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Abstract— Network connectivity is a primary attribute and
a characteristic phenomenon of any networked system. A high
connectivity is often desired within networks; for instance to
increase robustness to failures, and resilience against attacks.
A typical approach to increasing network connectivity is to
strategically add links; however adding links is not always the
most suitable option. In this paper, we propose an alternative
approach to improving network connectivity, that is by making
a small subset of nodes and edges “trusted,” which means
that such nodes and edges remain intact at all times and are
insusceptible to failures. We then show that by controlling the
number of trusted nodes and edges, any desired level of net-
work connectivity can be obtained. Along with characterizing
network connectivity with trusted nodes and edges, we present
heuristics to compute a small number of such nodes and edges.
Finally, we illustrate our results on various networks.

I. INTRODUCTION

Connectedness among various components is a central
theme and a characteristic phenomenon in any networked
system. It signifies a large number of other network at-
tributes, such as network reliability, robustness to failures,
resilience against attacks, and other structural properties of
the network. As a result many notions defining connectedness
have been proposed. In particular, network connectivity in
terms of vertex and edge connectivities are one of the most
widely considered concepts with significant ramifications.
In essence, network connectivity captures the ability of the
network to retain a connection between any two nodes under
a certain number of node or edge failures.

A higher network connectivity is desirable in general to
ensure that any two nodes remain connected even under
a large number of node or edge failures. Not only for
structural robustness, highly connected networks are more
suitable to achieve various other network objectives such as
information spread, resilient consensus [1], and survivable
network designs under node or edge failures [2]. Network
connectivity can be improved by strategically adding links
(edges) between nodes, i.e., by incorporating redundancy,
a technique commonly referred to as the connectivity aug-
mentation [3], [4]. Although effective, improving network
connectivity by adding edges is not always practical due to
economic and feasibility issues. Moreover, adding more links
also increases the attack surface for the potential attackers
to cause edge failures. These concerns inspire us to devise
an alternative strategy to improve network connectivity.

Here, we propose an alternative approach that does not
involve strategic addition of edges or links to improve net-
work connectivity. The basic idea is to ensure the availability
and operational integrity of a very small subset of nodes and
edges at all times by protecting them from failures/attacks.

We call such a subset of nodes and edges trusted. They
correspond to the network components that are more reliable
owing to more resources and higher security measures. For
instance, in terms of protection against physical attacks, de-
fense mechanisms against jamming, protected memory, and
sophisticated authentication mechanisms. We then show that
the overall network connectivity is significantly improved by
making a very small subset of nodes and edges trusted, even
if the original network is sparse. Moreover, by controlling the
number of trusted nodes, any desired level of connectivity
could be obtained. Thus, instead of the idea of redundancy
to improve connectivity, we exploit the notion of reliability
(trustedness) of a small subnetwork to improve connectivity.

Our main contributions are as follows: 1) We propose
and characterize the notion of network connectivity using
trusted nodes and edges, and show that network connectivity
can be significantly improved by selecting a small subset
of trusted nodes or edges. 2) We provide ways to compute
network connectivity in the presence of trusted nodes and
edges, and also give heuristics to select the minimum set
of trusted nodes and edges to achieve any desired value
of network connectivity. 3) Finally, we evaluate our results
numerically on various networks including Erdős-Rényi,
preferential attachment, and random geometric networks.

The problems related to adding the minimum number of
edges to attain the desired network connectivity are referred
to as the connectivity augmentation problems. The issue was
investigated in detail for the first time in [4]. Since then,
new techniques have been developed to optimally increase
the vertex and edge connectivities (e.g., [5], [6], [7]). For
a comprehensive list of papers in the area, we refer readers
to an earlier survey by Frank [8] and Chapter 8 in a more
recent work of Nagamochi and Ibaraki [3]. A closely related
field is the area of survivable network design, in which the
basic premise is to design and analyze algorithms that exploit
structural properties of the network to make them survive
under failure of network components (e.g., [2], [9]). To
improve structural properties of networks, adding protected
resources or defending a subset of network components
has been a useful approach. Similar to trusted nodes, the
notion of anchor nodes was used in [10] in the context of
maximizing the size of a special structure, known as the
k-core, in graphs. In a recent work, Dziubiński and Goyal
[11] explore trade-offs between the cost of adding links and
defending nodes against attacks for network connectivity.

