
ORIGINAL ARTICLE

Circuit design completion using graph neural networks

Anwar Said1 • Mudassir Shabbir1 • Brian Broll1 • Waseem Abbas2 • Peter Völgyesi1 • Xenofon Koutsoukos1

Received: 2 September 2022 / Accepted: 26 January 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Electronic design automation tools are widely used in circuit design and greatly assist designers in handling the com-

plexities and challenges of circuit design and evaluation. There have been numerous recent developments in using machine

learning tools, particularly graph neural networks (GNNs), to address circuit design problems. These techniques take

advantage of the natural representation of a circuit as a graph. In this study, we propose using state-of-the-art GNNs to

solve a key circuit design issue. Specifically, we are interested in addressing the circuit completion problem (CCP), where

the goal is to determine the missing components and their connections in a partially designed or evaluated circuit. We

provide a novel two-step solution to this problem: First, we formulate missing component identification as a graph

classification task in the graph-based representation of partial circuit, and second, we treat the placement and connectivity

of the newly (predicted) component as a link completion problem. We propose a novel graph learning framework called

feature-enhanced graph isomorphism network that combines both GNNs and graph descriptors in an end-to-end fashion to

extract expressive graph representations. We also present three new circuit datasets to implement and test our solutions.

Our extensive experiments demonstrate that the proposed framework is an effective and generalizable solution to the CCP

problem.

Keywords Circuit completion � Graph neural networks � Graph classification � Link prediction � Circuit design suggestion

1 Introduction

Many modern Integrated Development Environments

(IDE) propose recommendations to help human software

developers and designers in the form of auto-completion

[1–4]. This automated source code generation not only

leads to a better design experience but also improves the

productivity and efficiency of the development process.

Lately, the machine learning community has developed

innovative models and tools, for instance, GPT-3, Co-

PILOT, and Code-whisperer, that generate these sugges-

tions with near-perfect accuracy and have been very

helpful to software designers [5–7]. However, we observe

that similar or equivalent features for design suggestions

are largely missing from the modern circuit design domain.

While the design and synthesis of the circuit of electrical

components are based on well-defined goals and specifi-

cations, we observe that privacy concerns may prohibit one

from sharing such specification-related information in a

meaningful way. Furthermore, it may be computationally

impractical for a circuit design software to offer auto-

complete suggestions based on a complete specification.

& Mudassir Shabbir

mudassir.shabbir@vanderbilt.edu

Anwar Said

anwar.said@vanderbilt.edu

Brian Broll

brian.broll@vanderbilt.edu

Waseem Abbas

waseem.abbas@utdallas.edu

Peter Völgyesi

peter.volgyesi@vanderbilt.edu

Xenofon Koutsoukos

xenofon.koutsoukos@vanderbilt.edu

1 Department of Computer Science, Vanderbilt University,

Nashville 37235, TN, USA

2 Department of Systems Engineering, University of Texas at

Dallas, Texas 75080, TX, USA

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-023-08346-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-6961-0961
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08346-x&domain=pdf
https://doi.org/10.1007/s00521-023-08346-x

Therefore, it is an interesting and challenging problem

from an algorithmic perspective to generate relevant sug-

gestions to complete a circuit design based solely on the

partial circuit design at hand. Motivated by the successful

application of machine learning models for automated

source code generation, we propose formulating and

studying the partial circuit completion problem using graph

machine learning.

A pertinent application of the proposed work is the

reverse engineering (RE) of electric circuits, which refers

broadly to the retrieval of circuit design, layout, netlist,

and/or functionality through testing and inspection [8]. RE

is often practiced to detect malicious alterations and

identify and replace obsolete hardware, e.g., [9–11]. One of

the goals in RE is to use the available circuit information

and utilize it to characterize/determine an unknown (or

missing) component in the remaining circuit. RE is a

cumbersome process due to circuit complexity and limited

information, and as such various techniques are employed

to execute it, albeit with limitations [8, 12]. Electronic

design automation (EDA) facilitates the rapid design and

development of electronic circuits while reducing design

errors and defects. However, as an unexpected conse-

quence, it also permits the growth of the counterfeit elec-

tronic industry and the implantation of hardware Trojans in

forged copies [13]. For example, consider the incident

entitled The Big Hack [14], which occurred in 2018 and

involved inserting unauthorized microchips into products

made by a company supplying servers to Apple, Amazon,

and even the US government [15].

