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ABSTRACT
As the Industrial Internet of Things (IIoT) becomes more ubiquitous in critical
application domains, such as smart water-distribution and transportation systems,
providing security and resilience against cyber-attacks grows into an issue of utmost
importance. Cyber-attacks against critical infrastructure pose significant threats to
public health and safety, and they have proven to be detrimental in recent years.
To alleviate the severity of these threats, various security techniques—including
redundancy, diversity, and hardening—are available, which strengthen different se-
curity aspects of a system. However, no single technique can address the whole
spectrum of cyber-attacks that may be launched by a determined and resourceful
attacker. In light of this, we consider a multi-pronged approach, which integrates
redundancy, diversity, and hardening techniques, for designing secure and resilient
IIoT systems. In this context, redundancy means deploying additional components
and devices; diversity means using multiple implementation variants of the same
component; and hardening means reinforcing individual components. We introduce
a framework for quantifying cyber-security risks and optimizing IIoT design by de-
termining security investments in redundancy, diversity, and hardening. We show
that finding optimal security investments is an NP-hard problem, and then present
an efficient meta-heuristic design algorithm that finds near optimal designs in prac-
tice. To demonstrate the applicability of our framework, we present two case studies
in water-distribution and transportation systems. Our numerical evaluation shows
that integrating redundancy, diversity, and hardening can lead to reduced security
risk at the same cost.

KEYWORDS
Cyber-physical systems; security; Internet-of-Things; resilience; graph theory;
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1. Introduction

Remarkable improvements in the operational efficiency, reliability, and overall func-
tionality of present-day industrial systems and critical-infrastructure networks are the
payoff of employing modern technology trends such as the Industrial Internet of Things
(IIoT). Emerging industrial platforms such as the Industrial Internet (II) in the US
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and Industrie 4.0 in Europe are creating novel systems that include devices, systems,
networks, and controls used to operate and/or automate IIoT systems. Improved con-
nectivity between system components and tight coupling between the cyber and phys-
ical domains are the characteristic features of these modern systems. On one hand,
this enhanced connectivity and integration allow for data exchange and processing
to fine-tune system processes. On the other hand, they open new threat channels,
against which these systems need to be secured [2–5]. Critical infrastructure such
as water management and transportation systems, in particular, have been growing
more connected, and they can be targets for malicious attacks. Due to the tight cou-
pling between the cyber and physical domains in such systems, new attack vectors are
emerging. Attacks can include physical destruction, network spoofing, malware, data
corruption, malicious insiders, and others. To exacerbate the situation, cyber-incidents
can easily escalate and propagate to other components and systems due to the high-
level of connectivity. The steady increase in the number of reported cyber-incidents
evidences how difficult it is in practice to secure such systems against determined and
sophisticated attackers.

Securing large-scale IIoT systems against cyber- and cyber-physical attacks is a
complicated task since these systems often face a variety of threats, have large attack
surfaces, comprise heterogeneous components, may contain a number of undiscovered
vulnerabilities, and have constrained resources [2,3,6,7]. As a result, traditional security
and resilience mechanisms—ranging from redundant deployments to diversifying and
hardening systems components—may be useful but are not sufficient by themselves.
In fact, there is clearly no “silver bullet” technique that could protect such complex
systems against the entire broad spectrum of possible attacks. Thus, to provide security
solutions that are capable of supporting the continued expansion of such systems, we
need a multi-pronged and holistic approach. In other words, instead of relying on
a single technique, defenders must employ multi-pronged solutions, which combine
multiple techniques for improving the security and resilience of IIoT. We can divide
many of existing techniques into three canonical approaches:
• Redundancy for deploying additional redundant components in a system, so that

even if some components are compromised or impaired, the system may retain
normal (or at least adequate) functionality;
• Diversity for implementing components using a diverse set of component types

(e.g., diverse hardware and software implementations) so that vulnerabilities
which are present in only a single type have limited impact on the system; and
• Hardening for reinforcing individual components or component types (e.g.,

tamper-resistant hardware and firewalls), so that they are harder to compro-
mise or impair.

A straightforward way to combine these approaches is to design and implement them
independently of each other. However, for the improved security and resilience of IIoT
systems, the real benefit of combining these approaches is exhibited when they are
integrated and optimized simultaneously in the design. Various defense techniques—if
deployed carefully—can complement each other in elevating the ability of a system to
resist malicious attacks. Unfortunately, a sound framework and methodology for com-
bining techniques from different approaches is lacking. In lieu of a unified framework
or methodology, defenders must follow best practices and intuition when integrating
techniques, which can result in the deployment of ineffective—or even vulnerable—
combinations.

In this paper, we propose a framework for integrating redundancy, diversity, and
hardening techniques for designing secure and resilient IIoT systems. The objective is
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Figure 1. Example cyber-physical system. Arrows represent flows of sensor data and control signals.

to develop a systematic framework for prioritizing investments for reducing security
risk. The contributions of the paper are as follows:
• Establishing a system model that can capture (1) a wide variety of components

that are found in IIoT as well as the interactions between them, (2) a security
investment model for redundancy, diversity, and hardening, and (3) a security
risk model which quantifies the impact of attacks and defense mechanisms (Sec-
tion 2).
• Formulating the resilient IIoT design problem as an optimization problem for

prioritizing security investments and showing that the problem is NP-hard (Sec-
tion 3).
• Developing an efficient meta-heuristic design algorithm based on simulated an-

nealing for finding near-optimal designs in practice (Section 3).
• Evaluating the applicability of the approach using two case studies in canoni-

cal IIoT domains of water distribution and transportation systems (Sections 4
and 5).

We give an overview of related work in Section 6 and provide concluding remarks in
Section 7.

2. Model

An IIoT system is comprised of a variety of components: sensors, controllers, actua-
tors, and human-machine interfaces for interacting with users as shown in Figure 1.
Our first step introduces a general system model for evaluating security risk. First,
we present a high-level model of IIoT systems. Then, we introduce a model of secu-
rity investments in redundancy, diversity, and hardening, and we quantify risks posed
by cyber-attacks, considering both probability and impact. Based on this model, we
formulate the problem of optimal system design. For a list of symbols used in this
paper, see Table 1.