II. PRELIMINARIES

Let G(V, E) be an undirected graph with a vertex set V and
edge set E . An edge between vertices u and v is denoted by



uv, and vertices u and v are called neighbors of each other.
The neighborhood of a vertex u, denoted by Nu, is the set of
all neighbors of u. The neighborhood of a subset of vertices
U ⊆ V is NU =

⋃
u∈U
Nu. A path P of length n is a non-

empty graph with the vertex set V = {u0, u2, · · · , un}, and
the edge set {u0u1, u1u2, · · · , un−1un}. The vertices u0 and
un are the end vertices, whereas, all remaining vertices are
the inner vertices of the path. In a graph G, two paths are
vertex-independent if they do not have any common inner
vertex. Similarly, two paths are edge-independent if they do
not have any common edge. We use the terms vertex and
node interchangeably throughout the paper.

If W is a subset of vertices (edges), then G \W is the
subgraph induced by the remaining vertices and edges of G.
If G \ W has at least two components, then W separates
G. Similarly, if u and v belong to two different components,
then W separates u and v. Such a set W is referred to as
the vertex cut (edge cut). Next, we state the definitions of
vertex and edge connectivity.

A graph is k-vertex connected if there does not exist a
set of k − 1 vertices whose removal disconnects the graph.
Likewise, the graph is k-edge connected if there is no subset
of k− 1 edges whose removal disconnects the graph. Vertex
connectivity of G, denoted by κ(G), is the maximum value of
k for which G is k-vertex connected. Similarly, the maximum
value of k for which G is k-edge connected is the edge
connectivity of G, denoted by λ(G). The vertex connectivity
of a complete graph with n nodes is defined to be n − 1
although no vertex cut exists. A classical theorem of Menger
relates the notion of connectivity to the number of vertex and
edge-independent paths between any two nodes.

Theorem 2.1: (Menger’s theorem [12])
- Let u and v be distinct, non-adjacent vertices of G. The

minimum size of a vertex cut separating u and v is
equal to the maximum number of vertex-independent
paths between u and v.

- Let u and v be distinct vertices of G. The minimum size
of an edge cut that separates u and v is equal to the
maximum number of edge-independent paths between
u and v.

As a consequence, for any k ≥ 2, a graph is k-vertex
connected (k-edge connected) if and only if any two vertices
have k vertex-independent (k edge-independent) paths be-
tween them. Several versions and proofs of this fundamental
results have been reported (e.g., see [13]).

III. CONNECTIVITY WITH TRUSTED NODES AND EDGES

In the traditional k-vertex (k-edge) connectivity notion,
the idea is to ensure that the graph remains connected if
any k − 1 nodes (k − 1 edges) are removed from the
network. By adding more edges between nodes, the vertex
and edge connectivities can be improved. However, if we
fix a small subset of nodes (edges) such that they cannot
be removed from the network, then the minimum number
of nodes (edges) from the remaining set that are required
to disconnect the network also increases. Thus, instead of

adding more edges or links, we get an alternative way to
improve network connectivity. A merit of this approach is
that by making only a very small fraction of the overall
nodes (edges) insusceptible to removals, or as we call trusted,
the overall node (edge) connectivity can be significantly
improved. In practice, trustedness can be achieved by making
such components more resourceful and highly secure against
physical attacks, tampering, and malicious intrusions through
sophisticated security mechanisms. Next, we define the new
notion of connectivity as follows:

Definition (k-Vertex Connected with Tv) – An undirected
graph G(V, E) is said to be k-vertex connected with Tv ⊆
V , if there does not exist a set of fewer than k vertices in
V \Tv whose removal disconnects the graph. The maximum
value of k for which the graph is k-vertex connected with
Tv is denoted by κT (G) and is referred to as the vertex-
connectivity with Tv .