Similarly, the proposed approach in the paper can

potentially be applied to diagnose faulty components or

defective interconnections between components. It can be

augmented with the existing circuit fault diagnosis and

testing techniques to identify the fault/defect. Traditionally,

a process called physical failure analysis is performed to

locate the defect [16, 17]. However, manufacturing intri-

cacies, the nature of defects, and scalability issues pose

several challenges [18, 19]. ML-based circuit completion

can be a helpful tool for this purpose; for instance, the

setup can be utilized to identify a component’s defective/

missing interconnections with other components in the

circuit. The contributions of the current work are outlined

below:

• We propose a novel two-step solution to the circuit

completion problem: First, we formulate missing com-

ponent identification as a graph classification task in the

graph-based representation of partial circuit, and sec-

ond, we treat the placement and connectivity of the

newly (predicted) component as a link completion

problem.

• We introduce a new graph neural network (GNN)

architecture called the feature-enhanced graph isomor-

phism network (FEGIN) that combines the ability of

static graph descriptors to capture rich topological

information about the graph with the message-passing

capabilities of GNNs to learn powerful expressive

representations for solving the circuit completion

problem (CCP).

• To help with the training and testing of future graph

learning approaches for the circuit completion problem,

we present three rich datasets of circuit netlists:

LTSpice examples, LTSpice demos and Kicad Github.

• We perform an extensive evaluation of fifteen different

graph learning approaches to solve the circuit comple-

tion problem. The evaluation models include nine

GNNs and six graph descriptors that include statistical,

spectral, as well as distance-based embeddings.

The rest of the paper is organized as follows: Sect. 2

summarizes the relevant related work. Section 3 formulates

the circuit completion problem (CCP) and discusses the

main challenges. Section 4 presents the graph machine

learning-based solution of the CCP. Section 6 provides the

details of our experiments along with the results. Finally,

Sect. 7 concludes the paper.

2 Related work

The size of integrated circuits (IC) and printed circuit

boards (PCB) has increased exponentially over the past

decade, posing a challenge to the circuit design flow’s

scalability. To enhance the design, geometry, and pack-

aging of complex ICs and PCBs, machine learning for

electronic design automation (EDA) has largely been

studied. Due to the extremely large space, machine learn-

ing for EDA is becoming one of the most popular areas of

interest and has shown promising results [20, 21]. These

machine learning methods span nearly all of the stages in

EDA design, starting from the architecture design to the

final testing phase. A number of machine learning methods

have been explored in EDA, especially for physical design

[22]. These methods include the use of conventional

machine learning methods such as K-nearest-neighbors,

neural networks, support vector machines, and random

forest. Moreover, the last years have also seen a surge in

deep learning approaches for EDA such as convolutional

neural networks, recurrent neural networks, reinforcement

learning and graph neural networks (GNNs), to name a few

[23, 24].

Graphs play a crucial role in EDA design since many

EDA objects, such as netlists and layouts, are naturally

represented by graphs. Many EDA problems such as layer

Neural Computing and Applications

123

assignment [25], partitioning [26], multiple pattern layout

decomposition [27, 28] and testability analysis [29] have

been explored with graph processing [30]. These approa-

ches mainly base on the conventional graph-based

approaches. However, a number of approaches have been

introduced more recently to study GNNs in EDA design

[31–33]. Having the graphical representation of an IC or

PCB, GNNs allow to learn the entire structure of the given

object which open up a number of downstream machine

learning tasks [34]. GNN is a powerful paradigm that has

shown excellent results in solving many problems, such as

protein folding [35], predicting estimated time of arrival

[36] and antibiotic discovery [37], to name a few.

