Sikadur®-42 MP Normal HC

3-part, multi purpose epoxy grouting system

Product Description

Sikadur®-42 MP Normal HC is a three-component, flowable and self leveling, multi purpose, solvent-free, moisture tolerant, epoxy grouting system. For use at temperatures between +15°C and +30°C.

Uses

- High-strength grouting and fixing of:
 - Starter bars
 - Anchors
 - Fasteners
 - Tie rods
 - Crash barrier posts
 - Fence and railing posts

- Under-grouting and bedding of:
 - Base plates
 - Machine bases, seat base-plates for light and heavy machinery including heavy impact and vibratory machinery, reciprocating engines, compressors, pumps, presses, etc.
 - Bridge bearings
 - Mechanical joints (i.e. road/bridge/deck types, etc.)

- Sleeper-less, direct rail fixing:
 - Crane tracks
 - Light rail and permanent way in tunnels
 - Light rail and permanent way over bridges

Characteristics / Advantages

- High-strength
- High early strength
- Ready-to-mix, pre-batched units
- Moisture tolerant
- Non-shrink
- Corrosion and chemically resistant
- Stress and impact resistant
- High compressive strength
- High vibration resistance
- Low coefficient of thermal expansion

Product Data

Form

Appearance / Colour Concrete Grey

Packaging

- 12 kg (A+B+C): pre-batched unit
- 30 kg (A+B+C): pre-batched unit

Storage

Storage Conditions/ Shelf-Life

24 months from date of production if stored properly in original and unopened, sealed and undamaged packaging, in dry conditions at temperatures between +15°C and +30°C. Protect from direct sun light.
Technical Data

Chemical Base

- Epoxy resin.

Density

- $2'130 \text{ kg/m}^3 (A+B+C)$

Layer Thickness

- Minimum grout depth: 10 mm
- Maximum grout depth: 150 mm

<table>
<thead>
<tr>
<th>Temperature</th>
<th>10°C-20°C</th>
<th>20°C-30°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Thickness max.</td>
<td>150 mm</td>
<td>100 mm*</td>
</tr>
</tbody>
</table>

* no reduction of fillers; apply only with Mixing Ratio A : B : C = 5 : 1 : (30-36)

Change of Volume

Creep:

- $4.14 \text{ N/mm}^2 (600 \text{ psi}) / 31'500 \text{ N} (+60°C) 1.10\%$ (According to ASTM C1181)
- $2.76 \text{ N/mm}^2 (400 \text{ psi}) / 21'000 \text{ N} (+60°C) 0.21\%$ (According to ASTM C1181)

API requirements: 0.5% with 2.76 N/mm² load

Linear Shrinkage:
- -0.027% (According to ASTM C531)
- -0.03% (According to EN 52450)

Thermal Expansion Coefficient

- $2.1 \times 10^{-6} \text{ mm/mm/°C} (\text{Temp. range } -30°C - +30°C)$ (According to ASTM C531)
- $4.4 \times 10^{-5} \text{ mm/mm/°C} (\text{Temp. range } +24°C - +100°C)$ (According to ASTM C531)
- $2.7 \times 10^{-5} \text{ mm/mm/°C} (\text{Temp. range } -20°C - +60°C)$ (According to EN 1770)

Water Absorption Coefficient W

- 0.059% (7 days) (According to ASTM C413)

Thermal Stability

- Heat Deflection Temperature HDT:
 - $HDT = +55°C (7 \text{ days } / +23°C)$ (According to ISO 75)

Effective Bearing Area

- > 90% (According to ASTM C 1339)

Mechanical / Physical Properties

Compressive Strength

- (According to ASTM C-579)

<table>
<thead>
<tr>
<th>Curing time</th>
<th>+10°C</th>
<th>+23°C</th>
<th>+30°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 day</td>
<td>~ 31 N/mm²</td>
<td>~ 78 N/mm²</td>
<td>~ 90 N/mm²</td>
</tr>
<tr>
<td>3 days</td>
<td>~ 90 N/mm²</td>
<td>~ 100 N/mm²</td>
<td>~ 104 N/mm²</td>
</tr>
<tr>
<td>7 days</td>
<td>~ 100 N/mm²</td>
<td>~ 105 N/mm²</td>
<td>~ 107 N/mm²</td>
</tr>
<tr>
<td>28 days</td>
<td>~ 104 N/mm²</td>
<td>~ 109 N/mm²</td>
<td>~ 116 N/mm²</td>
</tr>
</tbody>
</table>

Product cured and tested at temperatures indicated.
Test specimen size: 50 * 50 * 50 mm

Flexural Strength

- ~ 39 N/mm² (According to ASTM C580)
- ~ 39 N/mm² (According to EN 53452)
- ~ 32 N/mm² (According to ISO 196)
Tensile Strength