Similarly, we can define the k-edge connectivity with
trusted edges Te.

Definition (k-Edge Connected with Te) – For a given Te ⊆
E , G(V, E) is said to be k-edge connected with Te, if there
does not exist a set of fewer than k edges in E \ Te whose
removal disconnects the graph. The maximum value of k for
which the graph is k-edge connected with Te is called the
edge-connectivity with Te, and is denoted by λT (G).

Analogous to the node-independent paths, we define the
notion of node-independent paths with Tv as follows: If Tv is
the set of trusted nodes, then two paths are node-independent
with Tv if the common inner vertices are only the trusted
nodes. Similarly, for a given set of trusted edges Te, two
paths are edge-independent with Te if their common edges
are only the trusted edges. For instance, in Figure 1(a),
paths {u1u2, u2x, xu3} and {v1v2, v2x, xv3} are node-
independent with Tv = {x}, and paths {u1u2, u2x, xy, yu3}
and {v1v2, v2x, xy, yv3} in Figure 1(b) are edge-independent
with Te = {xy}.
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Fig. 1. (a) Node-independent paths with Tv . (b) Edge-independent paths
with Te.

A path with all trusted nodes (edges) is referred to as the
node-trusted (edge-trusted) path. If for any pair of nodes,
there exists a node trusted path between them, then G is
referred to as completely vertex-connected with Tv . Similarly,
G is completely edge-connected with Te if there exists an
edge-trusted path between any two nodes. If a graph is
completely vertex connected with Tv , we define its κT =∞,
and if the graph is completely edge-connected with Te, then
we define its λT =∞.



A. Vertex Connectivity with Trusted Nodes Tv
Next, we compute and relate vertex connectivity with

trusted nodes to the traditional notion of vertex connectivity.
Let G′(V, E ′) be a graph obtained from G(V, E) as follows:
for every non-adjacent pair of nodes u and v, if there exists
a trusted node, or a node-trusted path between them, then
add an edge {uv}. An example is shown in Figure 2, where
{u, v, z} is the set of trusted nodes in G. Since nodes u and
v induce a node-trusted path in G, all neighbors of u and v
are pair-wise adjacent in G′. Similarly, neighbors of trusted
node z are adjacent in G′.

· · · · · ·

u

v

z

G G′

u

z

v

Fig. 2. G with the set of trusted nodes {u, v, z} and the resulting G′.

Proposition 3.1: Let G(V, E) be a graph that is not com-
pletely vertex connected with Tv , then κT (G) = κ(G′).

Proof: Let κT (G) = k. If nodes u and v are connected
trough a node-trusted path in G, then u and v are adjacent in
G′. Thus, if there is no subset of k−1 non-trusted nodes in G
whose removal disconnects the graph, then there is no subset
of any k − 1 nodes in G′ whose removal disconnects G′.
Similarly, we observe that every vertex-cut in G consisting
of only non-trusted nodes is also a vertex-cut in G′.

A direct consequence of the above proposition and Theo-
rem 2.1 is the following Menger’s type result.

Corollary 3.2: For a graph G(V, E) and Tv ⊆ V , the
following statements are equivalent:

1) G is k-vertex connected with Tv .
2) For any two distinct, non-adjacent vertices u, v ∈ V;

either there exists a node-trusted path between u and
v, or there exists at least k paths between u and v that
are vertex-independent with Tv .