GNNs have found extensive applications in EDA

design. Starting from the logical synthesis, GNNs have

been studied and applied in almost every EDA’s stage

[23, 38]. The authors in [39] propose a GNN-based archi-

tecture to predict technological mapping done by logic

synthesis. Similarly, [30] introduce a GNNs-based frame-

work to predict observation point candidate in a netlist that

maximizes fault coverage and minimizes observation point

number. The authors adapted multi-stage classification

with GNNs and fully connected layers and mapped the

problem as a node classification task. For the floorplanning,

Google researchers recently presented a more comprehen-

sive approach [40]. This approach uses edge-based GNNs

under the umbrella of deep reinforcement learning to

automatically generate chip floorplans. In the placement

stage, where the design gate locations are mapped to the

chip layout, the authors in [41] introduced a graph attention

framework to predict components’ placement nets. This

approach represents a netlist as an attributed directed graph

and maps the problem as a regression task. It uses fan-in,

number of cells, fan-out sizes, and areas as node attributes,

while edge features are computed through graph clustering.

Similarly, in [42], reinforcement learning is used to find

optimal placement parameters. The authors in [43] and

GraphSAGE [44] were leveraged to accelerate and opti-

mize the placement. Some other approaches that use GNNs

in EDA include [23, 45–49].

3 Preliminaries and problem formulation

A circuit design schematic for an IC or a PCB is repre-

sented by a netlist. A netlist is usually a text file where each

line represents an electronic component and all its con-

nections, along with any auxiliary information. Each

component has a unique ID and a type, e.g., capacitor,

resistor, inductor, voltage source, etc. The types of circuit

components can be equivalently represented by integers

from 1 to k. One can define the circuit completion problem

as follows:

Problem 3.1 (circuit completion problem) Let m0; m1, be
the netlists of two circuit schematics where m0 is an original
circuit while m1 is (a counterfeit or partial copy) of m0 that is
missing a component x and all its connections that are

present in m0. The circuit completion problem is to predict

the type of component x and all its missing connections

where x 2 f1; 2; 3; . . .; kg.

We illustrate the component classification problem in

Fig. 1. We observe that there are several challenges in the

rigorous formulation and solution of circuit completion

problem. Firstly, the problem implicitly assumes a well-

defined criterion for validity of a circuit that is required to

check the correctness of a solution to the problem. While

there are some trivial checks, there are no well-defined

criteria that software or even a human expert can use to

validate a circuit netlist. Secondly, even if a circuit is valid,

it may not be one that one is interested in. There may exist

another component y 6¼ x, and a corresponding circuit

netlist m00 such that m00 is also a valid completion of m1 with
component y, i.e., the circuit completion problem on m1 also
has a solution y. This points out the fact that the mapping

from a partial design to a missing component type is not a

function. As long as both m0; m00 are two netlists of inter-

esting designs (where ’interesting’ may be defined by

application), it may be acceptable to predict either of them

as a completion of the partial netlist m1. But it may be that

m00 is a trivial completion that is of no interest to the par-

ticular application one is studying. We observe that, in the

presence of these inconsistencies, it makes even more sense

to consider a data-driven solution instead of a more

deterministic algorithm. As a first step, we strip off any

auxiliary information in netlists and translate each netlist to

an undirected graph G ¼ ðV;E;/Þ, where set of vertices V
represent the components in the netlist, and the connection

between components is denoted by an edge in E between

the corresponding vertices in the graph. Further, each

vertex v has an integer type, say /ðvÞ, from f1; 2; 3; . . .; kg.
Due to this natural translation from netlists to graphs, we

have the following version of the circuit completion

problem:

Problem 3.2 (circuit completion problem on graphs) Let

G ¼ ðV;E;/Þ, be a graph of a netlist with

/ðvÞ 2 f1; 2; 3; . . .; kg. Let G0 be a graph obtained by

removing an arbitrary vertex u 2 V from G. Compute the

value of /ðuÞ from G0.

