
    Dryland ecosystems encompass 40% of the
global terrestrial surface and are character ized
by low and variable precipitation and frequent
dry periods (Millennium Ecosystem Assess-
ment 2005, Schlaepfer et al. 2012b, Huang et

al. 2017). Two billion people live in drylands
globally, and in the United States 40% of the
population growth between 1960 and 2000
occurred in dryland states (Millennium Eco -
sys tem Assessment 2005, Liu et al. 2011).
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      ABSTRACT.—Water is the most limiting and important natural resource in drylands, where low precipitation, high
evaporative demand, and drought events are common. Groundwater is the critical resource for human livelihoods to
persist through the intra-annual dry periods in dryland ecosystems. Overexploitation of groundwater resources and the
externalities associated with depleted aquifers make understanding the ecohydrology of drylands an essential issue. We
focus on the water balance and climatic drivers of big sagebrush ecosystems, an important dryland ecosystem type in
Wyoming that covers a large spatial extent. The goal of this project was to understand how groundwater recharge
(GWR) may change in magnitude and seasonality across multiple sites in Wyoming in the future. We used a combina-
tion of fieldwork and simulation modeling to explore key climatic and ecohydrological drivers of GWR. We simulated
soil water balance using SOILWAT2, a process-based ecosystem-scale soil water model, and future climate data to esti-
mate change in GWR through 2100. We found that mean annual temperature and precipitation explained 65% of the
variation in future change in GWR. High-elevation (>2200 m) wet sites had larger increases in GWR in the future com-
pared to low-elevation dry sites. The among-site variability in GWR was also higher for sites >2200 m, which indicates
that mean annual precipitation and perhaps snowpack are important explanatory variables for GWR. Our research sug-
gests that GWR for high-elevation big sagebrush sites may increase in magnitude from current values and may occur
earlier in the year, with important implications for the timing and availability of water resources.

      RESUMEN.—El agua es el recurso natural más importante y limitante en las tierras áridas, donde la precipitación es
escasa, existen altos índices de evaporación y los eventos de sequía son habituales. El agua subterránea es un recurso
fundamental, que hace posible la persistencia de los asentamientos humanos, durante los períodos secos intra-anuales
de los ecosistemas de tierras áridas. La sobreexplotación de los recursos de agua subterránea y los factores externos aso-
ciados al agotamiento de los acuíferos hace que la comprensión de la ecohidrología de las tierras áridas se vuelva un
tema esencial. Nos enfocamos en el balance hídrico y en los factores determinantes del clima de los grandes ecosistemas
de artemisas, un importante tipo de ecosistema de tierras secas en Wyoming, que cubre una gran extensión espacial. El
objetivo de este proyecto fue comprender cómo la recarga artificial de acuíferos (GWR, por sus siglas en inglés) puede
cambiar en el futuro, tanto en magnitud como en estacionalidad en distintos sitios de Wyoming. Combinamos el trabajo
de campo con modelos de simulación para explorar los factores claves determinantes del clima y ecohidrológicos de la
GWR. Simulamos el balance hídrico del suelo utilizando SOILWAT2, un modelo de agua del suelo de escala ambiental,
basado en procesos y en datos climáticos futuros para estimar el cambio de la GWR hacia el 2100. Encontramos que la
temperatura y la precipitación media anual explicaron el 65% de la variación futura en la GWR. Los sitios húmedos de
gran elevación (>2200 m) mostraron mayores aumentos en la GWR futura en comparación con los sitios secos de baja
elevación. La variabilidad entre sitios de la GWR también fue mayor en los sitios >2200 m, indicando que la precipi -
tación media anual y, quizás, la acumulación de nieve son variables explicativas importantes para la GWR. Nuestra
investigación sugiere que las GWR en los ecosistemas de artemisas que se encuentran a mayor elevación puede aumen-
tar en magnitud a partir de los valores actuales y tener lugar a principios del año, con importantes implicaciones en el
momento y en la disponibilidad de los recursos hídricos.
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Globally, groundwater represents 50% of the
domestic water supply, 40% of all industrial
water, and 20% of irrigation water supply (Döll
2009). In the western United States, more than
one-third of water used for irrigation is ground -
water, and as groundwater extrac tion persists,
imbalances between ground water recharge
(GWR) and extraction result in overall ground -
water depletion (Döll 2009, Döll et al. 2014).
    In water-limited regions, understanding
how changing climatic conditions will influ-
ence regional water balance is essential for
wa ter management and for the prevention of
ex  tended periods of water scarcity (Green et
al. 2011). Some evidence suggests GWR will
increase in the future primarily due to warm-
ing and a greater fraction of precipitation
fall ing as rain. Kundzewicz and Döll (2009)
used WaterGAP (Water Global Assessment and
Prog nosis), a global hydrology model, to pro-
ject global GWR rates, which suggested the
western United States may have increases in
GWR of approximately 30%. Jyrkama and Sykes
(2007) used the hydrologic model HELP3
(Hydrologic Evaluation of Landfill Perfor-
mance) to assess the Grand River Water shed
over a 40-year period. Their results suggested
increases in GWR by approximately 100 mm/
year due to a greater fraction of precipitation
received as rain than as snow and increasing
temperatures that will reduce ground frost
and increase recharge ( Jyrkama and Sykes
2007). Palmquist et al. (2016a, 2016b) used
SOILWAT2, a soil-water balance model, to
project mean increases of 30% in GWR and
shifts in peak GWR to earlier in the year by
mid- and end-of-century for 898 randomly
selected big sagebrush ecosystems in the wes -
tern United States.
    Our study focused on temperate dryland
ecosystems typified by higher evaporative
demand than precipitation, with total precipi-
tation and snowmelt as the major controls on
soil-water recharge and GWR (Schlaepfer et
al. 2012a). In the western United States and
Wyoming, big sagebrush (Artemisia tridentata)
ecosystems are an extensive dryland vegeta-
tion type (West and Young 1989, Knight et al.
2014) and are the focus of our work. Within
Wyoming, these ecosystems cover about 33%
of the terrestrial surface (Knight et al. 2014)
and provide important habitat for many plant
and animal species of conservation concern
(Wisdom et al. 2005).