As an example, consider the 2-vertex connected graph in
Figure 3(a), which becomes 4-vertex connected with two
trusted nodes Tv = {6, 10} as shown in Figure 3(b).
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Fig. 3. (a) Graph is 2-vertex and 2-edge connected. (b) The graph becomes
4-vertex connected with Tv = {6, 10}. Between nodes 5 and 9, there are
four vertex-independent paths with Tv , shown in red, blue, green and yellow.
(c) The graph is 3-edge connected with Te = {45}. Three edge-independent
paths with Te between nodes 5 and 9 are highlighted

To compute the vertex connectivity of G with Tv , we
first obtain G′ as above, and then can use any algorithm to

compute the vertex connectivity of G′. There is an extensive
literature on such algorithms [14]. A typical approach is to
utilize the max-flow-min-cut theorem (e.g., see [3]). The idea
is to compute the local vertex connectivity between any two
non-adjacent nodes s, t ∈ V in G′, which is the minimum
number of nodes that need to be removed to disconnect s
and t. The local vertex connectivity is equal to the maximum
flow between s and t in a particular directed network HG′

obtained from G′ (e.g., see [15]). The vertex connectivity of
G′, and hence the vertex connectivity of G with Tv , is simply
the minimum of the local vertex connectivities between any
two non-adjacent nodes in G′.

The directed networkHG′ required to compute local vertex
connectivity between non-adjacent nodes s and t is obtained
from G′ as follows [15]: For each undirected edge uv, create
two directed edges; one from u to v, and the other from v to
u. Remove all edges incoming to s and outgoing from t. For
each node u ∈ V \ {s, t}, create two nodes ui and uo, and
add a directed edge from ui to uo. Next, make all incoming
edges to u as the incoming edges to ui, and make all edges
leaving from u as the outgoing edges from uo. Finally, assign
a unit weight (capacity) to each directed edge and compute
the maximum flow between s and t. In summary, to compute
the vertex connectivity of G with a given Tv , following steps
are performed,

G −→ G′ s,t∈V−−−→ HG′ −→ max flow(s,t). (1)

κT (G) is the minimum of the maximum flow between any
two non-adjacent nodes s, t in G′.

In fact, the vertex connectivity of G with Tv can be
computed by directly obtaining a directed network HG
from G as described above. In other words, the G → G′
transformation in (1) can be avoided. The only difference
in the construction of HG from above would be that the
edge weights (capacities) of all the edges incoming to and
outgoing from the nodes corresponding to the trusted nodes
in G would be infinite (i.e., very large), rather than one. The
edge weights of all other edges would remain to be one.
To compute the vertex connectivity with Tv , maximum flow
between all non adjacent nodes in G is then computed over
HG . An example is shown in Figure 4.
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Fig. 4. For a given G, Tv = {u}, and non-adjacent nodes s, t, the
construction of a directed network HG

B. Edge Connectivity with Trusted Edges Te
Here, we discuss the case of edge-connectivity with trusted

edges, and ways to compute it. Let G(V, E) be a graph with



trusted edges Te ⊆ E , then we define G̃(Ṽ, Ẽ) be the graph
obtained by identifying the end nodes of each trusted edge.
Here, identifying two nodes, say u1 and u2, means replacing
them by a single node u such that an edge exists between
some node x and u in the new graph if and only if an edge
exists between x and u1 or between x and u2 in the original
graph. We obtain G̃ from G by identifying the end nodes of
all trusted edges one by one. Note that G̃ might have multiple
edges between nodes, and hence G̃ is a multigraph. All self
loops are ignored. An example is illustrated in Figure 5.
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Fig. 5. The end nodes of trusted edges {u1u2} and {v1v2} in G are
identified as u and v respectively into G̃.

We observe that edge-trusted paths exist between nodes in
G that are identified as a single node in G̃. Thus, if |Ṽ| = 1,
it implies that G is completely edge-connected with Te. Since
the end nodes of all trusted edges are identified in G̃, thus, if
there is no set of k−1 non-trusted edges that disconnects G,
then there is no set of any k− 1 edges in G̃ whose removal
disconnects G̃. Similarly, it is easy to observe that any edge-
cut of size k in G is also an edge-cut in G̃. Thus, we get the
following:

Proposition 3.3: Let G(V, E) be a graph that is not com-
pletely edge-connected with Te, then λT (G) = λ(G̃).

