
Neurocomputing 433 (2021) 108–118
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
NetKI: A kirchhoff index based statistical graph embedding in nearly
linear time
https://doi.org/10.1016/j.neucom.2020.12.075
0925-2312/� 2020 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: anwar.said@itu.edu.pk (A. Said), saeed-ul-hassan@itu.edu.pk

(S.-U. Hassan), waseem.ee@gmail.com (W. Abbas), mudassir.shabbir@itu.edu.pk (M.
Shabbir).
Anwar Said a, Saeed-Ul Hassan a,⇑, Waseem Abbas b, Mudassir Shabbir a

aDepartment of Computer Sciences, Information Technology University, Lahore, Pakistan
b Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, United States

a r t i c l e i n f o
Article history:
Received 25 October 2019
Revised 26 August 2020
Accepted 12 December 2020
Available online 29 December 2020
Communicated by Steven Hoi

Keywords:
Graph classification
Graph embedding
Graph mining
Kirchhoff index
Linear time
a b s t r a c t

Recent advancements in learning from graph-structured data have shown promising results on the graph
classification task. However, due to their high time complexities, making them scalable on large graphs,
with millions of nodes and edges, remains a challenge. In this paper, we propose NetKI, an algorithm to
extract sparse representation from a given graph with n nodes and m edges in Oðm��2log4nÞ time. Our
approach follows the notion of Kirchhoff index that encodes the structure of the graph by estimating
effective resistance - relying on this approach yields nearly linear time graph representation method that
allows scalability on sufficiently large graphs. Through extensive experiments, we show that NetKI pro-
vides improved results in terms of running time on large networks and the classification accuracy is
within range 2% from the state-of-the-art results.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Many real-world systems involve interactions between pairs of
entities. Examples of such systems include social networks, finan-
cial systems, molecular graph structures, resistor networks, recom-
mender systems, and protein–protein interaction networks. All of
these systems and many more can be represented as graphs, that
encode real-world objects (i.e., nodes) and the pair-wise interac-
tions (i.e., edges) between them. More recently, graphs have also
been used to model grid-structured data, such as images, to make
the computations faster [1]. Encoding graphs into low-dimensional
embeddings enables one to employ the traditional machine learn-
ing and data mining algorithms on graph-structured data. This
approach facilitates researchers to solve hard problems on graphs
such as graph classification. The graph classification problem refers
to the understanding of complex graph structures among different
classes, and it has a variety of real-world applications ranging from
text classification to molecules toxicity prediction and classifying
community structures in a social network [2]. However, graph clas-
sification poses several challenges such as permutation invariance,
scalability, and, the runtime efficiency of the encoding. Generally,
the same graph can be represented by many adjacency matrices
due to a lack order on nodes of a graph, therefore, the ideal encod-
ing procedure for graph classification should be invariant under
permutations of the nodes. Moreover, it should preserve the
atomic structure of the graph based on the local and global posi-
tions of pairs of nodes. Unfortunately, existing graph classification
approaches often require a pairwise comparison among the graphs
or are based solely on a statistical and spectral representations,
which is hard to compute [3–6]. Therefore, appropriate representa-
tion methods are required to encode the atomic structure of the
graph succinctly that are efficient. To address the aforementioned
challenges, in this paper, we propose using a well-known measure
called the Kirchhoff index for extracting graph representations. The
Kirchhoff index encapsulates the atomic structure of the graph
because it incorporates the information regarding the number of
paths and quality of paths. It features in many other contexts, such
as Markov chains (the average commute time of a Markov chain on
the graph), experiment design, and Euclidean distance embeddings
[7,8]. Recently, it has also been employed to quantify the resilience
of networks based on noisy data in distributed networked control
systems [9]. In fact, it has more equivalent descriptions including
the Laplacian spectrum and the effective resistance which makes
it suitable for extracting graph representations. Typically, Kirchhoff
index is defined in terms of effective resistance using the analogy
of graphs in an electrical circuit. A graph can be transformed into
an electrical circuit by replacing each edge with a unit resistance.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.12.075&domain=pdf
https://doi.org/10.1016/j.neucom.2020.12.075
mailto:anwar.said@itu.edu.pk
mailto:saeed-ul-hassan@itu.edu.pk
mailto:waseem.ee@gmail.com
mailto:mudassir.shabbir@itu.edu.pk
https://doi.org/10.1016/j.neucom.2020.12.075
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
The effective resistance between any two nodes in such a network
refers to the equivalent electrical resistance between those two
nodes. The sum of the effective resistance between all pair of nodes
is referred to as the Kirchhoff index of a graph. We note that a
higher value of effective resistance between nodes indicates an
inferior or less robust overall connection between the nodes (as
measured by the number and quality of paths between them)
[8,10,11,7,12]. Since there is always a path between two nodes in
a connected network (that is, any two nodes are always connected,
maybe via some other nodes), the effective resistance between any
two nodes is well defined. Consequently, the effective resistance of
a graph, which is the sum of all pair-wise effective resistances
between nodes, is also well defined. To illustrate this, consider
the example in Fig. 1.

In (b), there are four paths between nodes 1 and 2 with lengths
1;3;4, and 5, and the effective resistance between the nodes is
0:72. In (c), there are three paths between nodes 1 and 2 with
lengths 1;3, and 5, and the effective resistance between is 0:73.
We see only a slight increase in effective resistance (indicating a
slightly less robust connection) as the path of length four does
not exist anymore. The effect is minimal because the paths of smal-
ler lengths, which are more important, are still there. In (d), there
are only two paths between nodes 1 and 2 with lengths 3, and 5.
The edge between nodes 1 and 2, hence the path of length 1, is
removed. The effective resistance between the nodes increases sig-
nificantly as the path with the shortest length having the maxi-
mum effect is deleted. In (e), there is only one path of length 3
between nodes 1 and 2, which increase the effective resistance
from 2:75 to 3:0. Thus, we observe that effective resistance
between two nodes (adjacent or non-adjacent) measure robust-
ness in terms of the number and quality (length) of paths between
nodes. Since Kirchhoff index measures the number as well as the
quality of paths, we argue in this paper that this is a suitable mea-
sure to generate meaningful and expressive graph representations.

Tapping the recent advancements in solving linear systems in
graph Laplacian and for measuring edge centrality in graphs, we
propose an efficient method to compute the Kirchhoff index for
graph classification task [13,14]. The major contributions of this
study are as follows.

� We propose an efficient Kirchhoff index based graph classifica-
tion method that encapsulates graph structure in terms of the
number and quality of paths between all pairs of nodes.
Fig. 1. (a) A graph with six nodes. (b) Each edge is replaced by a unit resistor and the effec
edges as shown in (c), (d), and (e) results in the loss of path between nodes 1 and 2, wh
effective resistance is also shown with the figures. A loss of a good quality path results

109
� We empirically show that proposed method provides improved
results in terms of running time on large networks while the
classification accuracy is close to the state-of-the-art methods
that are, otherwise, impractical for large graphs.
� We are making our implementation publicly available for other
researchers to use and improve upon.

2. Related work

Our related work section is divided into four categories: direct
methods, graph kernel methods, statistical and spectral represen-
tations, and graph-theoretic approaches. The methods in the first
three categories deal with graph representations, while the last
category surveys the relevant graph-theoretic approaches used or
referred in this work. Table 1 summarizes the related work’s nec-
essary properties and time complexity.

2.1. Direct methods

Direct methods seek to extract features from graphs directly
[3,4,15,16,5,17]. The Graph Edit Distance (GED) [3] approach is built
upon the minimal number of modification needed to transform
one graph into another. However, the problem is NP-hard even
when the goal is to approximate the distance. A group-theoretic
approach, the graphlet spectrum [4] characterizes graphs in terms
of the position or frequency of common graphlets or motifs. Some
other well-known approaches include propagation models [18],
family of tractable distances [19] and heuristics-based approaches
[20,21]. However, all of these methods require extensive computa-
tional power to run on any decent size graph dataset.