There is also a secondary problem that arises in the

completion of partial circuit designs. Once we know the

type of component that is missing from the circuit, we also

want to find out where on the circuit schematic this missing

component lies. This question about the geometry or the

placement of the component can be posed in terms of its

Neural Computing and Applications

123

connections or links to other existing components. In graph

terminology, we have the following problem:

Problem 3.3 (circuit link completion problem on graphs)

Let G ¼ ðV ;E;/Þ, be a graph of a netlist with /ðvÞ 2 ½k�
where ½k� :¼ f1; 2; 3; . . .; kg. Let G0 be a graph obtained by

removing an arbitrary vertex u 2 V from G. Given the

value of /ðuÞ and the G0, compute the set of neighbors of

u in G.

Here, the set of neighbors of a node u is defined as the

following set: fv 2 V : ðu; vÞ 2 Eg. We propose data-dri-

ven solutions to both of these problems. Formally, we are

going to learn a map, /̂ : G ! f1; 2; 3; . . .; kg, from a

family graphs G to the set of first k integers. This map

predicts the type of a missing component based on the

topology and types of known components in a graph. A

second map, n̂ : G; ½k� ! 2V , takes input a graph G, and a

missing component type / 2 ½k� and returns a subset of

vertices (power set of vertices V is denoted by 2V) that are

connections of the missing component in graph G. We

provide a visual illustration of this problem in Fig. 2.

To build a framework that identifies missing compo-

nents and their connections in an incomplete circuit, we use

two ingredients that are built upon the networked repre-

sentations of electric circuits. Firstly, to predict the missing

component, we leverage the graph neural networks

framework that learns graph structure in a graph classifi-

cation setting. Secondly, we adapted a GNN-based link

prediction approach to predict links/edges for the missing

component. We provide a visual illustration of the pro-

posed architecture in Fig. 3.

Remark 1 We note, that graph topology alone may not be

enough to solve either of the two circuit completion

problems, as there may be multiple ways to complete a

partial circuit. Therefore, one expects the proposed method

to fail at times. However, we show through extensive

experiments that on real-world datasets, the results of graph

machine learning methods are reliable enough to aid a

human expert in the design synthesis and evaluation

process.

4 Circuit completion through graph
learning

In this section, we outline our proposed data-driven solu-

tion to Problems 3.2 and 3.3. Graph classification is a well-

known problem in graph machine learning, in which a

machine learning model is trained to predict a label for an

input graph from among two or more classes. Since we

need to learn to predict the missing component type for a

circuit graph and the number of possible component types

(a) (b)

AC 1

V1
IN

100K

R3

R1

10K

U1

V2

V1

INV

R2

100K

AC 1

V1
IN

100K

R3

R1

10K

U1

V2

V1

INV

(c)

Fig. 1 Illustration of the missing component classification problem. a Circuit with a missing component shown as red rectangle, b schematic

representation of the netlist, and c schematic netlist representation with a missing component

AC 1

V1
IN

100K

R3

R1

10K

U1

V2

V1

INV

U1

V2

V1

INV

IN

(a) (b)

Fig. 2 Illustration of the links

insertion problem. a Indicates a

schematic netlist representation,

and b shows a new component

with possible links to be

predicted

Neural Computing and Applications

123

is limited, Problem 3.2 can be naturally cast as a graph

classification.

Formally, given a family of n graph, G that represents

partial circuits with the missing component type for each

G 2 G given as a vector Y 2 ½k�n, we will train a graph

classification model to learn the map /̂ with the objective

of minimizing
P

G2G 1� 1YðGÞ¼/̂ðGÞ, where 1YðGÞ¼/̂ðGÞ is an

indicator function to check whether predicted label /̂ðGÞ of
a graph is equal to the expected component type YðGÞ.
With the standard assumption that the family G is a true

representative of all circuit designs, this reduces our

problem to choosing a suitable graph machine learning

model and optimizing a machine learning model on the

given datasets.