2.1. System Model

We model the cyber part of the system as a directed graph G = (C,E). The set
of nodes C represents the components of the system, while the set of directed edges
E represents connections between the components, which are used to send data and
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Table 1. List of Symbols

Symbol Description

Constants

C set of components

E set of connections between components

Oc set of components connecting to component c ∈ C

Tc type of component c ∈ C

I set of implementation types

Ic set of implementation types available for component c ∈ C

Ri cost of deploying an instance of implementation type i ∈ I

Di cost of deploying at least of instance of type i ∈ I

Li set of hardening levels available for type i ∈ I

Sl probability that hardening level l ∈ Li is secure

Hl cost of attaining hardening level l ∈ Li

Deployment

rc set of implementation types deployed for component c ∈ C

li hardening level chosen for implementation type i ∈ I

control signals. For each component c ∈ C, we let Oc ⊆ C denote the set of origin
components of the incoming edges of component c. Further, we let Tc denote the type
of component c, which is one of the following:
• sensor: components that measure the state of physical processes (e.g., pressure

sensors);
• actuator: components that directly affect physical processes (e.g., valves);
• processing: components that process and store data and control signals (e.g.,

PLCs);
• interface: components that interact with human users (e.g., HMI workstations).

The implementation of each component is chosen from a set of implementation
types. We let Ic denote the set of types that may be used to implement component
c, and we let I denote the set of all implementation types that may be used in the
system (i.e., I = ∪c∈CIc).

2.2. Security Investment Model

2.2.1. Redundancy

We model redundancy as deploying multiple instances of the same component. For
simplicity, we assume that for each component, at most one instance of each suitable
implementation type is deployed. 1 We make this assumption because our goal is to
address security risks posed by deliberate attacks, and if a security vulnerability exists
in an implementation type, then attackers can typically compromise all instances of
that type.

We let rc ⊆ Ic denote the set of implementation types that are deployed for compo-
nent c ∈ C. To quantify the cost of redundancy, we let Ri denote the cost of deploying
an instance of type i ∈ Ic. Then, the total cost of redundancy is

cost of redundancy =
∑
c∈C

∑
i∈rc

Ri. (1)

1Note that relaxing this assumption would be straightforward; however, such a generalization would provide

little further insight into security.
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Cost Ri captures all costs related to deploying an additional instance of implemen-
tation type i, which may include the cost of purchasing hardware (e.g., purchasing
a sensor or a computational device), the cost of physical deployment (e.g., installing
and configuring an instance), as well as maintenance and management costs associated
with operating the deployed instance. In most IIoT systems, redundancy can lead to a
straightforward improvement in robustness and security, and the cost of individual in-
stances may be very low compared to the potential impact of a successful cyber-attack.
However, for a large number of devices, the total cost can be substantial, especially the
net present cost of operating the devices for the lifetime of the system. Therefore, an
optimal design must achieve the best trade-off between reducing cyber-security risks
and reducing costs (see Section 2.4 for a formal definition of Optimal Design Problem).

2.2.2. Diversity

We model diversity as deploying a diverse set of implementation types (e.g., employ-
ing different software or hardware implementations for components that perform the
same task). Prior work has shown that software diversity alone may be effective at
reducing cyber-risks [8,9]. In our framework, we model diversity as selecting different
implementations rc to be deployed for each component c ∈ C (or at least attempting
to use as many distinct sets as possible).

To quantify the cost of diversity, we let Di denote the cost of using an implemen-
tation type i ∈ I in any non-zero number of components (i.e., Di is the cost incurred
when the first instance of type i is deployed). Then, the cost of diversity is

cost of diversity =
∑

i∈
⋃

c∈C rc

Di. (2)

Cost Di captures all costs related to employing implementation type i ∈ I, which may
include the cost of acquiring a software license, the cost of training personnel to use
the implementation type, as well as management and maintenance costs associated
with using the implementation type.

While increasing the diversity of implementation types can reduce risks by limiting
the impact of a single vulnerability, it is actually “double-edged sword” that may
also elevate risks by broadening the attack surface of the system. In a system that
employs more implementation types, the probability that all implementation types
are secure is generally lower. Thus, increasing diversity can elevate the probability
of the attacker finding an exploitable vulnerability, which our risk model inherently
captures (see Section 2.3.1.1). In light of this, an optimal design must strike a balance
between limiting the impact of vulnerabilities and reducing the probability of the
attacker finding a vulnerability (see Section 2.4 for a formal definition of Optimal
Design Problem).

2.2.3. Hardening

We model the hardening of an implementation type as decreasing the probability
that a zero-day security vulnerability is discovered by an attacker. We assume that
hardening is applied in steps (e.g., performing a code review), resulting in a discrete
set of hardening levels.

We let Li denote the set of hardening levels available for implementation type i ∈ I,
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and we let li denote the chosen level. To model the amount of security provided by
hardening level l ∈ Li, we let Sl denote the probability that the implementation type
will be secure (i.e, no zero-day vulnerability is discovered) if level l is chosen. To
quantify the cost of hardening, we let Hl denote the cost of attaining level l ∈ Li.
Then, the total cost of hardening is

cost of hardening =
∑
i∈I

Hli . (3)

Hardening techniques decrease the probability of an attacker finding and exploiting a
vulnerability in an implementation type. These techniques range from following secure-
coding standards [10] to adding firewall to the services that run on an implementation
type [11]. Defenders can also find and patch vulnerabilities by hiring security experts
for penetration testing [12] or by outsourcing vulnerability discovery through bug-
bounty programs [13,14]. In our framework, a hardening level formally corresponds to
employing a particular combination of techniques. For example, the hardening levels
for a particular implementation type may be the following: l0 = ∅, l1 = { implementing
a secure-coding policy }, l2 = l1 ∪ { penetration testing by external expert }, l3 = l2 ∪
{ organizing bug-bounty program }. Each one of these discrete choices has its own well-
defined cost (e.g., cost of increased development time due to secure coding plus cost of
security audit). Estimating the effectiveness of these techniques, which is a key problem
in security management and economics [15], may be based on domain experts and
historical data. Since hardening techniques can be quite expensive, an optimal design
must find the best trade-off between reducing costs and reducing the probability of the
attacker finding an unpatched vulnerability. The trade-off between cost and security
has been studied extensively in the economics of cyber-security literature [15,16].