2.2. Kernel methods

Graph kernel methods are one of the most popular categories of
graph classification. In general, these methods define a distance
between pairs of elementary substructures of two graphs, and
some function of the resulting matrix is the representation of dis-
tance between the two given graphs. [15,22–25,3,19,26,18,20].
Deep graph kernels [15] compute substructures or motifs of a
graph, and use a word-embedding model to extract the underlying
features. In order to extract both local and global-scale graph fea-
tures, Kondor et al., [16] introduced the Multiscale Laplacian Graph
Kernel (MLG) which captures nodes’ topological information
tive resistance (Reff) between nodes 1 and 2 is computed. The subsequent removal of
ich causes an increase in the effective resistance. The corresponding increase in the
in large increase in the corresponding effective resistance.

Table 1
Summary of related work: the column ‘‘labels” indicates whether the method support (requires) labels. The column ‘‘attributes” refers to the features or other general attributes
associated with the nodes. The variables represent: (n nodes, m edges, d constant, D average degree, h iterations, k eigenvalues, � relative error, GCNs (Graph Convolutional
Networks), Attr – Attributes, Perm – permutation, Invar – Invariance, stat – statistical, spec – spectral, rep – representation).

Method Type Labels Attr. Perm. Invar. Complexity

GED [3] direct + � + NP-complete
FTD [19] direct + � � Oðn2Þ
RW[52] kernel + + + Oðn6Þ
SP [22] kernel + + + Oðn3Þ
NHK [28] kernel + � + OðdhnDÞ
WL [24] kernel + � + OðhmÞ
MLG [16] kernel + � + Oðk3Þ
FGSD [5] stat. rep. � � + Oðn2Þ
NetKI stat. rep. � � + Oðm��2log4nÞ
NetLSD [6] spec. rep. � � + Oðkmþ k2nÞ
GCN [47] GCNs � + �
GraphSAGE [53] GCNs + + +
GIN [49] GCNs + + +
DGI [50] GCNs + + +

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
through graph Laplacian. Other popular graph kernels include the
Weisfeiler-Lehman kernel (WL) [24], shortest path kernel (SP)
[22], edge histogram kernel (EHK) [27], neighbourhood hash kernel
(NHK) [28], graphlet sampling kernel (GK) [29] and graph invariant
kernel [25]. However, these methods suffer from higher time com-
plexity. In order to capture the distribution of an individual compo-
nent of the graph, recently, [30] proposed a distance measure for
graphs: the graph Wasserstein distance and Weisfeiler-Lehman-
inspired embedding scheme derived from optimal transport the-
ory. The proposed measure uses node feature representations
and weighted edges to enhance the quality of the graph embed-
dings. Similarly, [31] introduced indefinite graph kernel for time
series analysis by using the power of optimal transport theory.
The computational overhead of these methods makes them
impractical for large-scale graph classification.
2.3. Statistical and spectral representations

Statistical and spectral representation methods use a graph’s
statistical properties and graph spectrum to generate graph feature
vectors [32,33,5,6]. Initial works in this area [32,33] use summary-
graph-statistics and handcrafted features such as nodes’ degrees to
extract local graph properties. Recently, Verma and Zhang [5]
introduced a histogram-based representation method, known as
the Family of Graph Spectral Distances (FGSD). This approach
based on computing multisets of spectral distances between all
pairs of nodes using eigendecomposition. The authors in [6] intro-
duced a spectral representation method, based on wave- and heat-
trace signatures at various times, and consider the associated heat
diffusion process on the graph rather than use the Laplacian spec-
trum to obtain graph representations. Recent approaches [5,6]
have shown promising results on graph comparison. However,
their time complexities make them impractical for reasonably
large graphs.

Under the assumption of the same number of nodes in the
graphs, [34] recently propose a graph comparison framework that
uses Wasserstein distance is mean to compare graphs. The mea-
sure uses smooth graph signal distributions associated with graphs
and compares them using the Wasserstein distance. Similarly, [35]
uses optimal transport theory and introduces a graph comparison
framework based on empirical distribution with a graph-based
regularization. The main idea of the work was to compute an opti-
mal transportation plan by limiting the displacement of a pair of
nodes. Graph-based regularization [36] approach finds the similar-
ity between adjacent nodes by their position or displacements of
110
the transported sample. Instead of matching graph feature vectors,
[37] propose to use a Wasserstein distance to compare between
them. [38] uses separable functions to approximate discrete graph
matching in continuous domain. Likewise, [39,40] use Gumbel-
sinkhorn network to extract permutations from data. Closer to
our work, the authors in [41] propose a graph streaming algorithm
that doesn’t require the whole graph in memory and approximate
feature vector by estimating counts of sub-graph. Some other dis-
tance measures on graphs include [42–44,40]. Many of these
approaches have shown promising results on the graph classifica-
tion task, however, due to their computational complexities, scal-
ing them on sufficiently large graphs is still a challenging task.

With the advancement in deep learning approaches especially
the convolutional neural networks and recurrent neural networks,
recently there has been a surge in neural models for learning graph
representations [45–48,1]. Graph neural models are end-to-end
learning approaches based on neighborhood aggregation and
recurrent neural networks [49–51].
2.4. Graph-theoretic methods

Li and Zhang [14] introduced nearly-linear time algorithms for
finding nodes’ and edges’ importance in a given network. To find
edge importance, the authors deployed the Sherman-Morrison for-
mula and used two graph-theoretic approaches to attain the
required goal. These methods will be discussed in details in forth-
coming section, as our method is based on this idea. Spielman and
Srivastava constructed spectral graph sparsifier in OðmÞ and proved
the existence of sparse graph with Oðn logn=�2Þ edges [54]. To con-
struct the sparsifier, this method uses the notion of graph effective
resistance approximated by solving graph Laplacian. The break-
through results by Spielman and Teng show that it can be solved
in Oðmlogcn logð1�ÞÞ time [55]. Kyng and Sachdeva [13] introduced
a nearly-linear time algorithm that approximates cholesky factor-
ization for Laplacian matrices [56]. This algorithm is based purely
on random sampling and Gaussian elimination to solve linear sys-
tems in graph Laplacians. Recently, Cohen et al.,[57] introduced a
sub-sampling iterative method (currently the best-known Lapla-
cian solver) based on recursive preconditioning, and this aims to
reduce graphs to trees. Many other follow-up works [58–61] have
extended the field in the past decade, and, currently the best

known algorithm has Oðmlog
1
2n log logcn logð1�ÞÞ [57] time complex-

ity. Although [57] is the best-known Laplacian solver, we employed
Kyng and Sachdeva’s [13] method in our experimental setup, since

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
it is simple and requires no graph theoretic constructions. This
enabled us to solve a much broader family of linear systems. Addi-
tionally, the code of the solver is freely available1, and we used it in
our experimental setup.

3. Preliminaries and basic notations

3.1. Graph Basics

Let G ¼ ðV ; EÞ denote an undirected connected graph where
V ¼ fv1;v2; . . . :;vng is the set of n nodes, and E#V � V is the set
of m edges. Throughout this study, we consider G as a resistor net-
work where nodes represent junctions while edges represent resis-
tors between the junctions. Let re denote a unit resistance over the
edge e. We write G0ðeÞ to represent the graph obtained from G by
deactivating edge e by decreasing re to hre for some small
0 < h < 1=2. We denote this process by h-deletion. Let L denote
the n� n Laplacian matrix for G where,

Lðu;vÞ ¼
ku if u ¼¼ v
�1 if u � v
0 otherwise:

8><
>:

ð1Þ

Where ku is the degree of node u, and ðu � vÞ indicate that node u

and v are neighbors. Let Lhe denote the Laplacian of the graph after
the deactivation of edge e. Let W be an m�m diagonal matrix with
W½x; x� ¼ wðexÞ (ex indicates an edge from the edge set
fe1; e2; . . . ; emg 2 E). Similarly, let Bm�n denotes a signed edge-vertex
incident matrix where each entry is

Bex ;v ¼
1 if v is ex0s head;
�1 if v is ex0s tail;
0 otherwise:

8><
>:

ð2Þ

Then the Laplacian matrix L ¼ B>WB [62]. Let Lþ represents the

pseudo-inverse of the Laplacian and ei denote the ith standard basis
vector or one-hot encoding of a node v i where only the correspond-

ing ith index is 1, and 0 otherwise, and bu;v ¼ eu � ev . For each edge
e 2 E, we define be ¼ bu;v where u and v are the end points of the
edge e respectively. This implies that be contains only two non-

zero entries: 1 (on the ith index) and �1 (on jth index). Using the
standard basis vector be, it can be shown that L ¼P

e2Ebeb
>
e for G.