    Our objective was to assess groundwater
recharge across 51 sites representing drylands
dominated by big sagebrush in Wyoming.
These sites spanned the range of big sage-
brush plant community types, as well as their
climatic and elevational gradients within Wyo -
ming. We assessed GWR using a process-
based, daily time-step soil water simulation
model (SOILWAT2) under current and pro-
jected climate using 13 global circulation mod-
els (GCMs) from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) for rep-
resentative concentration pathway 8.5 (RCP8.5).
Specifically, we asked 3 questions: (1) What
are the predicted future changes in average
annual and seasonal GWR rates in big sage-
brush ecosystems in Wyoming? (2) How do
the predicted changes in average annual and
seasonal GWR vary between high- and low-
elevation sites? And (3) to which climate vari-
ables are changes in recharge rates most sen -
sitive? Based on a combination of information
from fieldwork and simulation modeling, we
had 4 expectations: (1) high GWR variability
across sites given the strong relationships be -
tween the type and timing of precipitation
influence on GWR in drylands, (2) a positive
re la tionship between elevation and GWR as
high-elevation areas receive larger quantities of
precipitation and subsequent GWR, (3) a pre-
cipitation regime of high-elevation sites domi-
nated by snow, and (4) high-elevation sites with
greater snowpack, which will contribute to
increased magnitudes of GWR. Our focus on
groundwater stemmed from the integral role
groundwater recharge plays within the water
balance of drylands. In addition, quantifying
how climate change will affect groundwater is
critical for future water management efforts
and prevention of unsustainable extraction of
subsurface water in drylands (Green et al. 2011).

METHODS

Study Area, Site Selection, 
and Field Sampling

    Our 51 sites spanned the environmental
gradients within Wyoming big sagebrush plant
communities from hot, dry sites at low eleva-
tions (<2200 m) to cold, wet sites at higher
ele vations (>2200 m). We divided sites into
ele vational bins with 2200 m as the boundary
between low- and high-elevation sites to distin -
guish between sites dominated by Artemisia
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tridentata ssp. wyomingensis and sites domi-
nated by Artemisia tridentata ssp. vaseyana
(West and Young 1989, Knight et al. 2014).
These 2 subspecies occur at different elevations:
Artemisia tridentata ssp. vaseyana occupies
higher-elevation sites (typically over 2200 m)
than Artemisia tridentata ssp. wyomingensis
(typically below 2200 m). The boundary we set
between low- and high-elevation sites was also
compelling because our sites >2200 m receive
73% more mean annual precipitation (MAP)
than our sites <2200 m. Thus, we made the
choice to differentiate on elevation based upon
dominance of different Artemisia tridentata
subspecies and differences in the magnitude
of MAP. Mean elevation among our sites was
1993 m, with a minimum of 1310 m (in the
Thunder Basin) and a maximum of 2652 m
(in the Saratoga Basin) (Tables 1, 2). Mean
annual temperature (MAT) was 4.8 °C (range
−0.01 °C to 8 °C), MAP was 312 mm (range
184 to 580 mm), and the mean snow ratio,
which is the proportion of annual precipita-
tion re ceived as snow, was 0.30 (range 0.12
to 0.53) (Tables 1, 2).
    Sites were chosen to not only capture the
relevant environmental gradients, but also to
span Wyoming’s basins that were dominated
by Artemisia tridentata (Table 1; Knight et al.
2014). Additional site selection criteria included
minimal disturbance from invasive spe cies
(e.g., Bromus tectorum), natural resource extrac-
tion, heavy grazing, and presence of a big
sagebrush overstory with an understory of
native perennial grasses and forbs.
    At each site, we collected soil samples
within a 1000-m2 Carolina Vegetation Survey
plot (Peet et al. 1998). A 7-cm-diameter auger
was used to obtain soil samples at depths of
0–10 cm, 10–20 cm, and 20–30 cm in four of
the ten 100-m2 subplots for all 51 sites. Soil
sam ples were analyzed for percent gravel (par-
ticles >2 mm), sand, silt, and clay using a hydrom -
eter method modified from Bouyoucos (1951).