Given a multigraph G̃, if we replace each (edge in a)
multiple edge by a path of length two, then there is a one-to-
one relation between the paths in G̃ and the resulting graph.
Thus, the result in the Menger’s theorem is immediately
applicable to the resulting graph. We can state the following.

Proposition 3.4: The edge-version of the Menger’s theo-
rem holds for multigraphs.

As a result, for the notion of edge connectivity with Te,
the following Menger’s type result is directly obtained.

Corollary 3.5: For a graph G(V, E) and Te ⊆ E , the
following statements are equivalent:

1) G is k-edge connected with Te.
2) For any two distinct vertices u and v in G; either

there exists an edge-trusted path between them, or
there are at least k paths between them that are edge-
independent with Te.

As an example, consider the 2-edge connected graph in
Figure 3(a), which becomes 3-edge connected with a single
trusted edge as shown in Figure 3(c).

To compute the edge connectivity of G with Te, we can
first obtain the multigraph G̃ and can then compute the edge
connectivity of G̃ using known methods, for instance [3],
[16], [17]. At the same time, as with the vertex connectivity
with Tv , we can directly compute the edge connectivity of G
with Te by first obtaining a directed graph DG with appropri-
ate edge weights. DG is obtained from G by replacing each

undirected edge uv in G by two directed edges, one from
u to v and the other from v to u. All the directed edges
corresponding to the trusted edges in G are assigned infinite
weights (capacities), whereas all remaining directed edges
are assigned unit weight. The edge connectivity of G with
Te is simply the minimum of the maximum flow between any
two nodes in DG . It is sufficient to compute the minimum
of the maximum flow between a fixed node u (randomly
picked) and all other nodes [14].

IV. COMPUTING TRUSTED NODES AND EDGES

In this section, we present heuristics to select minimum set
of trusted nodes Tv (trusted edges Te) to achieve the desired
vertex connectivity with Tv (edge connectivity with Te).

A. Problem Complexity

First, we show that finding a minimum set of trusted nodes
achieving a certain connectivity is a computationally hard
problem. We begin by formulating this as a decision problem.

Definition (Trusted Node-Connectivity Augmentation Prob-
lem (TNCAP)) Given a graph G(V, E), a desired connectivity
k′, and the number of trusted nodes T , determine if there
exists a set of trusted nodes Tv of cardinality T such that G
is k′-connected with Tv .

Theorem 4.1: TNCAP is NP-hard.
We show that TNCAP is NP-hard using a reduction from a

well-known NP-hard problem, the Set Cover Problem (SCP).

Set Cover Problem (SCP) Given a base set U , a family F
of subsets of U , and a threshold size t, determine if there
exists a subfamily C ⊆ F of cardinality t whose union is U .

Proof: Given an instance of SCP, we construct an
instance of TNCAP as follows:
• For each element u ∈ U , create a node u. Similarly, for

each member F of the family F , create a node F .
• For each u ∈ U and F ∈ F , create an edge (u, F ) if
u ∈ F .

• For each F1, F2 ∈ F , F1 6= F2, create an edge (F1, F2).
• Let number of trusted nodes be T = t, and let the

desired connectivity be k′ = |F|.
It is clear that the reduction can be performed in polynomial
time. As a consequence, we only need to show that TNCAP
has a solution if and only if SCP does.

First, let us suppose that there exists a set cover C of
cardinality t. Then, let the set of trusted nodes be Tv =
C. Since C is a set cover of U , every node corresponding
to an element of U is connected to a trusted node in Tv .
Further, every node corresponding to a member of F \ C
is also connected to a trusted node in Tv , and the trusted
nodes are connected to each other. Consequently, G cannot
be separated by the removal of any set of non-trusted nodes,
which proves that Tv = C is a solution for TNCAP.