Similarly, for G0ðeÞ, we have Lhe ¼ L� ð1� hÞbeb
>
e [14].

3.2. Network Kirchhoff Index

Extracting features from graphs is hard and involves many chal-
lenges such as the permutation invariance, scalability, and effi-
ciency of the algorithm. To tackle these challenges, here we
leverage a resistor network metaphor. The electrical flow on the
resistor network can be described is as follow.

Let IinjðuÞ represent currents injected at the graph node u, and
IðeÞ indicate the currents induced in the edge e. Let /ðuÞ be the
potential induced at the node u. Then the Kirchhoff current law
states that the sum of total current injected to the node must be
equal to the sum of current flowing out of it:

B>I ¼ Iinj ð3Þ
By Ohm’s law, the flow of current in an edge follows

I ¼WB/ ð4Þ
Combining (3) and (4), we get
1 http://danspielman.github.io/Laplacians.jl/latest/usingSolvers/

111
Iinj ¼ B>ðWB/Þ ¼ L/ ð5Þ
If the total amount of current passed to a node equals the total cur-
rent flowing out of it, then we can write it as follows.

/ ¼ LþIinj ð6Þ
Now using Lþ, the effective resistance and Kirchhoff index can be
defined as below.

Effective Resistance: The effective resistance ðReff Þ of an edge e
can be defined as the potential difference between endpoints of the
edge when a unit current is passed at the head of the edge and
extracted at the tail. In terms of Laplacian matrix, it can be defined
as

Reff ðeÞ ¼ b>e L
þbe ð7Þ

Generally, the effective resistance between a pair of nodes can be
calculated through well-known manipulations: series, parallel.
Edges (e1; ::; ek) correspond to resistors with resistance ðr1; ::; rkÞ
Ohm in series can be replaced by a single edge with resistancePk

i ri. In case of parallel connectivity, edges can be replaced by

one edge with resistance ðPk
i r
�1
i Þ

�1
. The definitions of these series

and parallel manipulations on resistor networks follow that the
effective resistance captures both the number of paths, quality of
paths and their length between pair of nodes which intuitively
quantifies edges based on their electrical importance.

Rayleigh’s Monotonicity Law: ‘‘If the resistance of a circuit is
increased, the effective resistance Reff between any two points can only
increase. If they are decreased, it can only decrease”.

By law of Rayleigh’s Monotonicity, we define edges’ centrality
scores as follow [14].

Definition 3.1. The centrality score ChðeÞ of an edge e 2 E using the
Kirchhoff index is defined as the increase of the Kirchhoff index of
the graph obtained from G by h� deleting e.
Definition 3.2. Kirchhoff Index: The Kirchhoff index of a graph G
can be defined as the sum of the effective resistance over all pairs
of nodes.

Kirchhoff indexðGÞ ¼
X

v i ;v j2V ; i<j

Reff ðv i;v jÞ ð8Þ

The Kirchhoff index of a given graph quantifies graph connectiv-
ity. The less connected a graph is, the larger the Kirchhoff index
will be. Similarly, when the graph is densely connected, the corre-
sponding Kirchhoff index is smaller in general. Based on the defini-
tion of Kirchhoff index and Rayleigh’s Monotonicity Law, we have
[14]:

Fact 1.1: The Kirchhoff index of a graph does not decrease by
h� deleting e.

Fact 1.2: ”Let k1; k2; . . . ; kn�1 be the nonzero eigenvalues of L. The
Kirchhoff index of graph G satisfies Kirchhoff index(G)

¼ n
Pn�1

i¼1
1
ki
¼ nTrðLþÞ”.

Based on Fact 1.1, edges scores ChðeÞ using Kirchhoff index can
be computed via h� deletion as Kirchhoff index encapsulates infor-
mation regarding the number of paths and quality of paths. By Def-
inition 3.1, the difference of the Kirchhoff index between G and
G0ðeÞ reflects ChðeÞ and it can be computed for all the edges to
encode the structure of the graph. In the forthcoming sections,
we present a graph embedding algorithm using the computation
of exact Kirchhoff index of the graph. And then we show linear
time approximation of Kirchhoff index for encoding sufficiently
large graphs.

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
4. Methodology

4.1. Graph embedding algorithm using exact Kirchhoff index

Here we present Kirchhoff index based graph representation
algorithmwhich encodes graph structures using network Kirchhoff
index. The algorithm describes the procedure for extracting graph
representation by computing exact network Kirchhoff index.

Algorithm1: Compute H using exact Kirchhoff index

Input: Graph G ¼ ðV ; E;wÞ, Laplacian L, bin width h, number of
bins b

Output: H
1: Let Lþ indicate pseudo-inverse of the Laplacian matrix
2: K nTrðLþÞ
3: initialize sparse matrix Fn�n with zeros
4: for eðu;vÞ 2 E do
5: G0ðeÞ h� deleting e
6: Lhe Laplacian of G0ðeÞ
7: L0ðeÞ pseudo-inverse of Lhe

8: Khe nTrðL0ðeÞÞ
9: ChðeÞ Khe � K
10: Fuv ChðeÞ
11: end for
12: Set Flt fFuv j8ðu;vÞ 2 jV jg
13: H histogramðFlt; b;hÞ
14: return H

The core idea of Algorithm1 is to perform h� deletion and com-
pute the Kirchhoff index of the graph. Initially, the algorithm com-
putes pseudo-inverse in step-1 and by using Fact 1.2, it computes
Kirchhoff index (K) (step-2) of the G. In step 5, it performs
h� deleting e and computes the Laplacian Lhe, pseudo-inverse
L0ðeÞ and Khe(step 6–8) of the new graph G0ðeÞ. Using Definition
3.1, edge e centrality score is computed in step 9. This procedure
is repeated for all edges and the corresponding scores ChðeÞ are
stored in matrix F. Finally, we flatten F and compute the his-
togram H(step 12–13).

From step 4–11, the algorithm computes Laplacian pseudo-
inverse Lhe and L0(e) for each edge (m times) which has Oðn2Þ run-
ning time complexity each. Thus, the total cost of this algorithm is
Oðmn2Þ.

4.2. NetKI: Algorithm for graph representation using the approximate
Kirchhoff index

Here, we show an approximation algorithm that extracts fea-
ture vector from graphs in nearly linear time. Our proposed
method is based on the approximation procedure proposed in
[14]. Li and Zhang [14] introduced two alternate
�� approximation algorithms to estimate the relative importance
of graph edges and an algorithm for computing nodes’ importance
in a given graph. To compute edge relative importance, the authors
used the notion of Kirchhoff index and approximate it in two dif-
ferent ways. We follow the EDGECENTCOMP2(Theorem 1.2)
approximation algorithm for estimating the edge scores which is
derived through Sherman-Morrison formula [63]. For an edge
e 2 E and a scalar 0 < h < 1, we have

ðLheÞþ ¼ ðL� ð1� hÞbeb
>
e Þ
þ

By Sherman-Morrison formula;we have

¼ Lþ þ ð1� hÞ Lþbeb>e L
þ

1�ð1�hÞb>e Lþbe

ð9Þ
112
Thus by the definition of the edge score, we have

Che ¼ nð1� hÞ TrðLþbeb
>
e L
þÞ

1� ð1� hÞb>e Lþbe

ð10Þ

Where ðLheÞ is the Laplacian of the graph G0ðeÞ which is obtained by
h� deletion in the original graph G. Che is the score we aim to com-
pute as discussed in Algorithm1. The numerator of Eq. (10) is the
trace of the implicit matrix TrðLþbeb

>
e L
þÞÞ which is approximated

through Hutchinson’s Monte-Carlo method [64,65]. Further to
apply Lþ, the author used nearly-linear time Laplacian solver [57].
The denominator of the Eq. (10) is just 1� ð1� hÞReff derived in
Eq. (7), and the authors used the random projection in [54] to
approximate the effective resistance.