Soil Water Simulation Modeling

    We calculated changes in diffuse ground-
water recharge for each of our 51 sites using
SOILWAT2, a daily time-step, multiple soil
layer, process-based soil water balance simula-
tion model (Lauenroth and Bradford 2006,
Schlaepfer et al. 2012a, 2012b, Bradford et al.
2014a). SOILWAT2 has been successfully
applied to multiple dryland ecosystems, such
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as grasslands (Lauenroth and Bradford 2006),
big sagebrush ecosystems (Schlaepfer et al.
2012a, 2012b, Palmquist et al. 2016a, 2016b),
lodgepole pine–sagebrush ecotones (Bradford
et al. 2014b), and other drylands globally
(Schlaepfer et al. 2017). The version for big
sagebrush ecosystems incorporates a validated
snow module, hydraulic redistribution, and
site-specific vegetation parameters (Schlaepfer
et al. 2012b). SOILWAT2 uses daily precipita-
tion and temperature data, monthly climate
conditions (relative humidity, wind speed,
cloud cover), monthly vegetation parameters
(total aboveground biomass, litter, living above -
ground biomass, active root depth profile), and
properties from various layers of the soil pro-
file to model all components of daily water
balance (Schlaepfer et al. 2012a, 2012b). In -
cluded in the components of the daily water
balance are interception by vegetation and lit-
ter, evaporation of intercepted water, bare-soil
evaporation, infiltration, transpiration from each
soil layer, and groundwater recharge. Of the
output generated by SOILWAT2, we focus on
daily and annual groundwater recharge.

Model Parameters and Input Data

    For each of our 51 sites, we extracted daily
temperature and precipitation data for current
conditions from ⅛-degree gridded weather
data for 1980–2010 (Maurer et al. 2002).
Monthly estimates of relative humidity, wind
speed, and cloud cover were obtained from
the Climate Maps of the United States (http://
cdo.ncdc.noaa.gov/cgi-bin/climaps/climaps.pl).

Future temperature and precipitation data for
each of 13 Global Circulation Models (GCMs)
were extracted from the “Downscaled CMIP3
and CMIP5 Climate and Hydrology Projects”
archive (Maurer et al. 2007). We used a
hybrid-delta downscaling method, which uti-
lizes historic daily weather data with monthly
future predictions to calculate future daily
data (Hamlet et al. 2010, Dickerson-Lange
and Mitchell 2014). To run our model, we first
statistically downscaled the data from each of
the 13 GCMs for each of our 51 sites. We
parameterized site-specific soil properties for
each soil layer using percent sand, silt, clay,
and gravel calculated from soil samples col-
lected in the field. We obtained soil depth for
each site from the SSURGO database (Soil
Survey Staff 2017a) when available and from
STATSGO otherwise (Soil Survey Staff 2017b).
We generated site-specific vegetation parame-
ters based on both current and future climatic
conditions. The relative abundance of plant
functional types for current and future condi-
tions were estimated using empirically ob -
served relationships derived by Paruelo and
Lauenroth (1996) and described and applied
in Bradford et al. (2014a). Current and future
plant functional type composition and the as -
sociated vegetation parameters (monthly above -
 ground biomass, monthly live biomass, and
monthly litter) were estimated based on MAP,
ratio of winter precipitation (December–Feb-
ruary) to MAP, ratio of summer precipitation
(June–August) to MAP, and MAT (see Appen-
dix S2 in Bradford et al. 2014a). We then ran 
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    TABLE 2. Elevation, annual climate, and annual ecohydrological vaiables for all 51 sites. Variables are shown as aver-
ages for all sites, standard deviations (SD) for all sites, and mean values for sites <2200 m and >2200 m elevation.
Changes in climatic and ecohydrological variables represent the differences in mean annual values from current to the
end-of-century (2070–2100).