Second, let us suppose that there does not exist a set
cover of cardinality t. Now, we will show that the graph
G cannot be k′-connected with any set of trusted nodes Tv
of cardinality T = t. Let Tv be an arbitrary set of trusted



nodes of cardinality T , and consider the removal of all
non-trusted nodes corresponding to members of F . Since
Tv ∩ F cannot be a set cover due to our supposition, there
exists an element u ∈ U that is connected only to non-
trusted nodes. Consequently, the removal of the non-trusted
nodes corresponding to members of F separates u from the
remainder of the graph, which proves that Tv cannot be a
solution for TNCAP.

B. Heuristics

In a graph, complete connectivity with Tv is obtained
whenever any two nodes are connected through a node-
trusted path between them. A node trusted path exists be-
tween any pair of nodes if and only if Tv is a connected
dominating set, which is defined as

Definition (Connected Dominating Set) In a graph G(V, E),
a subset of nodes Γ ⊆ V is a connected dominating set if
and only if
(i) for every u ∈ V , either u ∈ Γ, or u is adjacent to some

v ∈ Γ, and
(ii) the nodes in Γ induce a connected subgraph in G.
The cardinality of the smallest connected dominating set is
known as the connected domination number, denoted by γG .

For any k, the minimum size of trusted nodes required to
achieve desired k-connectivity with Tv is bounded by γG ,

|Tv| ≤ γG . (2)

Thus, starting with a Tv = Γ, we can iteratively reduce the
size of Tv to get a minimal set of trusted nodes with which
the graph remains k-vertex connected with Tv . The notion
of connected dominating set in graphs has been extensively
studied in both graph theory and sensor network literature
(e.g., see [18], [19]), wherein a wide variety of applications
along with various distributed algorithms for constructing
small sized connected dominating sets have been reported.

Let V Conn Trust(G, Tv) be the procedure to determine
the vertex connectivity with a given Tv , as outlined in Section
III-A, and Conn Dom Set(G) be the procedure to determine
the minimal connected dominating set. Then, a minimal Tv
required to achieve the desired vertex connectivity k′ with
trusted nodes can be obtained using Algorithm 1 given below.
Starting with a Tv = Γ, in each iteration, a node is removed
if the resulting connectivity is at least equal to the desired
vertex connectivity with Tv .

Note that in Algorithm 1, O(|Γ|) calls are made to the
sub-routine that computes vertex connectivity with trusted
nodes. Next, we present a heuristic to compute a minimal set
of trusted edges Te to achieve the desired edge connectivity
with Te. As with the vertex connectivity case, complete edge
connectivity with Te is obtained if and only if there exists an
edge-trusted path between every pair of nodes, which is true
if Te consists of edges in a spanning tree. Thus, to achieve
complete edge connectivity with Te, we need |Te| = n− 1,
where n is the number of nodes in G. At the same time, we
get an upper bound on the minimum size of Te to achieve
desired k-edge connectivity with trusted edges for any k,

Algorithm 1 Trusted Nodes for Vertex Connectivity
1: Input: G(V, E), k′

2: Output: Tv ⊆ V
3: Γ← Conn Dom Set(G)
4: Tv ← Γ
5: for i = 1 to |Γ| do
6: v ← V Conn Trust(G, Tv \ {Γ(i)})
7: if v ≥ k′ do
8: Tv ← Tv \ {Γ(i)}
9: end if

10: end for

|Te| ≤ n− 1. (3)

Thus, to obtain a minimal Te to achieve desired edge
connectivity with trusted edges, say k′, we start with a Te
consisting of edges in a spanning tree, and then iteratively
reduce the size of Te. If E Conn Trust(G, Te) is the
routine to compute edge-connectivity with Te, as discussed
in Section III-B, and Min Span Tree(G) computes edges
in a spanning tree, then Algorithm 2 computes a minimal Te
to achieve the desired edge connectivity with trusted edges.