EDGECENTCOMP2 algorithm is based on two main procedures:
solving linear systems in graph Laplacian and approximating the
effective resistance. Due to the various real-world applications of
the graph Laplacian including the graph partitioning, resistor net-
works and the theory of random walks, there has been a surge in
approaches to solve it efficiently. In particular, the breakthrough
results by Spielman and Teng [55] showed that linear systems in
graph Laplacian could be solved in Oðmlogcn logð1�ÞÞ time. Various
follow up works have improved the bound in the last decade.
One notable Laplacian solver was proposed by Kyng and Sachdeva
[13] which is purely based on random sampling and runs in

expected time Oðmlog3nÞ. The algorithm does not use any graph
theoretic constructions and performs Gaussian elimination based
on Cholesky factorization to solve x ¼ Lþb in graph Laplacian. This
allows us to recursively solve a much broader family of linear sys-
tems. In EDGECENTCOMP2 algorithm, the Laplacian solver pro-

posed in [57] was used which runs in Oðmlog
1
2n log logcn logð1�ÞÞ

expected time.
To approximate the effective resistance, EDGECENTCOMP2 uses

the algorithm proposed in [54]. The authors in [54] used vector

random projection in a subspace fQW1
2BLþXvgwhere Q is a random

Bernoulli matrix and Xv indicates standard basis vector of node v.
Adapted from [54], we show the procedure for approximating
the effective resistance in Algorithm2.

Algorithm2: Compute approximation matrix Z

Input: Graph G ¼ ðV ; EÞ and � > 0
Output: Reff ðu;vÞ
1: Let Qk�n be a random Bernoulli matrix, where
k ¼ 24 logn=�2

2: compute Y ¼ QW1=2B
3: Let Zk�n be an approximate resistance matrix
4: Let yi denote the rows of Y
5: for i ¼ 1 to k do
6: U>DU SPARSECHOLESKYðL; �Þ
7: Zi ðUþÞ>ðDþÞðUþÞyi
8: end for
9: return Z
The Algorithm2 uses Johnson-Lindenstrauss Lemma and Kyng
and Sachdeva’s Laplacian solver to estimate the effective resis-
tance. Using the Johnson-Lindenstrauss lemma, the algorithm ran-
domly generates Qk�n Bernoulli matrix and considers it as a k-
dimensional projection in Rd [66,13]. Then the algorithm computes
Y matrix which takes 2m� 24 logn=�2 þm ¼ Oðm=�2Þ time, since
W is diagonal and B has 2m entries. Finally, the algorithm solves
the Laplacian L for each row of Y matrix to form the resistance

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
matrix Z which has Oðmlog3nÞ time complexity. After computing
the resistance matrix, the effective resistance of each edge ðu;vÞ
can be computed as follows [54].

Reff ðu;vÞ � jjZðXu �XvÞjj2 ð11Þ
Where Xu and Xv represent the corresponding columns of nodes u
and v in the resistance matrix Z.

Algorithm3: Compute H using NetKI

Input: Graph G ¼ ðV ; E;wÞ, Laplacian L, bin width h, number of
bins b; h and � : ½0;1=2�.

Output: H
1: Let z1; . . . ; zM be independent random �1 vectors, where

M ¼ d��2 logðnÞe
2: Let AM�jEj be a solver matrix
3: Let Fn�n be a score matrix
4: fori ¼ 1 to M do
5: U>DU SPARSECHOLESKYðL; �Þ
6: xi ðUþÞ>ðDþÞðUþÞzi
7: foreach e 2 E do
8: Ai;e x>i beb

>
e xi

9: end for
10: end for
11: Z Compute approximation matrix(G; h�=9)
12: for each eðu;vÞ 2 jEj do
13: Fu;v ð1� hÞ nM

PM
i Ai;e=ð1� ð1� hÞZjjXu �Xv jj2

14: end for
15: Set Flt fFuv j8ðu;vÞ 2 jV jg
16: compute H histogramðFlt; b;hÞ
17: return H
Using EDGECENTCOMP2, we present the approximation algo-
rithm for generating graph representations in Algorithm3. The core
idea of the algorithm is to approximate Kirchhoff index based on
Eq. (10). To apply Laplacian pseudo-inverse, we use nearly-linear
time solver [13] to generate sparse Cholesky factorization (step
5). In step 6, the algorithm computes the solution vector and calcu-
lates Kirchhoff index score for each edge using Eq. (10). This pro-
cess is repeated M times which compute M scores for each edge.
Further, the algorithm computes approximate matrix Z using Algo-
rithm2 to estimate the effective resistance (step-11). Following
Monte-Carlo method which approximates trace of a matrix L by
1
M

PM
i z
>
i Lzi where E½z>i Lzi� ¼ TrðLÞ, the algorithm computes score

matrix F. Note that zi represents random �1 vectors consisting of
independent Bernoulli entries. Finally, we flatten the score matrix
and generate histogram H to perform graph classification task
using a standard classification algorithm.

4.3. Modification to the EDGECENTCOMP2 algorithm

EDGECENTCOMP2 algorithm uses Cohen et al., [57] Laplacian
solver, which is currently the best-known method for solving lin-
ear systems in graph Laplacian with running time

Oðmlog1=2n log logcn logð1=�ÞÞ. However, it requires many graph-
theoretic constructions such as the recursive preconditioning,
leverage score, ultra-sparsifiers, and low-stretch spanning trees,
and thus, is difficult to implement. Instead, we use Kyng and Sach-
deva (step 4 in Algorithm2) - a popular nearly linear time Lapla-

cian solver which runs in Oðmlog3nÞ in our experimental setup.
This method is quite simple and based purely on random sampling.
We refer the reader to [13] for more details. Further, we extend the
113
algorithm to extract graph representation2 using the approxi-
mated Kirchhoff index based edge scores.

4.4. Analysis of the algorithms

The NetKI method is based on two main procedures: SPARSE-
CHOLESKY and the ‘‘Compute approximation matrix”. The running

time of SPARSECHOLESKY method is Oðmlog3nÞ . The ‘‘Compute
approximation matrix” makes a total of OðlognÞ calls to SPARSE-

CHOLESKY each of which takes Oðmlog3nÞ time. Therefore the total

running time is Oðmlog4nÞ.
The NetKI algorithm makes Oð��2 lognÞ calls to SPARSECHO-

LESKY each of which takes Oðmlog3nÞ time, makes a call to ‘‘Com-

pute approximation matrix” which runs in Oðmlog4nÞ time, and
computes the histogram which runs in Oðnþ bÞ, where b is the
number of bins. Therefore, the running time of NetKI algorithm is
bounded by,

Oðm��2log4nÞ þ Oðmlog4nÞ þ Oðnþ bÞ ¼ Oðm��2log4nÞ.
5. Evaluation

We performed a number of different experiments to evaluate
NetKI in terms of scalability, feature sparsity, running time, classi-
fication accuracy and features comparison. The forthcoming sec-
tions describe the details of all the experimentation we
performed for the evaluation of NetKI.

