determine where compliance sampling should occur in the	Haloacetic Acids (HAAS)*	Not all sample results may determine where compliance	Total Trihalomethanes (TTHM).	Not all sample results may have been used for calculating the letternine where compliance sampling should occur in the future	Total Trihalomethanes (TTHM)	Not all sample results may have been used Astermine where committened sampling should	Inorganic Contaminants	Barium	Fluoride	Nitrate [measured as Nitrogen]	Radioactive Contaminants	Beta/photon emitters	Combined Radium 226/228	Gross alpha excluding radon and uranium

Lead and Copper

Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ACTOR DEVEL: THE CONCENTION OF A CONCAMINATION, IN	חורביורי שריוסון חד	a Concalitionic		ובת, רוואאבים	CT CONTINUE OF O	CHET TERMITE	SHELLOS WILLOID IN	exceeded, traggers treatment of other requirements which a water of seem made rosson.
Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Violation Likely Source of Contamination
Copper	08/13/2014	1.3	1.3	0.076	0	шďď	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

Violations Table

Rule
Confidence
Consumer C

The Consumer Confidence Rule requires community water systems to prepare and provide to their customers annual consumer confidence reports on the quality of the water delivered by the systems.

Violation Type	Violation Begin	Ď	olation End Violation Explanation
			The state of the s
CCR REPORT	07/01/2016	01/12/2017	We failed to provide to you, our drinking water customers, an annual report that informs
			you about the quality of our drinking water and characterizes the risks from exposure to
			contaminants detected in our drinking water.