2.3. Security Risk Model

Next, we quantify the risks faced by a system with given redundancy, diversity, and
hardening design. In principle, risk can be quantified as

Risk =
∑

outcome

Pr[outcome] · Impact(outcome). (4)

Accurately estimating cybersecurity risks is a central problem in cyber-risk man-
agement and, more generally, in the economics of security [15]. Since cybersecurity
risks depend on both the impact and likelihood of incidents, we need to be able to
accurately estimate both in order to accurately estimate risks. In IT systems, esti-
mating impact is often difficult due to the intangible nature of the protected assets.
In IIoT systems, on the other hand, impact can often be expressed in terms of tan-
gible, physical consequences. However, these consequences can typically be estimated
only using domain-specific approaches (e.g., vulnerability assessment for transporta-
tion networks [17]). In this paper, we present two case studies of our framework,
in which we estimate the impact of cyber-attacks on water-distribution and trans-
portation networks (Section 4). Prior work has introduced approaches for a variety
of domains (e.g., transactive energy systems [18]); we refer the reader to [19] for risk
assessment methods for SCADA systems. Similar to impact, probability can also be
challenging to estimate due to multiple factors, such as the lack of reliable public in-
cident data [20]. In our framework, we describe a detailed model for estimating the
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probabilities of various outcomes (Section 2.3.1).
In our model, an outcome can be represented as a set of components that have been

compromised by an attacker:

Risk(r, l) =
∑
Ĉ⊆C

Pr[Ĉ is compromised] · Impact(Ĉ), (5)

where Impact(Ĉ) is the amount of loss inflicted on the system by an attacker who has

compromised components Ĉ. In the remainder of this subsection, we discuss how to
measure Pr[Ĉ is compromised] and Impact(Ĉ).

2.3.1. Probability

We quantify the probability that an attacker compromises a set of components Ĉ ⊆ C
implicitly by describing a probabilistic process that models how an attacker can take
control of the components of a system one-by-one. We consider two alternative attack
models in our framework: non-stealthy attacks and stealthy attacks. The two attack
models are summarized in Table 2.

Table 2. Component Compromise Rules

Attack Type Component Type

sensor actuator processing interface

non-stealthy attack if majority of instances
are compromised

if majority of instances are compromised or majority
of input components are compromised

stealthy attack if all instances are com-
promised

if all instances are compromised or all input compo-
nents are compromised

2.3.1.1. Non-Stealthy Attacks. First, the attacker attempts to find exploitable
vulnerabilities in all the implementation types that are deployed in the system. Based
on our hardening model, we have that the attacker discovers a zero-day vulnerability
in each implementation type i ∈ I with probability 1 − Sli (independently of the

other types). We let Î denote the set of vulnerable implementation types. Then, the
attacker exploits these vulnerabilities to compromise vulnerable instances. We assume
that all instances that are implemented using a vulnerable implementation type are
compromised. Notice that diversity (i.e., employing a broader set of implementation
types, see Section 2.2.2) increases the expected number of vulnerable implementation
types. However, diversity also limits the impact of each vulnerability by reducing the
number of instances that may be affected by the vulnerability, thereby preventing
catastrophic outcomes.

Next, we determine the set of compromised components Ĉ. We begin with sensor
components and then address other component types. Each sensor component c is
compromised if the majority of its instances rc are vulnerable (i.e., if |rc∩ Î| ≥ |rc|/2).
The rationale behind this rule is the following: If the majority of the instances are
compromised and report the same malicious sensor data, then other components can-
not simply filter out the incorrect sensor input. If only a minority of the instances are
compromised, then other components can easily determine the correct sensor input
(e.g., median value [21]).

Finally, we determine which other components are compromised. We start with the
set of compromised sensor components Ĉ, and then extend the set Ĉ in iterations based
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on the following rule: An actuator, processing, or interface component c is compromised
if the majority of its instances rc are compromised or if the majority of its inputs are
compromised (i.e., if |Oc∩Ĉ| ≥ |Oc|/2). The rationale behind this rule is similar to the
rule for sensors. If the attacker compromised only a minority of both the instances and
the inputs, then the majority can still provide correct outputs; otherwise, the attacker
can tamper with the outputs such that other components cannot recover the correct
values. We repeat applying the above rule until the set of compromised components Ĉ
cannot be extended any further.

2.3.1.2. Stealthy Attacks. For stealthy attacks, the process is the same except that
“majority” is replaced in both rules with “all” (i.e., |rc∩ Î| = |rc| and |Oc∩ Ĉ| = |Oc|).
The rationale behind the difference compared to non-stealthy attacks is the following:
A tampering attack against a sensor component can easily be detected if there exists
at least one component providing a correct sensor value since this value will differ from
the tampered ones. Similarly, to tamper with all outputs of a non-sensor component,
the attacker needs to compromise all instances or control all inputs.

2.3.2. Impact

We let Impact(Ĉ) denote the financial and physical loss resulting from an attack that

compromises and maliciously controls components in Ĉ. The exact formulation of
Impact(Ĉ) depends on the system and the characteristics of its physical processes. In
this paper, we consider two types of systems, water-distribution and transportation
systems, which we will describe in detail in Section 4.

2.4. Optimal Design Problem

We first formulate the problem with fixed investments in redundancy, diversity, and
hardening.