5.1. Scaling to large graphs

Scalability on large graphs is an essential requirement for clas-
sification of graph-structured data using machine learning.
Although, recent approaches have shown promising results on var-
ious benchmark datasets, making them scalable on large graphs
remains a challenge. To corroborate the scalability power of NetKI,
here we present it’s performance analysis in terms of time on large
random graphs with millions of nodes and edges.

We generate five large random graphs of size
f102;103;104;105;106g using Erd}os-Rényi model with probabili-
ties f0:1;0:01;0:001;0:0001;0:00003g respectively. The combina-
tion of these parameters generates large densely connected
graphs up to 15 millions of edges. The time complexity comparison
against other state-of-the-art methods including NetLSD [6]
(which is currently the best known spectral representation method
in terms of complexity) is shown in Fig. 2. We can see that NetKI
took only 9 min on a graph with 105 nodes and took 30 min on a
graph with 106 nodes. On the other hand, NetLSD (hg) executed

in 22 min on graph of size 105 nodes and took 3 h on 106 nodes.
Although, FGSD performs well on small graphs, however, its per-
formance worsens sharply as the size of the graphs increase. On
the other hand, NetKI performs quite well on large graphs and out-
performs all other approaches. These results illustrate that NetKI is
a suitable graph embedding and classification method for large-
scale graphs.

5.2. NetKI sparse representations

Representation sparsity is desirable for the task of machine
learning and can be defined as the number of zero entries present
in the feature vector. Sparse representations have received consid-
erable attention in the last few years, and have found applications
in various fields such as signal processing, image processing, and
deep learning [67]. The main aspect in which sparse representa-
tions are superior is the adaptation on varying levels of informa-

Fig. 2. Performance comparison in terms of time with state-of-the-art approaches on large random graphs. NetKI efficiently performs on large-scale graphs.

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
tion and its closeness to the linearity, as dense representations are
difficult to learn. On the other hand, it provides an intermediate
form between one-hot representation and pure distributed repre-
sentation. Thus, the more sparse representation, the easier it is to
generalize and learn [67,5].

We empirically show NetKI’s representation sparsity and also
provide comparison with FGSD in Fig. 3 (left). The NetKI shown
minimum 80% representation sparsity on D&D dataset and maxi-
mum 98% on PTC dataset. To better motivate the sparse represen-
tations for the classification task, we show the classification
accuracy of NetKI and FGSD on sparse and dense Erd}os-Rényi ran-
dom graphs in Fig. 3 (right). The classification accuracy of both the
algorithms is observed better on the representations of sparse
graphs as compared to the dense representations.

To create random datasets for the experiment shown in Fig. 3
(right), we form binary classification problem and generate
Erd}os-Rényi random graphs with different densities for each class.
We consider two cases: sparse and dense graphs with 10 datasets
for each case and generate 100 graphs for each class where each
graph consists of 100 nodes. For sparse graphs, in each iteration
i, we set p ¼ 0:3þ ði � cÞ for positive class and p ¼ 0:3� ði � cÞ
for negative class. For dense datasets, we set p ¼ 0:7þ ði � cÞ for
one class and p ¼ 0:7� ði � cÞ for the other class. The value of c
is set to 0:002. We observe that with gradual increase in value of
i, the difference between the graph densities of two classes widens
as it makes one class denser and the other sparser and we see an
improvement in the performance of the classifier.
2 https://networkx.github.io/documentation/stable/
3 http://danspielman.github.io/Laplacians.jl/latest/
4 https://github.com/Anwar-Said/NetKI
5 https://ysig.github.io/GraKeL/dev/
5.3. Numerical results

We compare NetKI for classification accuracy and running time
against the state-of-the-art methods, namely FGSD [5], NetLSD’s
wave wðgÞ and heat hðgÞ kernels [6], NetSimile [32], Random Walk
kernel (RW) [52], Shortest Path kernel [22] Edge Histogram kernel
(EHK), [27], Neighborhood Hash kernel (NHK) [28] and Graphlet
sampling kernel (GK) [29]. FGSD, NetLSD and NetSimile are recent
statistical and spectral representation methods that show promis-
ing results while the rest are well-known graph kernel methods.

Datasets: We used five bioinformatics [68] and six social net-
works benchmark datasets to evaluate NetKI and other methods
on. The bioinformatics datasets include MUTAG, PTC, PROTEINS,
NCI1 and D&D. The social networks include COLLAB, IMDB-B,
114
IMDB-M, REDDIT-B, REDDIT-5 K, and REDDIT-L. We report their
characteristics in Table 2.

Experimental Setup: All experiments were performed on Intel-
Core i7-6800 K CPU@3.40 GHz machine with 128 GB RAM. We
implemented NetKI in Python 3.7 with Networkx2 library to inter-
act with graphs and Laplacians.jl3 library to solve linear systems in
graph Laplacian. The NetKI implementation has been made publicly
available 4. In NetKI setting, we set the �and h to 0:5 throughout all
the experiments. In the preprocessing step, we apply five-number
summary and replace scores above the third quartile
ðQ3Þ þ 2:5 � IQR with the mean value by considering the multisets
of the whole dataset. In case of disconnected graph, we considered
largely connected component of the graph. For computing the his-
togram, we set its range from (0-maxval) where maxval indicates
the maximum score of the edge seen in the entire collection of
graphs in the given dataset. After experimentation, the number of
bins is chosen from the set f20;50;200;500;1000;2000g indepen-
dently for different datasets. We attested this setup to be a good
choice in terms of classification accuracy tradeoff. For experimenting
with graph kernel methods, we used Grakel5 library and used the
default parameters setting. Moreover, we use the default parameters
setting for NetSimile and NetLSD presented in their papers. NetLSD
provides two functions: heat hg and wave wg , therefore we report
results on both the functions. In FGSD setting, we performed exper-
iments using all the provided bin width: f0:001;0:0001;0:00001g as
reported in the actual paper and show the best results achieved
among them.

For graph classification, we employed Random Forest (RF) Clas-
sifier with 500 estimators. To make a fair comparison among all the
methods, the same classifier with the same parameter setting and
10-fold cross-validation is employed in the experimental setup.
The results comparison on bioinformatics datasets with graph ker-
nels, NetSimile, FGSD and, NetLSD is reported in Table 3 while
Table 4 reports results comparison on social network datasets.

On bioinformatics datasets (Table 3), we found that NetKI out-
performs all other methods on PTC dataset while the classification
accuracy on MUTAG, PROTEINS and D&D is within range 2.0 from
the best accuracy. On NCI1 dataset, FGSD performed well and out-

Table 2
Datasets characteristics.

Dataset jGj Classes avg:jV j avg:jEj min:jV j max:jV j
MUTAG 188 2 17.93 19.79 10 28
PROTEINS 1113 2 39.06 14.69 4 620
PTC 344 2 25.56 72.81 2 109
NCI1 4110 2 29.87 32.3 3 111
D & D 1178 2 284.3 715.65 30 5748

COLLAB 5000 3 74.49 2457.21 32 492
IMDB-B 1000 2 19.77 97.53 12 136
IMDB-M 1500 3 13.00 65.93 7 89
REDDIT-B 2000 2 429.61 497.75 6 3782
REDDIT-5 K 4999 5 508.50 594.87 22 3648
REDDIT-L 291 2 97491 1090822.82 4445 1632141

Table 3
classification accuracy comparison of NetKI against well-known graph kernels and recent methods is presented. Bold results indicate accuracy within range 2:0 from the best
results of all the methods, and the blue color indicates best results. The expression ‘> D’ indicates computations exceed 24 h while std indicates the standard deviation of the
performance of the algorithms. Running time in seconds of each algorithm is shown in brackets with the accuracy where the minimum running time is highlighted bold.

Table 4
Classification accuracy and running times on social network datasets. ‘OMR’ indicates out of memory error.