Climatic or geospatial variable                                  Site average                  SD                   (>2200 m)              (<2200 m)

Elevation                                                                           1993                        345                       2352                        1844
MAP (mm)                                                                         312                          101                       379                          278
Change in MAP (mm)                                                      46                            18                         63                            39
MAT (°C)                                                                           4.80                         2.00                      2.45                         5.77
Change in MAT (°C)                                                         5.52                      −0.07                      5.57                         5.49
Cold-season precipitation (mm)                                       12                            59                         168                          91
Change in cold-season precipitation (mm)                     34                            24                         58                            24
Cold-season precipitation/total                                       0.4                           0.08                      0.41                         0.33
    precipitation ratio
Change in cold-season precipitation/total                      0.04                         0.09                      0.06                         0.03
    precipitation ratio
Snow/precipitation ratio                                                   0.3                           0.11                      0.39                         0.22
Change in snow/precipitation ratio                              −0.1                        −0.03                   −0.13                      −0.10
Groundwater recharge (mm)                                           25                            38                         53                            15
Change in groundwater recharge (mm)                          6                              12                         17                            2



SOILWAT2 using site-specific inputs for each
site/GCM combination.

Data Analysis

    Answering our research questions required
us to quantify changes in future precipitation
and temperature regimes and GWR across
each of the 13 GCMs, as defined by RCP8.5.
We summarized the magnitude, type, and sea-
sonality of precipitation, including snowpack
(SWE, mm), cold-season precipitation (mm),
cold-season precipitation/total precipitation
ratio, and snow/precipitation ratio, along with
MAT (°C) and daily and annual GWR (mm)
(Table 1). The annual mean value for each
variable was calculated by averaging output
for each site/GCM combination for the cur-
rent, midcentury, and end-of-century time
periods. We calculated the daily mean for each
variable across each day of the year for all 51
sites and all 13 GCMs for each time period. In
addition to quantifying mean values, we also
present variability in GWR and snowpack in
response to forcing by climate from the 13 dif-
ferent GCMs. To summarize variability in
GWR and snowpack on a daily basis, we cal-
culated the daily mean across our 51 sites for

each of the 13 GCMs. We present the minimum
and maximum of those 13 values for each day
of the year (DOY). These results provide per-
spective on the uncertainty of future GWR
and snowpack.
    We assessed relationships between GWR and
climate variables using multiple linear re gres -
sion. We then used additive variance par ti -
tioning to quantify the variance in GWR
explained by each variable individually, along
with the shared variance explained by multiple
variables (Legendre and Legendre 2012). In
addition, we summarized each variable for
the 2 elevation bins, >2200 m and <2200 m
(Table 2), to understand how changes in GWR
differed between lower- and higher-elevation
sites. We compared estimated GWR from
SOILWAT2 for 1951–1980 in Wyoming to the
Baseflow Index (BFI) data from Wolock et al.
(2003) to assess the degree of confidence we
should have in the performance of SOILWAT2
in Wyoming. BFI is a commonly used met ric
for estimating potential recharge (Wolock 2003,
Niraula et al. 2017).

RESULTS

Comparing SOILWAT2 Recharge 
with BFI-based Recharge

    We extracted BFI recharge data for Wyo -
ming from 1951 to 1980 to make a comparison
between estimates of groundwater recharge
from SOILWAT2 and estimates from BFI
(Fig. 1). The regression of SOILWAT2 on BFI
had an intercept of zero and a coefficient of
1.19, indicating that the SOILWAT2 estimate
of GWR was on average 19% higher than BFI.
The Pearson correlation coefficient was 0.89.