Definition 2.1 (Optimal Design Problem (Fixed Redundancy, Diversity, and Hard-
ening)). Given redundancy, diversity, and hardening investments R, D, and H, an
optimal design (r, l) is

argminr,lRisk(r, l) (6)

subject to

∀c ∈ C : rc ⊆ Ic (7)

∀l ∈ I : li ∈ Li (8)∑
c∈C

∑
i∈rc

Ri ≤ R (9)∑
i∈∪c∈Crc

Di ≤ D (10)

∑
i∈I

Hli ≤ H. (11)

Next, we introduce a more general formulation, in which we can determine the
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amounts to invest in redundancy, diversity, and hardening.

Definition 2.2 (Optimal Design Problem). Given security budget B, an optimal
design (r, l) is

argminr,lRisk(r, l) (12)

subject to

∀c ∈ C : rc ⊆ Ic (13)

∀l ∈ I : li ∈ Li (14)∑
c∈C

∑
i∈rc

Ri +
∑

i∈∪c∈Crc

Di +
∑
i∈I

Hli ≤ B. (15)

3. Computational Analysis and Meta-Heuristic Algorithms

Since the number of feasible designs to choose from may be very large even for small
systems, finding an optimal design using exhaustive search is computationally infeasi-
ble. In light of this, a key question for the practical application of the proposed frame-
work is whether there exist efficient algorithms for finding optimal or near-optimal de-
signs. We first show that finding an optimal design is computationally challenging by
showing that the problem is NP-hard. Then, we introduce an efficient meta-heuristic
algorithm that can find a near-optimal solution in polynomial time.

3.1. Computational Complexity

The objective of the design problem depends on the impact function, which could be
any function, even one that is hard to compute. To show that the design problem is
inherently hard (not only due to the potential complexity of computing the impact
function), we consider computational complexity assuming a simplistic impact func-
tion, whose value is simply the number of compromised components. Formally, we
consider Impact(Ĉ) = |Ĉ|.

To show that the optimal design problem is NP-hard, we first introduce a decision
version of the problem.

Definition 3.1 (Optimal Design Problem (Decision Version)). Given security bud-
get B and threshold risk Risk∗, determine if there exists a design (r, l) such that
Risk(r, l) ≤ Risk∗ and Equations (13), (14), and (15) hold.

We will show that the above problem is NP-hard using a reduction from a well-
known NP-hard problem, the Set Cover Problem, which is defined as follows.

Definition 3.2 (Set Cover Problem). Given a set U , a set F of subsets of U , and a
threshold k, find a subset G ⊆ F consisting of at most k subsets such that G covers U
(i.e., for every u ∈ U , there exists a g ∈ G such that u ∈ g).

Theorem 3.3. The Optimal Design Problem is NP-hard.
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Proof. Given an instance (U,F , k) of the Set Cover Problem (SCP), we construct an
instance of the Optimal Design Problem (ODP) with stealthy attacks as follows:
• let C := U , E := ∅, and I := F ,
• for every c ∈ C, let Tc := sensor,
• for every c ∈ C, let Ic := {i ∈ F | c ∈ i},
• for every i ∈ I, let Ri := 0,
• for every i ∈ I, let Di := 0,
• for every i ∈ I, let Li := {insecure, secure},
• let Hinsecure := 0 and Sinsecure := 0,
• let Hsecure := 1 and Ssecure := 1,
• let B := k and Risk∗ := 0.

Clearly, the above reduction can be performed in a polynomial number of steps. It
remains to show that the constructed instance of the ODP has a solution if and only
if the SCP instance has a solution.

First, suppose that the SCP instance has a solution G. Then, we show that there
exists feasible design (r, l) that is a solution to the ODP instance. For every component
c ∈ C, let rc = Ic. For every implementation type i ∈ I, let li = secure if i ∈ G
(recall that in the construction of the ODP instance, we let the implementation types
I correspond to the set of subsets F , and the solution G is a subset of F) and let
li = insecure if i 6∈ G. Clearly, this is a feasible design since its hardening cost is∑

i∈I
Hli =

∑
i∈G

Hsecure

∑
i∈I\G

Hinsecure (16)

=
∑
i∈G

1
∑
i∈I\G

0 (17)

= |G| ≤ k = B, (18)

and all other costs are zero. Since Ssecure = 0, implementation types from G are never
vulnerable, and any component c that has at least one secure implementation type
(i.e., Ic ∩ G 6= 0) is never compromised by a stealthy attack. If G is a set cover, then
there exists at least one secure implementation type i ∈ G for each c such that i ∈ Ic,
which implies that no component will be compromised. Therefore, Ĉ = ∅ is the only
possible outcome, which implies that Risk(r, l) = 0 as Impact(∅) = 0 by definition.

Second, suppose that the ODP instance has a solution (r, l). Then, we can show
that there exists a solution G to the SCP instance. Let G = {i ∈ F | li = secure} (i.e.,
the set of implementation types that are secure). Clearly, G is a feasible solution due to
the budget constraint. Next, using an argument that is similar to the one that we used
in the previous case, we can show that if G was not a set cover, then Risk(r, l) would
be greater than zero. The claim of the theorem then follows from this readily.

3.2. Meta-Heuristic Design Algorithm

We propose an efficient meta-heuristic algorithm for finding near-optimal designs in
practice. Our algorithm is based on simulated annealing, which requires randomly
generating feasible solutions that are “neighbors” of (i.e., similar to) a given solution.
Unfortunately, in our solution space (i.e., in the set of designs that satisfy the bud-
get constraints), the feasible neighbors of a solution are not naturally defined. Hence,
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before we present our meta-heuristic algorithm, we first introduce an alternative rep-
resentation of feasible designs, which we call design plans.

Definition 3.4 (Design Plan). A design plan is a pair (ro, lo), where
• ro is a list of component-implementation pairs (c, i) ∈ C × I such that i ∈ Ic

holds for every pair (c, i) ∈ ro, and each possible pair (c, i) appears exactly once
in ro;
• lo is an ordered multiset of implementation types such that each implementation

type i ∈ I appears exactly |Li| − 1 times in lo.