Fig. 3. (left) NetKI representations sparsity comparison with FGSD on bioinformatics datasets. (right) NetKI and FGSD performance comparison in terms of classification
accuracy on sparse and dense graph datasets generated using Erd}os-Rényi model with 30% and 70% densities. Note that ‘‘�S‘‘ in legends indicates performance on sparse
networks while ‘‘�D‘‘ represents performance on dense network datasets.

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
performed all other methods. On social network datasets (Table 4),
NetSimile performed quite well and outperformed all other meth-
ods on COLLAB and IMDB-B datasets. FGSD outperformed on
IMDB-M and REDIIT-B while NetKI has shown highest accuracy
on REDDIT-M-5 K and REDDIT-L social networks. The classification
accuracy of NetKI on IMDB-M and REDDIT-B is within range 2.0
from the best result. We also report the running times of the algo-
115
rithms (excluding any data loading or classification time for all
algorithms) in brackets in Tables 3 and 4. We can see from the
results that on small datasets such as MUTAG, and PTC, etc., the
performance of FGSD is quite well as compared to the other algo-
rithms, although it has quadratic time complexity. The main reason
of this is that the FGSD implementation simply involves matrix
multiplication which can be done quite fast when the size of the

Fig. 4. NetKI (left) and NetLSD (right) clustering visualization of the feature vectors of all small graphs up to size 8 using tSNE.

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
matrices is small. However, as the size of the matrices increase
such as in D&D and REDDIT datasets, the performance of FGSD
worsens sharply. In contrast, NetKI performs quite well in terms
of running time on large datasets as well as compared to other
approaches. However, due to the approximation factor involved
and the nature of the datasets, the performance of NetKI in terms
of classification accuracy is also worse on NCI1 and COLLAB data-
sets. Recall that the main objective of NetKI was the scalability
on sufficiently large datasets. We show in Tables 3 and 4 that the
performance of NetKI is within range 2.0 from the best accuracy
on most of the datasets. On the other hand, we can see from the
tables and also from Fig. 2 that the running times of NetKI reduces
sharply when the size of the datasets increases. To evaluate NetKI
in terms of time and accuracy on very large real networks, we also
reported classification accuracy and running time on REDDIT-L
dataset, which is a very large social network dataset having
97491 average nodes and more than 1 million edges on average
(see Table 2). We can see that NetKI outperformed NetLSD and
shown quality results with 3.24% improvements in terms of accu-
racy and 127% improvements in terms of running time. Overall, we
can see that NetKI has shown improved results in terms of running
time and the classification accuracy is close to the state-of-the-art
approaches that are, otherwise, impractical for large datasets.
these results demonstrate that NetKI is a suitable graph embedding
and classification method for large networks. NetSimile and FGSD
could not able to scale on such large graphs therefore, we do not
report on them.

5.4. Features comparison to NetLSD

Apart from the methodology perspective, NetKI and NetLSD are
directly linked with the graph spectrum and can be observed clo-
sely related to each other. Thus, to provide more crisper analysis
among them, here we present feature comparison to analyze the
information extracted by both the algorithms from the same data-
set. We hypothesized that high overlap in clustering on the embed-
dings generated through both the algorithms will reflect similar
feature extraction. To test the hypothesis, we generate feature vec-
tors from all small non-isomorphic graphs up to size 8. The total of
them are 12111 number of graphs. For NetKI, we set the length of
feature vector to 50 and use the same parameter setup shown
above for other experiments. For NetLSD, we use default parameter
setting and generate feature vectors from the same dataset. We
perform K-means clustering with k ¼ 4 on the resultant feature
vectors of both the algorithms and find overlap between the clus-
ters. For finding the overlap, we compute the intersection between
NetKI each cluster with every cluster of NetLSD. The highest over-
116
lap was found 56% between NetKI cluster 1 and NetLSD cluster 0.
The overlap between all other cluster was found < 50%. We have
also shown tSNE visualization of the resultant clustering of both
the algorithm in Fig. 4. We can see that the distributions of both
the clustering are different, while the ratio of the overlap is also
small. Thus, we conclude that NetKI and NetLSD capture different
information from the graph.

5.5. Discussion

Currently, large graphs with millions of nodes and edges have
become very common. Examples include online social networks,
collaboration networks, and biomedical networks. Scalability on
such large networks especially for the encoding methods is one
of the key requirements to apply state-of-the-art machine learning
methods [1]. There has been tremendous growth in graph repre-
sentation methods, however, very few efforts have been devoted
to enhance the performance of these methods and make them scal-
able on sufficiently large networks. The extensive experiments on
well-known state-of-the-art methods on several networks shown
in Section 5.3 reveal that the existing methods are still incapable
of dealing with sufficiently large networks. And thus, there is a
necessity of the encoding methods that are scalable on large
networks.

On large real-world datasets such as REDDIT, D&D, and other
large random networks, we show that NetKI runs very fast as com-
pared to the existing approaches while attaining quality results in
terms of classification accuracy. This demonstrates the effective-
ness of NetKI on different kinds of networks, in particular, when
the networks are sufficiently large and well-connected. In addition
to the application of such efficient approaches in various domains,
recently, the graph encoding methods have also been applied with
GCNs collectively to improve the performance of the algorithms
[69]. Such approaches help GCNs to generalize on multiple
domains data. Due to the efficiency and quality results of NetKI,
we believe that it is a suitable method that can be combined with
end-to-end deep learning models to design efficient and universal
graph embedding models.

6. Conclusion

We introduced NetKI, a novel method for graphs classification.
NetKI is purely based on graph statistical representation that can
be computed efficiently in nearly linear time. We proposed using
the network Kirchhoff index as a function of graph representation
f ðghÞ and show its approximation in nearly-linear time. NetKI does
not require any graph summary statistics or node attributes and

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
relies only on graph structure. We performed extensive experi-
ments on various real-world benchmark datasets and synthetic
networks with millions of nodes and edges, and show that NetKI
processes huge graphs and produce sparse representations which
lead to attain good quality results.
CRediT authorship contribution statement

Anwar Said: Data curation, Methodology, Investigation, Writing
- original draft. Saeed-Ul Hassan: Supervision, Conceptualization,
Methodology, Writing - original draft. Waseem Abbas: Writing -
original draft, Methodology, Investigation. Mudassir Shabbir:
Supervision, Investigation, Writing - original draft.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors (Saeed-Ul Hassan & Mudassir Shabbir) were funded
by the CIPL National Center in Big Data and Cloud Computing
(NCBC) grant, received from the Planning Commission of Pakistan,
through Higher Education Commission (HEC) of Pakistan.

References

[1] W.L. Hamilton, Z. Ying, J. Leskovec, Representation learning on graphs:
methods and applications, IEEE Data Eng. Bull. 40 (2017) 52–74.

[2] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and
performance: a survey, Knowl.-Based Syst. 151 (2018) 78–94.

[3] A. Sanfeliu, K.-S. Fu, A distance measure between attributed relational graphs
for pattern recognition, IEEE Trans. Syst. Man Cybern. (3) (1983) 353–362.

[4] R. Kondor, N. Shervashidze, K.M. Borgwardt, The graphlet spectrum, in:
Proceedings of the 26th Annual International Conference on Machine Learning
ACM, 2009, pp. 529–536.

[5] S. Verma, Z.-L. Zhang, Hunt for the unique, stable, sparse and fast feature
learning on graphs, Adv. Neural Inform. Process. Syst. (2017) 88–98.

[6] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, E. Müller, Netlsd: hearing the
shape of a graph, in: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining ACM, 2018, pp. 2347–
2356.

[7] A. Ghosh, S. Boyd, A. Saberi, Minimizing effective resistance of a graph, SIAM
Rev. 50 (1) (2008) 37–66.

[8] W. Abbas, M. Egerstedt, Robust graph topologies for networked systems, IFAC
Proceedings Volumes 45 (26) (2012) 85–90.