Our proposed methodology mainly consists of two

ingredients to solve Problems 3.2 and 3.3. In this section,

we first present the data collection process and then the

details of each solution for both problems.

4.1 Dataset collection and preprocessing

In order to deploy any learning-based techniques, the first

steps usually involve the collection of relevant datasets. For

the circuit-completion problem, there are no readily

available datasets to use. Therefore, we collected three

circuit datasets from three different sources to design a

solution for this problem. Firstly, we collected example

circuits from LTSpice1 and we named this dataset as

LtSpice examples. Secondly, we collected demo circuits

from LTSpice and named it LTSpice demos, and third, we

scrapped user-created circuits from Github. We name this

dataset as Kicad Github. For the third dataset, we first

discovered KiCad2 files on Github and then converted them

to netlists. Since there is no command line tool available

for this task, we implement a custom crawler that collects

open source circuits from GitHub. The collected datasets

are made publicly available to benefit the research com-

munity.3 The number of valid netlists in train-test sets of

Ltspice examples is 1505 : 377. Similarly, the train-test

ratio of Ltspice demos dataset is 235 : 59 and 553 : 139 in

Kicad Github dataset. We further preprocess these datasets

separately for both component classification and link pre-

diction tasks. We present those details in the forthcoming

section.

A netlist, m, results in multiple graphs for training or

testing purposes of the graph classification because we can

remove a node u from G and label the resulting graph as

/ðuÞ. We can have as many instances as there are types of

components in a netlist. For our experiments, we only use

the five most common component types in a given dataset.

For the link completion task, we opt for an approach that

is similar to batching in graph learning domain, where we

stack the adjacency matrices in diagonal blocks to repre-

sent the entire dataset as a single huge graph. Let Ai 2
½0; 1�Ni�Ni be the adjacency matrix of graph Gi with Ni

nodes. Then, the resulting graph will have N :¼
P

1� j� n Nj nodes. The stacked adjacency matrix A with

dimensions, N � N, and the corresponding vector with

concatenated node features are defined as:

A ¼
A1

. .
.

An

2

6
6
4

3

7
7
5;X ¼

X1

..

.

Xn

2

6
6
4

3

7
7
5

Link prediction methods usually require a single giant

graph as an input to learn the network structure. Therefore,

AC 1

V1
IN

100K

R3

R1

10K

U1

V2

V1

INV

R2

100K

G

G'1 G'n

Dataset Generation Graph Classification
(GNNs)

Components
Classification

Input

Fig. 3 Architecture of the proposed component classification task

1 https://www.analog.com/en/design-center/design-tools-and-calcula

tors/ltspice-simulator.html.

2 https://www.kicad.org/.
3 https://github.com/symbench/spice-datasets.

Neural Computing and Applications

123

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.kicad.org/
https://github.com/symbench/spice-datasets

this approach of stacking all graphs in the training

dataset allows us to use off-the-shelf GNN methods for

prediction with very little extra computational overhead.

The large adjacency matrix can also be stored in a com-

pressed form using sparse data structures.

4.2 Component prediction using graph
representations

In this section, we provide the details of our proposed

solution to Problem 3.2. To design a data-driven solution,

we have access to dataset of graphs generated and labeled

with the real-world netlists as outlined in the previous

section. Given a family of graphs, G ¼ fG1;G2; . . .;GNg
and a corresponding list of class labels

Y ¼ fy1; y2; . . .; yNg; yi 2 ½k�, the problem of learning a

function from G to Y is the well-known graph classification

problem. Once we have a graph dataset,

G ¼ fG1;G2; . . .;GNg, Problem 3.2 can be naturally

translated into a graph classification problem. Graph clas-

sification is usually solved using two types of approaches.