ALGORITHM 1: MapToDesign(ro, lo)

Data: optimal design problem, list ro, ordered multiset lo
Result: design (r, l)
∀c ∈ C : rc ← ∅
∀i ∈ I : li ← argminl∈Li

Hl

for (c, i) ∈ ro do
r′ ← r
r′c ← rc ∪ {i}
if (r′, l) is feasible then

r ← r′

end
end
for i ∈ lo do

l′ ← l
l′i ← argminl∈Li:Hl>Hli

Hl

if (r, l′) is feasible then
l← l′

end
end
output (r, l)

Next, we show how to translate a design plan (ro, lo) into a feasible design. The
translation is presented formally in Algorithm 1. Given redundancy, diversity, and
hardening investments R, D, and H, we can obtain a feasible design (r, l) as follows:
start from an empty design (i.e., no implementations deployed and lowest-cost harden-
ing level chosen for every implementation type); iterate over ro in order and for each
(c, i) ∈ ro, add i to rc if it does not lead to the violation of the budget constraints;
finally, iterate over lo in order and for each i ∈ lo, increase security level li if it does
not lead to the violation of the budget constraint. Note this mapping is surjective.

Finally, we present our meta-heuristic design algorithm (see Algorithm 2), which
can find a near-optimal design in polynomial time. The algorithm starts by choosing
a random design plan (ro, lo). In practice, we can implement this simply as choosing
a random permutation of the list of component-implementation pairs and a random
permutation of the multiset of implementation types. The algorithm then performs
a fixed number of iterations, in each iteration choosing a random neighbor (ro′, lo′)
of the current plan (ro, lo), and replacing the current plan with the neighbor with
some probability. This probability depends on the risk of both the current and the
neighboring plan, and decreases with the number of iterations, as we approach the
final solution. A key step of the algorithm is Perturb(ro, lo), which chooses a random
neighbor of (ro, lo). In practice, we implement this as taking two elements of ro
at random and switching them with each other, by similarly switching the order of
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ALGORITHM 2: Meta-Heuristic Design Algorithm

Data: optimal design problem, number of iterations kmax, initial temperature T0, cooling
parameter β

Result: design (r, l)
choose (ro, lo) at random
ρ← Risk(MapToDesign(ro, lo))
for k = 1, . . . , kmax do

(ro′, lo′)← Perturb(ro, lo)
ρ′ ← Risk(MapToDesign(ro′, lo′))
T ← T0 · e−βk
pr ← e(ρ

′−ρ)/T

if (ρ′ < ρ) ∨ (rand(0, 1) ≤ pr) then
ro← ro′

lo← lo′

end
end
output MapToDesign(ro, lo)

two random elements of lo, and returning the re-ordered list and multiset as the
neighbor (ro, lo).

4. Evaluation

To demonstrate the applicability of our framework, we present two case studies from
two canonical IIoT domains: water distribution and transportation systems.

4.1. Cyber-Physical Contamination Attacks Against Water-Distribution
Networks

IIoT systems have a particularly significant and wide application in water distribution
systems. Examples include monitoring water quality and detecting leaks. On the one
hand, IIoT offers significant advantages, such as improved service and better mainte-
nance at a low cost, but on the other hand, potential challenges include cost of the
cyber infrastructure, reliability of communications, and of course, cyber-security.

As evidenced by the recent water crisis in Flint, MI [22], ensuring the quality of
drinking water is of critical importance. Compromising systems that control the treat-
ment and distribution of drinking water may allow adversaries to suppress warnings
about contaminations or to decrease the quality of water [23]. Cyber-attacks can also
have a devastating environmental impact. For example, in 2000, a disgruntled ex-
employee launched a series of attacks against the SCADA system controlling sewage
equipment in Maroochy Shire, Australia [24,25]. As a result of these attacks, ap-
proximately 800,000 liters of raw sewage spilt out into local parks and rivers, killing
marine life.

Here, we apply our framework to model cyber-physical contamination attacks
against water-distribution systems. The system is modeled as a graph, in which links
represent pipes, and nodes represent junctions of pipes, residential consumers, reser-
voirs, pumps, etc. IIoT components include:
• Sensors: water-quality sensors, which are located at certain nodes of the water-

distribution network;
• Processing : components that collect, process, and forward water-quality data;
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• Interfaces: components with human-machine interfaces, which can alert opera-
tors about contaminations.

We consider a malicious adversary who tries to cause harm by contaminating the
water network with harmful chemicals. We assume that the adversary can introduce
contaminants at certain nodes, such as unprotected reservoirs or tanks, which will then
spread in the network, eventually reaching the residential consumers. We measure the
impact of this physical attack as the amount of contaminants consumed by residential
consumers before the detection of the attack.

To detect contaminations, each sensor continuously monitors the water flowing
through the node at which it is deployed, and raises an alarm when the concentration
of a contaminant reaches a threshold level. The alert generated by a sensor node is
sent to a processing node, which forwards the alert to an interface node that can notify
operators. Once operators are alerted, they respond immediately by warning residents
not to consume water from the network.

We measure the impact of a physical attack as the amount of contaminants con-
sumed by residential consumers before they are warned. This amount depends on the
time between the physical attack and its detection, the contaminant concentration
levels at the consumer nodes in this time interval, and the amount of water consumed
in this interval. Note that this impact depends on the uncompromised components
C \ Ĉ since the time of detection depends on the functionality of these components.

To increase the impact of the physical attack, the adversary launches a cyber-attack,
which compromises and disables some of the components Ĉ. Since the adversary’s
goal is to suppress warnings, this attack can be modeled as a stealthy attack (Sec-
tion 2.3.1.2). We assume that the adversary first compromises a set of components

Ĉ, and then decides where to introduce the contaminant, maximizing the impact
Impact(Ĉ). Our goal is to minimize the risks posed by such cyber-physical attacks
by designing a resilient system based on a systematic allocation of investments to re-
dundancy, diversity, and hardening. We present numerical results for this case study
in Section 5.