- ~ 15 N/mm² (According to ASTM D638)
- ~ 16 N/mm² (According to ISO 527)
- ~ 14 N/mm² (According to ISO C 307)

Bond Strength

- > 47 N/mm² (concrete failure) (slant shear) (According to ASTM C882)
 - ~ 9 N/mm² (on steel)
 - > 3.5 N/mm² (concrete failure)

E-Modulus

- ~ 13'500 N/mm² (Tangent modulus of elasticity in bending) (ASTM C580)
- ~ 18'000 N/mm² (Compressive) (According to ASTM D695-96)
- ~ 16’000 N/mm² (Flexural) (According to EN 53452)

Elongation

- ~1.3% (ASTM D638)

Elongation at Break

- 0.1 + 0.05% (7 days at +23°C) (According to ISO 75)

Strength Development

Confirm the strength development by producing cubes on site and testing them for compressive and flexural strength.

Thermal Compatibility

No delamination / pass (According to ASTM C884)

Exotherm Peak

44°C (at +23°C) (According to ASTM D 2471)

System Information

Application Details

Substrate Quality

- Mortar and concrete must be older than 28 days (dependent on minimum strength requirements).
 - Verify the substrate strength (concrete, natural stone etc.).
 - The substrate surface (all types) must be clean, dry and free from contaminants such as dirt, oil, grease, existing surface treatments and coatings etc.
 - Steel substrates must be de-rusted to a standard equivalent to Sa 2.5
 - The substrate must be sound and all loose particles must be removed.
 - Substrate must be dry or mat damp and free from any standing water, ice etc.

Substrate Preparation

Concrete, mortar, stone:

Substrates must be sound, dry, clean and free from laitance, ice, standing water, grease, oils, old surface treatments or coatings and all loose or friable particles must be removed to achieve a laitance and contaminant free, open textured surface.

Steel:

Must be cleaned and prepared thoroughly to an acceptable quality standard equivalent to SA 2.5 i.e. by blastcleaning and vacuum. Avoid dew point conditions.

Surface and base plate contact area must be clean and sound. For best results, the substrate shall be dry. Remove dust, laitance, oils, grease, curing compounds, impregnations, waxes, foreign particles, coatings, and disintegrated materials by mechanical means, i.e. chipping with a chisel, blastcleaning etc.

All anchor pockets or sleeves must be free of water. Apply grout immediately to prevent re-oxidizing / rust formation.

For optimum results:

When grouting areas or equipment that is sensitive to vibration, it is recommended that the contact surfaces are prepared according to the latest edition of the American Petroleum Institute’s Recommended Practice 686 “Machinery Installation and Installation Design”, Chapter 5.
Application Conditions / Limitations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Temperature</td>
<td>+15°C min. / +30°C max.</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>+15°C min. / +30°C max.</td>
</tr>
<tr>
<td>Material Temperature</td>
<td>Sikadur®-42 MP Normal HC must be applied at temperatures between +15°C and +30°C. Condition the material by also storing at this temperature for 48 hours before use.</td>
</tr>
<tr>
<td>Substrate Moisture Content</td>
<td>≤ 4% pbw</td>
</tr>
<tr>
<td>Dew Point</td>
<td>Substrate temperature during application must be at least 3°C above dew point to avoid condensation.</td>
</tr>
</tbody>
</table>

Application Instructions

Mixing

- **Part A : B : C = 5 : 1 : 30 by weight (Standard)**
 - Solid / liquid = 5 : 1 by weight
 - Possibility to adjust the Mixing ratio, depending on Flowability:
 - **Part A : B : C = 5 : 1 : (27-36) by weight**
 - Solid / liquid = (4.5 – 6) : 1 by weight

- **Mixing Time**
 - **Pre-batched units:**
 - Mix components A and B in the component A pail for 3 min with a paddle attached to a low speed drill (300-450 rpm). Avoid aeration while mixing until the material becomes uniformly blended in colour and viscosity. Place the mixed epoxy into an appropriate mixing vessel. Slowly add the contents of component C (to keep air entrapment at a minimum) dependent on flow requirements (observe the correct mixing ratio) and mix until uniform and homogeneous. (approx. 5 min)
 - Mix only that quantity which can be used within its potlife.

 - **Bulk packing (not pre-batched):**
 - First, stir each component thoroughly. Add the components in the correct proportions into a suitable mixing pail. Mix the components. Use an electric low speed mixer, etc as above for the pre-batched units.
 - Never mix Component A and B without adding component C (as the exothermic reaction between A and B alone generates excess heat)

 - Leave Sikadur®-42 MP Normal HC to stand in the normal mixing vessel until the majority of entrained air bubbles have dispersed.