Predicted Future Changes in Annual and 
Seasonal Groundwater Recharge Rates

    Compared to current conditions, our results
indicated that GWR will increase in magni-
tude in the future (Fig. 2). Our simulations
suggested mean annual increases of 4 mm (16%)
and 6 mm (24%) in GWR across all sites by
midcentury (2030–2060) and end-of-century
(2070–2100), respectively (Table 2). GWR was
projected to occur earlier in the year, with a
longer duration of sustained recharge by both
midcentury and end-of-century, especially for
high-elevation sites (Fig. 3b). For cur rent con-
ditions, the maximum GWR occurred at the
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    Fig. 1. Model comparison of the BaseFlow Index (BFI)
to SOILWAT2 estimated groundwater recharge for 1951–
1980 for all sites from Wolock et al. (2003) in Wyoming.
The gray dotted line represents the 1:1 line. The red line
is the best-fit line (y = 1.19x + 0). The RMSE is 78 mm
per year.
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end of May. By midcentury, that peak oc -
curred 15 d earlier, and by the end-of-century,
the maximum GWR shifted 30 d earlier to late
March. GWR was projected to start 49 d ear-
lier by the end-of-century with a magnitude
that was on average 0.10 mm per day greater

than current conditions (Fig. 3a, b). For both
low- and high-elevation sites, as well as esti-
mates for the mid- and end-of-century, the vari -
ability in estimates introduced by differences
among GCMs was substantially larger than the
means (Fig. 3d).
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    Fig. 2. Current mean annual groundwater recharge (GWR) versus midcentury GWR (left) and mean annual mid -
century GWR versus end-of-century GWR (right). The black lines represent the 1:1 relationship. Sites are highlighted
by elevational bin (<2200 m [red], >2200 m [black]).
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Variation in Annual and Seasonal GWR
between Low- and High-elevation Sites

    We found a positive relationship between
elevation and GWR (current: r = 0.46; mid-
century: r = 0.47; end-of-century: r = 0.49)
which was related to differences in MAP across
low- and high-elevation sites (Supplementary
Material 2). Under current conditions, sites
>2200 m had 101 mm more precipitation on
average than sites <2200 m (Table 2). MAP was
projected to increase the most at the highest -
elevation sites (Fig. 4). Our simulation results
suggested increases in MAP of 27 mm (<2200
m) and 38 mm (>2200 m) by midcentury, and
39 mm (<2200 m) and 63 mm (>2200 m) by
end-of-century for low- and high-elevation
sites, respectively (Table 2). Sites >2200 m also
had the largest average annual increases in
GWR in the future (Fig. 2, Table 2). The 3 sites
with the largest magnitude and change in
GWR were at elevations >2200 m (Supple-
mentary Material 2). Two of these were in
the Saratoga Basin and one was in the
Laramie Basin.

GWR Sensitivity to Mean Annual 
Precipitation and Mean 

Annual Temperature

    Future MAT and MAP explained 65% of
the variation in future GWR. Variance parti-
tioning indicated that MAP explained more
variation in future GWR (R2 = 0.37) than

MAT (R2 = 0.03). The shared variance ex -
plained by both MAP and MAT was 0.25. Net
increases in GWR were associated with higher
future MAP (Supplementary Material 2). The
magnitude of the GWR increase decreased by
the end of the century, indicating that the
largest increases in GWR and MAP occurred
by midcentury (Table 2, Fig. 2).
    Both MAT and MAP influenced GWR
through their effect on the mean snow precipi-
tation ratio. Under both current and future
conditions, GWR was strongly positively cor-
related to the snow precipitation ratio (current:
r = 0.80; midcentury: r = 0.82; end-of-century:
r = 0.83). However, by the end of the cen-
tury our results suggested an 11% decrease in
precipitation received as snow, indicating a
shift to rain becoming more dominant in the
precipitation regime for these sites, while
snow remained the dominant variable con-
tributing to GWR (Table 2). In addition, our
simulations projected snowpack peak vol -
ume occurring 44 d earlier by the end of the
century with a 75% decrease in snow-water
equiv a lent (Fig. 5). At the end of the century,
snowpack was projected to disappear 26 d
earlier and the projected duration of zero snow -
pack increased by 52 d (Fig. 5). Our results
suggest declines in the snow/precipitation
ratio for all sites for each of the 13 GCMs,
except for one site where one of the 13 GCMs
used in our simulations suggests an increase in
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    Fig. 4. Current mean annual precipitation (MAP) versus midcentury MAP (left) and midcentury MAP versus end-of-
century MAP (right). The black lines represent the 1:1 relationship. Sites are highlighted by elevational bin (<2200 m
[red], >2200 m [black]).

 

 
 

 
 

0 100 200 300 400 500 600 700

0
10
0

30
0

50
0

70
0

Current MAP (mm)

M
id

-c
en

tu
ry

 M
A

P
 (m

m
)

>2200 m
<2200 m

0 100 200 300 400 500 600 700

0
10
0

30
0

50
0

70
0

Mid-century MAP (mm)

E
nd

-c
en

tu
ry

 M
A

P
 (m

m
)

>2200 m
<2200 m

 

 
 

 
 

0



snow/precipitation ratio by the end of the
century. We attribute these future declines in
snow/precipitation ratio and snowpack to in -
creased temperatures.