4.2. Cyber-Attacks Against Transportation Networks

Transportation systems is another application domain that can benefit greatly from
IIoT by driving down costs and minimizing system failures, while supplying vast
amounts of data for operators, drivers, and facilities that result in significant oper-
ational improvements. Transportation systems include multiple components that are
becoming susceptible to attacks through wireless interfaces or even remote attacks
through the Internet [17]. Indeed, recent studies have shown that many traffic lights
deployed in practice have easily exploitable vulnerabilities, which could allow an at-
tacker to tamper with the configuration of these devices. Due to hardware-based fail-
safes, compromising a traffic signal does not allow an attacker to set the signal into
an unsafe configuration that could immediately lead to traffic accidents [26]. How-
ever, compromising a signal does enable tampering with its schedule, which allows an
attacker to cause disastrous traffic congestions.

Here, we apply the proposed framework to model cyber-attacks against traffic con-
trol. The physical part of the system may be modeled using a traffic model, such as
Daganzo’s well-known cell-transmission model [27]. The cyber-part of the system is
compromised of the following components:
• Interface: components with human-machine interfaces, which operators use to
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control the schedules of traffic lights in the transportation network;
• Processing : components that process and forward control signals sent by opera-

tors;
• Actuator : traffic lights with software based controllers.

We consider a malicious adversary who tries to cause damage by compromising some
components Ĉ of the traffic-control system and tampering with the schedules of traffic
lights. We measure the impact Impact(Ĉ) of this cyber-attack as the increase in traffic
congestion, which is quantified as the total travel time of the vehicles in the network,
compared to normal congestion without an attack. We assume that the adversary aims
to cause maximum damage without attempting to hide its attack. Hence, we model
its attack as a non-stealthy attack (Section 2.3.1.1).

5. Numerical Results

In this section, we present numerical results to evaluate the proposed approach. First,
we focus on the evaluation of the approach in terms of reducing the security risks by
integrating redundancy, diversity, and hardening. Then, we focus on the performance
of the proposed design algorithm in terms of running time.

5.1. Case-Study Examples

5.1.1. Water Distribution System

We use a real-world water-distribution network from Kentucky, which we obtained
from the Water Distribution System Research Database 2[28]. The topology of this
network, which is called KY3 in the database, is shown by Figure 2. In addition to
topology, the database also contains hourly water-demand values for each network
node.

Figure 2. Topology of the water-distribution network. Colors show the spread of the contaminant from the

first reservoir two hours after its introduction.

2http://www.uky.edu/WDST/database.html
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We assume that the adversary can introduce a contaminant at one of six given nodes
in the network, which model three tanks and three reservoirs. Once the contaminant
is introduced, we simulate its spread throughout the network using EPANET 3. From
the simulation, we obtain the contaminant concentration values at the various nodes
as functions of time. For a given set of compromised components Ĉ, we then use
these values to compute the time of detection and the resulting impact Impact(Ĉ)
(i.e., amount of contaminant consumed by the time of detection). Finally, we use the
following numerical parameter values:
• I = {i1, i2, i3, i4, i5};
• for every c ∈ C, Ic = I;
• Ri1 = Ri2 = Ri3 = 04 and Ri4 = Ri5 = 1;
• Di1 = 05 and Di = 1 for every i ∈ {i2, i3, i4, i5};
• for every i ∈ I, Li = {1, 2, 3, . . . , 10};
• for every l ∈ Li, Sl = 1− 0.50.5·l+1 and Hl = 4 · l2.

5.1.2. Transportation Network

We use the Grid model with Random Edges (GRE) to generate a random network
topology [29], which closely resembles real-world transportation networks.6 For a de-
tailed description of this model, we refer the reader to [29,30]. We use Daganzo’s cell
transmission model to simulate traffic flowing through the generated network [27],
computing the turn decisions of the vehicles based on a linear program that minimizes
total travel time [31]. Following Daganzo’s proposition, we model traffic lights as con-
straints on the inflow proportions [32], and we select the default (i.e., uncompromised)
schedules of the traffic lights to minimize congestion. Finally, we allow the attacker to
select any valid configuration for compromised lights.

We use the following parameter values for our illustrations:
• I = {i1, i2, i3, i4, i5};
• for every c ∈ C, Ic = I;
• Di1 = 0 and Di = 20 for every i ∈ {i2, i3, i4, i5};
• for every i ∈ I, Ri = 1, Di = 20, and Li = {1, 2, 3, . . . , 10};
• for every l ∈ Li, Sl = 1− 0.50.5·l+2 and Hl = 10 · l2.

5.2. Risk Evaluation

Next, we study how security risks depend on investments into redundancy, diversity,
and hardening, as well as their optimal combinations.

5.2.1. Water-Distribution Network

First, we study risks in the water-distribution network. Figure 3 shows the security risk
in the water-distribution network for various budget values invested into the canonical
approaches (i.e., redundancy, diversity, or hardening) and their optimal combination.
Again, we note the logarithmic scaling on the vertical axis. We see that investing in a
combination of redundancy, diversity, and hardening results in significantly lower risks

3https://www.epa.gov/water-research/epanet
4We set these to zero to model existing deployment since we are interested in how to invest in improving

security and resilience.
5We set this to zero so that there always exists a feasible deployment.
6We instantiated the model with W = 5, L = 5, p = 0.507, and q = 0.2761 based on [29].
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Figure 3. Security risk in the water-distribution network when investing only in redundancy, only in diversity,

only in hardening, or in their combination.

than investing in only one of these approaches, thus demonstrating the efficacy and
superior performance of a synergistic approach.
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Figure 4. Optimal combination of redundancy, diversity, and hardening investments in the water-distribution
network.