[9] W. Abbas, M. Shabbir, A.Y. Yazicioglu, A. Akber, On the trade-off between
controllability and robustness in networks of diffusively coupled agents, arXiv
preprint arXiv:1903.05524..

[10] W. Ellens, R.E. Kooij, Graph measures and network robustness, arXiv preprint
arXiv:1311.5064..

[11] W. Ellens, F. Spieksma, P. Van Mieghem, A. Jamakovic, R. Kooij, Effective graph
resistance, Linear Algebra Appl. 435 (10) (2011) 2491–2506.

[12] X. Wang, E. Pournaras, R.E. Kooij, P. Van Mieghem, Improving robustness of
complex networks via the effective graph resistance, Eur. Phys. J. B 87 (9)
(2014) 221.

[13] R. Kyng, S. Sachdeva, Approximate gaussian elimination for laplacians-fast,
sparse, and simple, IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), IEEE 2016 (2016) 573–582.

[14] H. Li, Z. Zhang, Kirchhoff index as a measure of edge centrality in weighted
networks: Nearly linear time algorithms, in: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial
and Applied Mathematics, 2018, pp. 2377–2396..

[15] P. Yanardag, S. Vishwanathan, Deep graph kernels, in: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM, 2015, pp. 1365–1374.

[16] R. Kondor, H. Pan, The multiscale laplacian graph kernel, Adv. Neural Inform.
Process. Syst. (2016) 2990–2998.

[17] J. Pang, Y. Gu, J. Xu, G. Yu, Semi-supervised multi-graph classification using
optimal feature selection and extreme learning machine, Neurocomputing 277
(2018) 89–100.

[18] D. Koutra, J.T. Vogelstein, C. Faloutsos, Deltacon: a principled massive-graph
similarity function, in, in: Proceedings of the 2013 SIAM International
Conference on Data Mining SIAM, 2013, pp. 162–170.
117
[19] J. Bento, S. Ioannidis, A family of tractable graph distances, in: Proceedings of
the 2018 SIAM International Conference on Data Mining, 2018, pp. 333–341.

[20] A. Fischer, C.Y. Suen, V. Frinken, K. Riesen, H. Bunke, Approximation of graph
edit distance based on hausdorff matching, Pattern Recogn. 48 (2) (2015) 331–
343.

[21] T. Ma, W. Shao, Y. Hao, J. Cao, Graph classification based on graph set
reconstruction and graph kernel feature reduction, Neurocomputing 296
(2018) 33–45.

[22] K.M. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs, in: Fifth IEEE
international conference on data mining (ICDM’05), IEEE, 2005, pp. 8–pp..

[23] F. Li, Z. Zhu, X. Zhang, J. Cheng, Y. Zhao, Diffusion induced graph representation
learning, Neurocomputing..

[24] N. Shervashidze, P. Schweitzer, E.J.V. Leeuwen, K. Mehlhorn, K.M. Borgwardt,
Weisfeiler-lehman graph kernels, J. Mach. Learn. Res. 12 (Sep) (2011) 2539–
2561.

[25] F. Orsini, P. Frasconi, L. De Raedt, Graph invariant kernels, in: Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015..

[26] Z. Wang, Y. Zhao, G. Wang, Y. Li, X. Wang, On extending extreme learning
machine to non-redundant synergy pattern based graph classification,
Neurocomputing 149 (2015) 330–339.

[27] M. Sugiyama, K. Borgwardt, Halting in random walk kernels, in: Advances in
neural information processing systems, 2015, pp. 1639–1647..

[28] S. Hido, H. Kashima, A linear-time graph kernel, in: 2009 Ninth IEEE
International Conference on Data Mining, IEEE, 2009, pp. 179–188.

[29] N. Pržulj, Biological network comparison using graphlet degree distribution,
Bioinformatics 23 (2) (2007) e177–e183.

[30] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, K. Borgwardt, Wasserstein
weisfeiler-lehman graph kernels, Adv. Neural Inform. Process Syst. (2019)
6436–6446.

[31] C. Bock, M. Togninalli, E. Ghisu, T. Gumbsch, B. Rieck, K. Borgwardt, A
wasserstein subsequence kernel for time series, in: 19th IEEE International
Conference on Data Mining (ICDM 2019), 2019.

[32] M. Berlingerio, D. Koutra, T. Eliassi-Rad, C. Faloutsos, Network similarity via
multiple social theories, in, in: Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, ACM, 2013, pp. 1439–1440.

[33] A.M. Bronstein, M.M. Bronstein, L.J. Guibas, M. Ovsjanikov, Shape google:
Geometric words and expressions for invariant shape retrieval, ACM
Transactions on Graphics (TOG) 30 (1) (2011) 1..

[34] H.P. Maretic, M. El Gheche, G. Chierchia, P. Frossard, Got: An optimal transport
framework for graph comparison, Adv. Neural Inform. Process. Syst. (2019)
13876–13887.

[35] R. Flamary, N. Courty, A. Rakotomamonjy, D. Tuia, Optimal transport with
laplacian regularization, 2014..

[36] S. Ferradans, N. Papadakis, G. Peyré, J.-F. Aujol, Regularized discrete optimal
transport, SIAM J. Imaging Sci. 7 (3) (2014) 1853–1882.

[37] G. Nikolentzos, P. Meladianos, M. Vazirgiannis, Matching node embeddings for
graph similarity, in: Thirty-First AAAI Conference on Artificial Intelligence,
2017..

[38] T. Yu, J. Yan, Y. Wang, W. Liu, et al., Generalizing graph matching beyond
quadratic assignment model, in: Advances in neural information processing
systems, 2018, pp. 853–863..

[39] G. Mena, D. Belanger, S. Linderman, J. Snoek, Learning latent permutations
with gumbel-sinkhorn networks, arXiv preprint arXiv:1802.08665..

[40] P. Emami, S. Ranka, Learning permutations with sinkhorn policy gradient,
arXiv preprint arXiv:1805.07010..

[41] Z.R. Hassan, M. Shabbir, I. Khan, W. Abbas, Estimating descriptors for large
graphs, arXiv preprint arXiv:2001.10301..

[42] I. Jovanović, Z. Stanić, Spectral distances of graphs, Linear Algebra Its Appl. 436
(5) (2012) 1425–1435.

[43] T. Vayer, L. Chapel, R. Flamary, R. Tavenard, N. Courty, Optimal transport for
structured data with application on graphs, arXiv preprint arXiv:1805.09114..

[44] G. Peyré, M. Cuturi, J. Solomon, Gromov-wasserstein averaging of kernel and
distance matrices, in: International Conference on Machine Learning, 2016, pp.
2664–2672..

[45] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph
neural network model, IEEE Trans. Neural Networks 20 (1) (2009) 61–80.

[46] D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular
fingerprints, in: Advances in neural information processing systems, 2015, pp.
2224–2232..

[47] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, International Conference on Learning Representations (ICLR) (2017).

[48] S. Fu, W. Liu, Y. Zhou, L. Nie, Hplapgcn: hypergraph p-laplacian graph
convolutional networks, Neurocomputing 362 (2019) 166–174.

[49] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?,
International Conference on Learning Representations (ICLR) (2019), URL:
https://openreviewnet/forum?id=ryGs6iA5Km.

[50] P. Veličković, W. Fedus, W.L. Hamilton, P. Liò, Y. Bengio, R.D. Hjelm, Deep graph
infomax, International Conference on Learning Representations (ICLR) (2019),
URL: https://openreview.net/forum?id=rklz9iAcKQ.