DISCUSSION

    Our results indicated that, on average across
our 51 big sagebrush sites, GWR will likely
increase in the future. Those increases were
considerably larger for high-elevation sites
(>2200 m) relative to low-elevation sites
(<2200 m). Larger magnitudes of GWR for
sites >2200 m arose primarily because those
sites currently receive larger amounts of pre-
cipitation and will continue to receive larger
amounts in the future. MAP and MAT collec-
tively explained 65% of the variation in GWR
at the end of the century.

Relationship Between Elevation, 
MAT, MAP, and GWR

    Our results indicated that the most sensi-
tive macroclimatic variables that influence
GWR are MAT and MAP, the magnitude, type,
and seasonality of which are essential for
replenishing both soil water in the deepest

soil layers and groundwater. The rate and
magnitude of GWR is dependent on losses
from evapotranspiration, snowpack character-
istics, land use, and the amount, intensity, and
timing of precipitation (Klove et al. 2014). In
Wyoming, groundwater recharge for drylands
dominated by big sagebrush is controlled by
total precipitation, precipitation in the cold
season, and snowmelt, which allow for the
establishment of hydraulic connectivity and
eventual recharge (Schlaepfer et al. 2012a). In
big sagebrush eco systems, annual evaporative
demand is greater than annual precipitation,
which results in a dependence on cool season
precipitation for recharge of deep soil layers
during the spring and early summer months
(Schlaepfer et al. 2012a). Therefore, the most
relevant processes influencing GWR occur dur -
ing periods of relatively low temperature and
low evaporative demand, while water storage
at depth in the soil profile contributes to water
availability dur ing dry months (Lauenroth et
al. 2014). Future increases in precipitation and
GWR closely follow an elevational gradient,
with the largest expected magnitudes at the
highest elevations.
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    Fig. 5. Daily snowpack for sites >2200 m and <2200 m through 2100. Snow-water equivalence (SWE) refers to the
volume of water present within the snowpack. Daily SWE magnitudes represent the mean SWE value across all 13 GCMs
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(2030–2060), and end-of-century (2070–2100).



Implications of Climate Change

    Our simulation results indicated that cli-
mate change will likely affect the water bal-
ance of big sagebrush ecosystems in Wyoming
through increasing total precipitation and
temperature and shifting precipitation type
and seasonality, similar to other dryland stud-
ies ( Jyrkama et al. 2007, Ajami et al. 2012,
Schlaepfer et al. 2012a, 2012b, Klove et al.
2014, Palmquist et al. 2016a). Similar to our
work, several studies have reported shifts in
the mean seasonal and annual groundwater
levels (Schlaepfer et al. 2012b, Lauenroth et
al. 2014, Palmquist et al. 2016a, 2016b), which
were correlated with the amount of precipita-
tion and snowmelt (Schlaepfer et al. 2012a,
Klove et al. 2014). Our work builds on these
previous studies (i.e., Palmquist et al. 2016a,
2016b) through the exploration of climatic vari -
ables most relevant to GWR and the identifi-
cation of distinctive patterns in future GWR
that are closely related to differences in eleva-
tion (i.e., >2200 m or <2200 m) for sites span-
ning the climatic and elevational gradients
characteristic of big sagebrush ecosystems
in Wyoming.
    Changing precipitation regimes, changing
soil water dynamics, and increasing tempera-
tures can have important implications for
the distribution and abundance of plant func-
tional types (Sala et al. 1997). Warmer tempera-
tures increase potential evapotranspiration
and can alter the competitive advantage of
different plant species and the length of the
growing season (Ajami et al. 2012, Lauenroth
et al. 2014). Furthermore, with warmer tem-
peratures, C4 species may have a competitive
advantage (Paruelo and Lauenroth 1996), re -
sulting in potential shifts in plant functional
type composition in big sagebrush plant com-
munities. However, Lauenroth et al. (2014)
suggested that the changes in precipitation
regimes and temperature variability would have
to be extreme for any large-scale shifts in domi -
nance to occur in big sagebrush ecosystems.