Figure 4 shows the optimal combination of redundancy, diversity, and hardening in-
vestments in the water-distribution network for various budget values. In this example,
the optimal design is primarily a combination of diversity and hardening. However,
with higher budget values, designers also need to invest in redundancy. Note that
the design approach also determines the optimal deployment of components. Figure 5
shows the optimal deployment for budget B = 90. Colored disks represent component
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Figure 5. Optimal deployment with budget B = 90.

instances, different colors corresponding to different implementations.

5.2.2. Transportation Networks

Second, we consider security risks in the transportation network. In this case, we
restrict our study to diversity and hardening since deploying multiple instances of a
traffic light may be infeasible in practice. Hence, we assume that exactly one instance
is deployed for each component.
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Figure 6. Security risk in the transportation network when investing only in diversity, only in hardening, or

in their combination.

Figure 6 shows the security risk in the transportation network with the canonical
approaches and their combinations for various budget values. The figure shows that—
similar to the case of water-distribution networks—the combined approach is clearly
superior to canonical approaches.

Figure 7 shows the optimal combination of diversity and redundancy in the trans-
portation network for various budget values. Except for very low values, the optimal
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Figure 7. Optimal combination of diversity and hardening investments in the transportation network.

combination invests substantial amounts in both diversity and hardening.

5.3. Performance

To illustrate the performance of the proposed design algorithm, we use the water-
distribution network with R = 10 and D = H = 100. We find that the meta-heuristic
algorithm (Algorithm 2) is very efficient: a single iteration takes less than 6.4× 10−4

seconds (more than 1,500 iterations per second) on an average laptop computer7.
To determine the number of iterations that are necessary to find a good solution in
practice, we focus on the solution quality (i.e., security risk) as a function of the
number of iterations.

Figure 8 shows the security risk in each iteration of one particular execution of the
meta-heuristic algorithm (Algorithm 2) with the current solution (solid red line) and
with the best solution found so far (dashed blue line). Please note the logarithmic
scaling on the vertical axis. We have executed the algorithm a number times, but
since the results are qualitatively the same, we plot only one particular execution
for illustration. The figure shows that risk decreases rapidly in the first few hundred
iterations, but after around 400 iterations, the decrease becomes much slower. At
around one thousand iterations, the risk reached its lowest value, so we omit the
remaining iterations from the plot. In light of this, it is clear that the running time of
the meta-heuristic algorithm is very low since it settles in a matter of seconds.

6. Related Work

Modern technology trends such as IIoT and cyber-physical systems (CPS) have sig-
nificantly improved the overall functionality, reliability, observability, and operational
efficiency of industrial control systems and critical infrastructure networks [33,34]. The

7MacBook Pro with 2.9 GHz Intel Core i5 processor.
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Figure 8. Security risk in each iteration of one execution of the the meta-heuristic algorithm (Algorithm 2).

integration and connectivity between various system components allow data exchange
and information processing to fine tune system processes. However, this integration
and connectivity also opens new threat channels in the form of cyber- and cyber-
physical attacks, against which these systems need to be secured [2,35]. Conventional
cybersecurity mechanisms are inadequate and thus need to be expanded to incorporate
the complexity and physical aspects of such systems [2,6,35]. In fact, peculiar require-
ments in IIoT, such as hard time-constraints on the execution of operations, large
physical base, wide interface for interaction with system components, and a direct im-
pact on the physical world, require adjustment of security goals in IIoT as compared to
typical IT systems [36,37]. Consequently, commercially available off-the-shelf IT cyber-
security solutions are not sufficient for IIoT security. Greater connectivity results in
higher risk due to broader attack surface and multiple data injection points within
a system. From the perspective of controlling a network, false data injection attacks
could be categorized into the following types [36,38]: corrupted data to controllers
due to compromised sensors or compromised links between sensors and controllers,
bogus data to the actuators, and denial-of-service attacks resulting in missed dead-
lines for executing system operations. A detailed overview of the security issues in
industrial automation systems that are based on open communication systems is pro-
vided in [39]. Similarly, security issues associated with various documented standards
in SCADA systems are highlighted in [19,36,40]There are various other studies that
mainly highlight the security threats and associated risk assessment in the domain of
industrial IoT, for instance [37,41–45]. All of these studies discuss and point towards
a holistic security framework to address the security issues in industrial IoT. In this
paper, we provide a framework for synergistic security that combines various security
mechanisms, including hardening [46–49], diversification of system components [18,50–
53], and adding redundancy to effectively secure such systems. Next, we briefly discuss
security issues in three critical infrastructure networks that are increasingly adapting
and benefiting from IIoT paradigm: water distribution systems, traffic networks, and
power systems.
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6.1. Water-Distribution Security

The water-supply industrial sector can benefit significantly from applying the ideas
and technology of industrial Internet [54]. An intelligent urban water-supply manage-
ment system, which consists of IoT gateways connecting the water assets (for instance,
water pumps, valves, and tanks) to the cloud service platform for advanced analytics,
significantly improves the operational efficiency, safety, and service availability of the
overall system [55,56]. There are ongoing efforts to develop efficient remote monitor-
ing systems for pipeline monitoring (such as PIPENET deployed at Boston Water and
Sewer Commission [57,58]), water quality monitoring [59–61], leak and burst detection
[62,63], and other applications, for instance [64–66]. The adoption of new technolo-
gies (such as IoT, CPS) and networking devices enhances the monitoring capability,
service reliability, and operational efficiency of water distribution systems, but also
exposes them to malicious intrusions in the form of cyber- and cyber-physical attacks
[23,67,68]. A number of attack scenarios against water distributions systems are speci-
fied and demonstrated through simulations in [23]. Recently, in [69], several attacks on
simulated and a real water distribution testbed (WADI [70]) are demonstrated through
cyber-physical botnets capable of performing adversarial control strategies under CPS
constraints. The security breach in the SCADA system of Maroochy Water Services,
Australia [25] is a famous incident, which also highlights the need for effective security
mechanisms. To effectively address the security challenge in such complex, intercon-
nected, and spatially expanded systems, we need to employ a combination of security
mechanisms to protect them against cyber-physical attacks.