Application Method / Tools

Forming:

The consistency of the Sikadur®-42 MP Normal HC epoxy grout system requires the use of permanent or temporary forms to contain the material around base plates, for example. In order to prevent leakage or seepage, all of these formers must be sealed. Apply polyethylene film or wax to all forms to prevent adhesion of the grout. Prepare the formwork to maintain more than 100 mm liquid head to facilitate placement. A grout box equipped with an inclined trough attached to the form will enhance the grout flow and minimize air encapsulation.

Pour the mixed grout into the prepared forms from one or two sides only, to eliminate air entrapment. Maintain the liquid head to ensure intimate contact to the base plate. Place sufficient epoxy grout in the forms to rise slightly above the underside (3 mm) of the base plate. The minimum void depth beneath the baseplate shall be 12 mm. Where the void beneath the base plate is greater than 150 mm, place the epoxy grout in successive 150 mm lifts or less, once the preceding lift has cooled.

Once hardened check the adhesion by tapping with a hammer.
Cleaning of Tools

Sweep excess grout into appropriate containers for disposal before it has hardened. Dispose of in accordance with applicable local regulations. Uncured material can be removed with Sika Colma Cleaner. Cured material can only be removed mechanically.

Potlife

<table>
<thead>
<tr>
<th>Potlife (200g, adiabatic testing)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>5 : 1 : 30</td>
</tr>
<tr>
<td>+10°C</td>
</tr>
<tr>
<td>130 minutes</td>
</tr>
<tr>
<td>+23°C</td>
</tr>
<tr>
<td>75-80 minutes</td>
</tr>
</tbody>
</table>

The potlife begins when the resin and hardener are mixed. It is shorter at high temperatures and longer at low temperatures. The greater the quantity mixed, the shorter the potlife. To obtain longer workability at high temperatures, the mixed adhesive may be divided into portions. Another method is to chill parts A+B and C before mixing them (i.e. only when application temperatures are above +20°C).

Notes on Application / Limitations

Minimum substrate temperature: +10°C. The material must be conditioned by being stored in an area with an ambient temperature between +10° and +30°C for a minimum of 48 h before using. Do not thin with solvents. Solvents will prevent proper curing and change mechanical properties.

Sikadur®-42 MP Normal HC is a vapour barrier when cured. Minimum grout depth: 10 mm.
Maximum grout depth: 150 mm per lift.
The last lift must be kept at 50 mm.
Component C must be kept dry. For specific bolt grouting applications please refer to Sika Technical Services. For proper seating, allow the grout to rise above the bottom (3 mm) of the base plate.

Avoid splitting prebatched units to mix. Mix complete units only. Cold ambient, substrate or material temperatures will influence the curing and flow characteristics of Sikadur®-42 MP Normal HC. Do not subject cured epoxy grout to sudden temperature changes especially during early curing stages. Contact Sika Technical Services for control joint spacing on large base plate grouting projects.

Value Base

All technical data stated in this Product Data Sheet are based on laboratory tests. Actual measured data may vary due to circumstances beyond our control.

Local Restrictions

Please note that as a result of specific local regulations the performance of this product may vary from country to country. Please consult the local Product Data Sheet for the exact description of the application fields.

Health and Safety Information

For information and advice on the safe handling, storage and disposal of chemical products, users shall refer to the most recent Material Safety Data Sheet containing physical, ecological, toxicological and other safety-related data.

Legal Notes

The information, and, in particular, the recommendations relating to the application and end-use of Sika products, are given in good faith based on Sika’s current knowledge and experience of the product when properly stored, handled and applied under normal conditions in accordance with Sika’s recommendations. In practice, the differences in materials, substrates and actual site conditions are such that no warranty in respect of merchantability or fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, can be inferred either from this information, or from any written recommendations, or from any other advice offered. The user of the product must test the product’s suitability for the intended application and purpose. Sika reserves the right to change the properties of its products. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will be supplied on request.

PT. Sika Indonesia
Jl. Raya Cibinong- Bekasi km. 20
Limununggal- Cileungsi
Bogor 16820 - Indonesia
Tel. +62 21 8230025
Fax +62 21 8230026
Website : www.sika.co.id
e-mail: sikacare@id.sika.com

Branches
Surabaya:
Puri Naga Blok G No. 29, Jl. Raya Rungkut Menanggul 11, Surabaya
Tel : 031-8690002 ; Fax : 031-8682133
Medan:
Jl. Pancing / Jl. Willem Iskandar No.75 & 75 A, Kec. Medan Tembung
Tel : (061) 6619500; Fax : (061) 6619400
Batam:
Jl. Laksamana Bintan, Komp. Bumi Rau Makmur Blok E No.3, Sungai Panas
Tel : (0778) 424928; Fax : (0778) 450189