SOILWAT2 Model Performance in Wyoming

    Comparison of SOILWAT2 estimates of
GWR in Wyoming with the Baseflow Index
(BFI) (Wolock et al. 2003) revealed a close
relationship (Fig. 1). An average overestima-
tion of 19% by SOILWAT2 is very likely
attributable to the fact that SOILWAT2 does
not estimate runoff separately, which results in

the inclusion of water that would otherwise be
lost to overland flow in estimates of recharge.
A recent comparison of 3 widely used land sur -
face models (Noah, Mosaic, and VIC) with BFI
(Niraula et al. 2017) found that Noah estimates
of GWR were most highly correlated with BFI
(r = 0.86), which is similar to the relationship
we document between SOILWAT2 and BFI
GWR estimates (data from the western United
States: r = 0.88; data from Wyoming: r = 0.89).
Noah underestimated BFI by 19%, Mosaic
under estimated BFI by 30%, while VIC over-
estimated BFI by 32% (Niraula et al. 2017).
Thus, our SOILWAT2 estimates of GWR are
similar to estimates from both BFI and other
models that predict GWR.

Future Climatic Uncertainty

    Any analysis that uses future climate infor-
mation is subject to the uncertainty associated
with both the RCPs (representative concentra-
tion pathways) and the individual GCMs (Baker
et al. 2017). Utilization of models incorporating
GCM data as input will also have uncertainty
associated with assumptions of initial condi-
tions, downscaling techniques, and empirical
model deficiencies for the parameterization of
recharge and potential evapotranspiration
(Ajami et al. 2012). Studies have suggested that
to understand the full range of potential climate
change outcomes on the ecohydrology of a
region, it is necessary to utilize multiple
GCMs. Palmquist et al. (2016a) exemplified the
significance of assessing the range of GCM out-
comes: input data from 9 of 10 GCMs resulted
in increases in GWR, while the data from one
GCM projected a decrease. Our study summa-
rized climatic and ecohydrological variables
across 13 GCMs by presenting mean values,
similar to an ensemble approach, but it also
summarized variability in GWR forced by 13
different GCMs to gain a more thorough
understanding of the effect climate change may
have on variables influencing GWR, as well as
characterizing the uncertainty across GCMs.
Although there is high variability in future
GWR forced by the 13 GCMs, particularly for
the wet sites, most GCMs agree on the direc-
tion of change of the mean values we report
(see Supplementary Material 3).

Implications for Water Management

    From 1960 to 2000, 40% of the population
growth experienced by the United States took
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place in arid and semiarid regions (Liu et al.
2011). Ensuring sustainable access to water in
these areas will require accurate estimates of
diffuse GWR under varying climate conditions
(Green et al. 2011). This work and other stud-
ies have shown that higher temperatures in the
winter season, compared to historical trends,
will likely have important implications for sus-
tainable management of water resources in
dryland basins where the timing and magni-
tude of recharge is projected to change (Ajami
et al. 2012).
    Our results suggested a 75% reduction in
snowpack by the year 2100, which could have
serious implications for the water budgets of
Wyoming and downstream areas (Jyrkama and
Sykes 2007, Harpold et al. 2017). Decreasing
snowpack will directly influence overland flow,
which is regionally important for irrigation
and domestic uses, and will have additional
implications for flood management (Harpold
et al. 2017). Even though precipitation is pro-
jected to increase slightly in the future for
our sites, the timing and form of precipitation
will influence the duration and severity of
periods of water scarcity in Wyoming and
likely in other states with similar topography
and climate. The potential for snowpack reduc-
tions due to climate and vegetation changes
following hypsometric gradients between ele-
vation and increasing precipitation, is a well-
established trend suggesting that snowpack
variability poses a barrier to comprehensive
water resources management in the western
United States (Harpold et al. 2017, Tennant et
al. 2017). Lack of winter precipitation as snow,
increasing variability and seasonality in the
dominant precipitation regimes characteristic
of high elevations, decreasing duration of
snow cover, and increasing rates of ablation
are all factors associated with predicted re -
gional warming trends in the western United
States. These trends require further attention
and development of metrics that will help
inform scientists and water managers on the
vulnerabilities of drylands to increased drought
periodicity (Pierce et al. 2013, Tennant et al.
2017, Harpold et al. 2017).
    Garnering a better understanding of under-
lying ecohydrological processes influencing
GWR is critical for comprehensive water
management strategies for dryland ecosystems
and will be important for mitigating future con -
flicts over water scarcity (Wang et al. 2012). As

regions have experienced an increase in the
frequency and severity of drought, discussions
of regional and transboundary water issues
have continued to develop in complexity with
a concomitant change in methods for assessing
the water balance of these regions (Green et
al. 2011).

SUPPLEMENTARY MATERIAL

    Three online-only supplementary files
accompany this article (scholarsarchive.byu
.edu/wnan/vol79/iss1/4).