[51] C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan, M. Grohe,
Weisfeiler and leman go neural: Higher-order graph neural networks, in:
Association for the Advancement of Artificial Intelligence (AAAI), 2019..

http://refhub.elsevier.com/S0925-2312(20)31975-5/h0005
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0005
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0010
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0010
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0015
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0015
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0020
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0020
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0020
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0020
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0025
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0025
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0030
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0030
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0030
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0030
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0030
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0035
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0035
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0040
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0040
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0055
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0055
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0060
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0060
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0060
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0065
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0065
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0065
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0075
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0075
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0075
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0075
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0080
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0080
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0085
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0085
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0085
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0090
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0090
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0090
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0090
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0095
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0095
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0095
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0100
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0100
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0100
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0105
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0105
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0105
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0120
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0120
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0120
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0130
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0130
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0130
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0140
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0140
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0140
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0145
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0145
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0150
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0150
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0150
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0155
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0155
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0155
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0155
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0160
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0160
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0160
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0160
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0160
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0170
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0170
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0170
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0180
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0180
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0210
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0210
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0225
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0225
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0235
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0235
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0240
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0240
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rklz9iAcKQ

A. Said, Saeed-Ul Hassan, W. Abbas et al. Neurocomputing 433 (2021) 108–118
[52] T. Gärtner, P. Flach, S. Wrobel, On graph kernels: Hardness results and efficient
alternatives, in: Learning theory and kernel machines, Springer, 2003, pp. 129–
143.

[53] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, in: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing
Systems 30, Curran Associates Inc, 2017, pp. 1024–1034.

[54] D.A. Spielman, N. Srivastava, Graph sparsification by effective resistances,
SIAM J. Comput. 40 (6) (2011) 1913–1926.

[55] D.A. Spielman, S.-H. Teng, Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems, SIAM J. Matrix
Anal. Appl. 35 (3) (2014) 835–885.

[56] D. Durfee, R. Kyng, J. Peebles, A.B. Rao, S. Sachdeva, Sampling random spanning
trees faster than matrix multiplication, in, in: Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, ACM, 2017, pp. 730–742.

[57] M.B. Cohen, R. Kyng, G.L. Miller, J.W. Pachocki, R. Peng, A.B. Rao, S.C. Xu,
Solving sdd linear systems in nearly m log 1/2 n time, in: Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, ACM, 2014, pp.
343–352..

[58] D.A. Spielman, S.-H. Teng, Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems, in: Proceedings of the STOC,
vol. 4, 2004..

[59] I. Koutis, G.L. Miller, R. Peng, Approaching optimality for solving sdd linear
systems, SIAM J. Comput. 43 (1) (2014) 337–354.

[60] R. Peng, D.A. Spielman, An efficient parallel solver for sdd linear systems, in:
Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, ACM, 2014, pp. 333–342..

[61] R. Kyng, Y.T. Lee, R. Peng, S. Sachdeva, D.A. Spielman, Sparsified cholesky and
multigrid solvers for connection laplacians, in: Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, ACM, 2016, pp. 842–850..

[62] C. Godsil, G.F. Royle, Algebraic graph theory, vol. 207, Springer Science &
Business Media, 2013..

[63] J. Sherman, W.J. Morrison, Adjustment of an inverse matrix corresponding to a
change in one element of a given matrix, Ann. Math. Stat. 21 (1) (1950) 124–
127.

[64] M.F. Hutchinson, A stochastic estimator of the trace of the influence matrix for
laplacian smoothing splines, Commun. Stat.-Simul. Comput. 19 (2) (1990)
433–450.

[65] H. Avron, S. Toledo, Randomized algorithms for estimating the trace of an
implicit symmetric positive semi-definite matrix, J .ACM (JACM) 58(2) (2011)
8..

[66] W.B. Johnson, J. Lindenstrauss, Extensions of lipschitz mappings into a hilbert
space, Contemporary Math. 26 (189–206) (1984) 1.

[67] K. Huang, S. Aviyente, Sparse representation for signal classification, in:
Advances in neural information processing systems, 2007, pp. 609–616..

[68] K. Kersting, N.M. Kriege, C. Morris, P. Mutzel, M. Neumann, Benchmark data
sets for graph kernels, 2016.http://graphkernels.cs.tu-dortmund.de..

[69] S. Verma, Z.-L. Zhang, Deep universal graph embedding neural network, arXiv
preprint arXiv:1909.10086..

Anwar Said: Mr. Said is a PhD research scholar in AI AI
Lab, Department of Computer Science at Information
Technology University, Lahore, Pakistan. He received
MPhil (2016) degree in Computer Science from Quaid-i-
Azam University, Islamabad, Pakistan. His research
interests are in the area of graph representation, social
network analysis, and data science.
118
Saeed-Ul Hassan: Dr. Hassan is the Director of AI AI Lab
and the Chairperson in the De of Computer Science at
Information Technology University (ITU) in Pakistan, a
former Post-Doctorate Fellow at the United Nations
University – with more than 15 years of hands-on
experience of advanced statistical techniques, artificial
intelligence, and software development client work. He
earned his Ph.D. in the field Information Management
from Asian Institute of Technology. He has also served
as a Research Fellow at National Institute of Informatics
in Japan. Dr. Hassan’s research interests lie within the
areas of Data Science, Artificial Intelligence, Sciento-

metrics, Information Retrieval and Text Mining. Dr. Hassan is also the recipient of
James A. Linen III Memorial Award in recognition of his outstanding academic
performance. More recently, he has been awarded Eugene Garfield Honorable

Mention Award for Innovation in Citation Analysis by Clarivate Analytics, Thomson
Reuters.

Waseem Abbas: Dr. Abbas is a Research Assistant Pro-
fessor in the Electrical Engineering and Computer Sci-
ence Department at the Vanderbilt University,
Nashville, TN, USA. Previously, he was an Assistant
Professor at the Information Technology University
Lahore in Pakistan, and a postdoctoral research scholar
at the Vanderbilt University between 2014 and 2017. He
received Ph.D. (2013) and M.Sc. (2010) degrees, both in
Electrical and Computer Engineering, from Georgia
Institute of Technology, Atlanta, GA, and was a Fulbright
scholar from 2009 till 2013. His research interests are in
the areas of resilience and security of network control

systems, cyber-physical systems, and graph-theoretic methods in complex net-
works.
Mudassir Shabbir: Dr. Shabbir is an Assistant Professor
in the Department of Computer Science at the Infor-
mation Technology University, Lahore, Pakistan. He
received his Ph.D. from Division of Computer Science,
Rutgers University, NJ USA in 2014. Previously, Mudas-
sir has worked at Lahore University of Management
Sciences, Pakistan, Los Alamos National Labs, NM,
Bloomberg L.P. New York, NY, and at Rutgers University.
He was Rutgers Honors Fellow for 2011-12. His main
area of research is Algorithmic and Discrete Geometry
and has developed new methods for the characteriza-
tion and computation of succinct representations of

large data sets with applications in nonparametric statistical analysis. He also
works in Combinatorics and Graph Theory.

http://refhub.elsevier.com/S0925-2312(20)31975-5/h0260
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0260
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0260
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0260
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0265
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0270
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0270
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0275
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0275
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0275
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0280
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0280
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0280
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0280
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0295
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0295
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0315
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0315
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0315
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0320
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0320
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0320
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0330
http://refhub.elsevier.com/S0925-2312(20)31975-5/h0330
http://graphkernels.cs.tu-dortmund.de

	NetKI: A kirchhoff index based statistical graph embedding in nearly linear time
	1 Introduction
	2 Related work
	2.1 Direct methods
	2.2 Kernel methods
	2.3 Statistical and spectral representations
	2.4 Graph-theoretic methods

	3 Preliminaries and basic notations
	3.1 Graph Basics
	3.2 Network Kirchhoff Index

	4 Methodology
	4.1 Graph embedding algorithm using exact Kirchhoff index
	4.2 NetKI: Algorithm for graph representation using the approximate Kirchhoff index
	4.3 Modification to the EDGECENTCOMP2 algorithm
	4.4 Analysis of the algorithms

	5 Evaluation
	5.1 Scaling to large graphs
	5.2 NetKI sparse representations
	5.3 Numerical results
	5.4 Features comparison to NetLSD
	5.5 Discussion

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