6.2. Traffic Network Security

Like other modern infrastructures, traffic networks are complex and are becoming
increasingly connected with traffic lights, road sensors, and vehicles exchanging infor-
mation with each other. This interconnectedness—though useful at many levels—has
also increased the attack surface for potential attackers that can significantly disrupt
the traffic by taking control of a few network components, such as signal lights or
sensors [17,26,71]. Recent studies outline the scope of the damage that can be caused
by an adversary having an access to the traffic control infrastructure [72]. There are
studies demonstrating attacks that can realize non-existent jams and virtual vehicles,
tamper with signal schedules [73–76]. Considering the impact of successful attacks, it
is imperative to systematically understand the existence of vulnerabilities, and design
security frameworks to protect traffic infrastructure against such malicious attacks
[77,78].

6.3. Power System Security

Power utilities across the globe are increasingly adapting the IoT vision by upgrading
to Smart Grids (SG), which are equipped with computation and communication ca-
pabilities to and from end users. This enables power utilities as well as consumers to
utilize a rich space of SG services, including better management of energy resources.
However, security issues predominantly hinder the large-scale deployment of IoT de-
vices in SG. At a high level, security issues in SG can be classified into five groups
as surveyed in [79]. These categories include device issues [80,81], networking issues
[82–84], dispatching and management concerns [85], anomaly detection issues [86], and
other relevant matters such as software architecture for the utility hosted on clouds

20



[87–89]. [82,84] outlines the development and classification of communication systems
in power grids along with the security concerns and possible threats in such systems.
[90] highlights security threats unique to SG by comparing the security requirements
of SG and the Internet. Further security risks in power systems that are equipped
with bidirectional communication capabilities have been reported in recent surveys,
for instance [91–94].

To cope with the identified and predicted security threats, various techniques have
been proposed to improve the resilience and security of SG. For example, attacks that
inject false data can undermine state estimation, which may lead to erroneous control
and physical damage. Defenders can prevent these integrity attacks from succeeding
through the strategic placement of phasor measurement units (PMU). In [95], an effec-
tive greedy algorithm is developed for optimal PMU placement, which ensures system
observability and defends against data integrity attacks at the same time. In addition
to proactive defense through deployment, defenders may also employ adaptive strate-
gies to protect smart grids from ongoing attacks. In [96], an adaptive Markov strategy
is proposed to defender against unknown attackers with dynamic and unpredictable
behaviors. The effectiveness of this strategy against data integrity attacks that inject
false voltage information is evaluated on standard test cases, demonstrating lower load
shedding. Similarly, other techniques are employed to improve various security aspects
in SG such as deployment of redundant meters to verify the integrity of data collected
from advanced metering infrastructure [97], hardware-in-the-loop reconfigurable sys-
tem design with intelligent coordination schemes to deal with system vulnerabilities
[98,99], hardening of system components [100], and various other strategies [35,101–
104]. In one way or the other, these approaches are adding redundancy within the
systems, diversifying system components, or hardening a subset of system compo-
nents and devices. In this paper, we propose to strategically combine these individual
approaches to improve resilience and security in SG against malicious disruptions.

7. Conclusion and Future Work

In this paper, we introduced a framework that considers three canonical approaches–
redundancy, diversity, and hardening–for improving security and resilience of IIoT sys-
tems. Our goal is to provide theoretical foundations for designing systems that combine
these canonical approaches. We showed that the problem of finding an optimal design
is computationally hard, which means that practical designs may not be found using
exhaustive searches. Therefore, we introduced an efficient meta-heuristic algorithm,
whose running time is polynomial in the size of the problem instance. To illustrate the
practical applicability of our results, we discussed two example application domains,
water distribution and transportation systems. Our numerical evaluation shows that
integrating redundancy, diversity, and hardening can lead to reduced security risk at
the same cost.

7.1. Application to Power Systems

While the emergence of Smart Grid systems is envisioned to result in significant im-
provements in energy efficiency and sustainability, it also exposes power systems to
threats posed by malicious cyber-attacks. The 2015 and 2016 cyber-attacks against
the Ukrainian power grid, which both resulted in blackouts, have demonstrated that
these threats are very real [105,106]. Therefore, it is crucial to ensure that Smart Grids
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are robust against such attacks. To this end, we can apply our framework to guide the
design of robust power systems by combining redundancy, diversity, and hardening
techniques optimally. Since the application and evaluation of our framework to power
systems is outside the scope of this article, we provide a high-level overview of applying
our framework to this domain in future work.

To capture the underlying physical and control systems, we can use existing models
or simulation tools from the domain of power systems, such as GridLAB-D [107] or
Transactive Energy Simulation Platform (TESP) for transactive energy systems8. The
IIoT components of a power system can include:

• Sensors: may include a variety of sensing devices at different modeling granular-
ity, such as phasor measurement units, power-line temperature sensors, or smart
meters that are treated as indivisible components;
• Processing : components that collect, process, and forward sensor data and con-

trol signals, such as RTUs and PLCs;
• Actuators: can model lower-level actuator devices, e.g., individual electrical

switches, or high-level components, e.g., distributed energy resources;
• Interfaces: components with human-machine interfaces that allow human oper-

ators to monitor and intervene.

A malicious adversary may compromise some of these components in order to tamper
with the Smart Grid and to cause blackouts, resource waste, or physical damage. We
can quantify the impact of cyber-attacks as the amount of unmet demand for electric
power, the increase in operating costs, and the cost of damaged hardware. To estimate
the impact of a particular attack, we can use a power-system model or simulator.
However, this faces two key challenges. First, simulating power systems for a large
number of possible attacks may be computationally expensive. Second, finding an
optimal strategy for the attacker given a particular set of vulnerable components may
be hard. In future work, we plan to address these challenges using novel techniques
from the area of artificial intelligence: using deep learning to predict impact based on
simulation results for a relatively low number of attacks, and using deep reinforcement
learning to find optimal strategies for attackers [108–110].
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