SUPPLEMENTARY MATERIAL 1. Surface map of
Wyoming showing the location of 51 sites repre-
senting a dryland ecosystem dominated by big
sagebrush. Prominent mountain ranges and basins
of interest are also shown.

SUPPLEMENTARY MATERIAL 2. Current ground-
water recharge (GWR) and absolute change of
GWR versus current mean annual precipitation
(MAP) and end-of-century MAP.

SUPPLEMENTARY MATERIAL 3. Mean change in
groundwater recharge (GWR) by end-of-century
for each site (change in GWR) and the number of
global circulation models (GCMs) that agree on
the direction of the mean change in GWR for each
site (GCM agreement, out of 13 possible GCMs).
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    SUPPLEMENTARY MATERIAL 1. Surface map of Wyoming where blue squares represent the geographical location of
each of the 51 sites representing a dryland ecosystem dominated by sagebrush. Prominent mountain ranges and basins
of interest are outlined in black.
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    SUPPLEMENTARY MATERIAL 2. Current groundwater recharge (GWR) and absolute change of GWR versus current
mean annual precipitation (MAP) and end-of-century MAP. All 51 sites are highlighted by basin. Triangles represent
sites >2200 m elevation, while circles represent sites <2200 m. Whiskers correspond to the minimum and maximum
GCM values for the absolute change in GWR for each of the 51 sites.
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    SUPPLEMENTARY MATERIAL 3. Mean change in groundwater recharge (GWR) by end-of-century for each site (change
in GWR) and the number of global circulation models (GCMs) that agree on the direction of the mean change in GWR
for each site (GCM agreement, out of 13 possible GCMs). Sites are sorted according to elevation and elevational bin
(low or high).

                                      Elevation                            Elevational                             Change in                               GCM
Site                                     (m)                                        bin                                       GWR                               agreement

21                                     1310                                     Low                                      −0.5                                       11
17                                     1345                                     Low                                         0.05                                       6
13                                     1424                                     Low                                         0.1                                         4
22                                     1428                                     Low                                      −0.4                                       10
18                                     1446                                     Low                                      −0.4                                       10
12                                     1473                                     Low                                         0.7                                       11
16                                     1481                                     Low                                         0.4                                         9
19                                     1488                                     Low                                      −0.1                                         8
20                                     1490                                     Low                                      −0.2                                         9
14                                     1631                                     Low                                         0.2                                         7
37                                     1660                                     Low                                         1.3                                         5
15                                     1662                                     Low                                      −0.1                                       11

9                                     1717                                     Low                                      −0.1                                         9
27                                     1735                                     Low                                         0.4                                       10
30                                     1787                                     Low                                      −0.03                                     10
28                                     1822                                     Low                                      −0.1                                       10
29                                     1847                                     Low                                      −0.1                                         9
26                                     1892                                     Low                                         0.7                                         9
23                                     1892                                     Low                                         9.7                                       10
36                                     1947                                     Low                                         2.6                                       12
24                                     2006                                     Low                                         0.9                                         8

1                                     2019                                     Low                                         1.8                                       10
2                                     2065                                     Low                                         0.7                                       13

34                                     2067                                     Low                                         1.9                                       12
38                                     2083                                     Low                                         9.9                                       11
41                                     2099                                     Low                                         1.5                                       11
11                                     2111                                     Low                                         1.3                                       12
40                                     2119                                     Low                                         1.3                                         8
25                                     2140                                     Low                                         0.5                                         8

4                                     2157                                     Low                                         3.7                                       13
47                                     2158                                     Low                                         0.4                                       10

7                                     2171                                     Low                                         0.6                                       11
10                                     2175                                     Low                                         1.8                                         7
39                                     2177                                     Low                                         4.7                                       10
31                                     2180                                     Low                                         0.2                                         8

8                                     2193                                     Low                                       10.1                                         9
3                                     2203                                     High                                     −0.1                                       10

32                                     2209                                     High                                        0.4                                       10
50                                     2217                                     High                                      39.7                                       11
6                                     2242                                     High                                        0.4                                       10
5                                     2279                                     High                                        0.4                                       11

49                                     2284                                     High                                        8.4                                       12
48                                     2300                                     High                                        0.7                                       12
42                                     2302                                     High                                      18.8                                       10
43                                     2365                                     High                                      42.6                                       12
33                                     2379                                     High                                        0.7                                       13
46                                     2406                                     High                                      12.4                                         8
51                                     2438                                     High                                      10.4                                         8
35                                     2465                                     High                                      24.7                                       13
44                                     2535                                     High                                      52.0                                       12
45                                     2652                                     High                                      41.8                                         9
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