Algorithm 2 Trusted Edges for Edge Connectivity
1: Input: G(V, E), k′

2: Output: Te ⊆ E
3: E ′ ← Min Span Tree(G)
4: Te ← E ′
5: for i = 1 to |E ′| do
6: e← E Conn Trust(G, Te \ {E ′(i)})
7: if e ≥ k′ do
8: Te ← Te \ {E ′(i)}
9: end if

10: end for

If n is the number of nodes in the graph, then, in Algo-
rithm 2, O(n) calls are made to the routine that computes
edge connectivity with trusted edges. Next, we present a
numerical evaluation of both the algorithms.

V. NUMERICAL EVALUATION

We evaluate our results for three different types networks,
including Preferential attachment networks, Erdős-Rényi net-
works, and Random geometric networks. These network are
frequently used to model various networking phenomenon
existing in nature and also for various engineering applica-
tions. The details of networks considered for our simulations
are stated below.

- Preferential attachment (PA) networks with n = 100
nodes obtained by adding a node to an existing network
one at a time. Each new node is connected to m = 3
existing nodes with the probability proportional to the
degree of the nodes.



- Erdős-Rényi (ER) networks consisting of n = 100 nodes
in which the probability of an edge between any two
nodes is p = 0.07.

- Random geometric (RG) networks consisting of n =
100 nodes that are distributed uniformly at random in
the unit area. An edge exists between any two nodes if
the Euclidean distance between them is at most 0.18.

Every single point in the plots in Figures 6 (a) and (b) is
an average of thirty randomly generated instances. The min-
imum number of trusted nodes (computed by the Algorithm
1) sufficient to achieve the desired vertex connectivity with
Tv , and the minimum number of trusted edges (computed
by the Algorithm 2) sufficient to achieve the desired edge
connectivity with Te, are plotted in Figures 6 (a) and (b)
respectively.

In the case of the preferential attachment networks, the
vertex connectivity with no trusted nodes is 3. To increase
the vertex connectivity from 3 to 4, we observe a big jump
in |Tv|, which is almost equal to the size of the minimum
connected dominating set. In the case of our preferential
attachment networks, vertex connectivity with Tv is exhibited
as an ‘all-or-nothing’ type phenomenon, i.e., to increase the
vertex connectivity even by one, the number of trusted nodes
needed are sufficient to make the network completely vertex
connected with Tv . However, in the cases of Erdős-Rényi and
random geometric networks, we observe rather a continuous
increase in |Tv|. The plot of Tv is plateaued once |Tv| is
equal to the size of the connected dominating set.

Similar patterns are observed in the cases of edge con-
nectivity with trusted edges. In the case of preferential
attachment networks considered, to increase the edge con-
nectivity from 3 to 4, the number of trusted edges needed
increases from 0 to almost n/2. For the cases of Erdős-
Rényi and random geometric networks, |Te| increases in a
more continuous manner to achieve higher values of edge
connectivity with Te.
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Fig. 6. (a) Number of trusted nodes Tv as a function of the vertex
connectivity with trusted nodes. (b) Number of trusted edges Te as a
function of the edge connectivity with trusted edges.

VI. CONCLUSIONS

A typical approach to improving network connectivity is
to add links in a strategic manner. We adapted a different
approach to achieve any desired value of vertex and edge
connectivity. The basic idea was to make a small subset

of nodes and edges trusted, i.e., insusceptible to failures.
We then showed that existence of such nodes and edges
has an effect of having a higher network connectivity. We
also presented heuristics to select a small subset of trusted
nodes and edges to achieve any desired value of network
connectivity. Using this approach, even the sparse networks
can be made highly connected without adding edges. As
opposed to traditional way of improving connectivity by
“redundancy,” our approach relies on making a portion of
network more reliable and trusted, and thereby, achieving
the desired connectivity. In future, we aim to combine both
approaches to devise a more efficient strategy to improve
connectivity. Moreover, we would like to generalize the
notion of trustedness in the context of practical networks.
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