Firstly, we have methods that use deep learning (DL) and

are known as GNNs. Secondly, there are methods that

extract a fixed-dimensional embedding for each graph,

which is then used as input to a classifier to learn the

required mapping. The latter methods are known as graph

descriptors [50, 51]. In GNN methods, vector representa-

tions are learned for nodes and/or graphs through a mes-

sage-passing mechanism that involves aggregating graph

neighborhood information at each node to update a node’s

state iteratively. This process is repeated l times to bring

together l-hops neighborhood information to learn a feature

vector for a node. Formally, the information at layer l of a

node v for such a GNN model can be represented as below:

aðlÞv ¼ AGGREGATEðlÞðfhðl�1Þ
u : u 2 NðvÞgÞ ð1Þ

hlv ¼ COMBINEðlÞðhðl�1Þ
v ; aðlÞv Þ; ð2Þ

where h0 is initialized with the input node features X. The

AGGREGATE and COMBINE functions play a crucial

role in any GNN architecture, so they are chosen carefully.

A number of aggregation methods have been proposed

such as MEAN, MAX, SUM and LSTM for the aggrega-

tion. The COMBINE function could be a concatenation of

the node features followed by a linear transformation.

Finally, to perform the graph classification task, one could

aggregate the learned node embeddings to get a feature

vector for the entire graph. This process of node feature

aggregation is known as the READOUT operation in the

graph learning domain. Given the learned embeddings of

the final layer h
ðLÞ
v , we can obtain graph-level embeddings

as follows.

hG ¼ READOUTðfhðlÞv jv 2 GgÞ ð3Þ

GNNs leverage node features along with the graph struc-

ture to learn graph embeddings and enjoy state-of-the-art

results in many applications in far-reaching domains like

bioinformatics, social networks, and many more.

In this work, we introduce a novel GNN architecture

that combines graph descriptors and graph convolutional

neural networks to perform component identification tasks.

In addition, we implemented the SEAL framework [52] to

predict connections between the components. In the fol-

lowing, we present the details of a few GNN baselines,

followed by graph descriptors that we use in our experi-

mental analysis, and then present the proposed framework

that is built upon these techniques.

4.2.1 Graph neural networks

Graph convolutional network (GCN) GCN is the most

effective and a seminal GNN model introduced by [32].

This work introduces convolutions on graph signals

through message-passing mechanisms where the informa-

tion from neighboring nodes is aggregated using a weigh-

ted average function. This work allows for a more general

and efficient framework to implement convolutions on

graph-structured data. It also proposes a renormalization

trick with the degree matrix to solve the vanishing or

exploding gradient problem. The overall architecture is

defined as follows.

hðlÞ ¼ rð ~D�1
2 ~A ~D�1

2hðl�1ÞW ðl�1ÞÞ ð4Þ

where hðlÞ is the latent representation of the l� th layer, ~D

is the degree matrix, ~A is the adjacency matrix with added

self-loops, and rð:Þ is the activation function. GCN showed

exceptional results on node classification and link predic-

tion tasks and attracted a large body of researchers to the

graph learning domain.

GraphSAGE [44] This work introduces three aggregation

functions: mean aggregator, LSTM and Max pooling for

the neighborhood aggregation. A general architecture of

this framework is presented in Eq. 1.

Graph attention network (GAT) [53]. Attention mecha-

nism is the salient distinguishing feature of GAT-based

GNN model that in the neighborhood aggregation, the

method assigns non-equal trainable importance weights.

This framework allows for different attention weights for

the node neighbors, and thus, each neighbor contributes

differently to the aggregation. Neighbors that are more

important to a node contribute more to the aggregation

compared to the less important nodes. With the sum

Neural Computing and Applications

123

aggregation operator, GAT’s architecture can be defined as

follows.

hðlÞv ¼ r
X

u2Nv

aðl�1Þ
vu W ðl�1Þhðl�1Þ

u

 !

ð5Þ

where avu is the attention score for node u to v, andW is the

weight matrix. This work also employs a multi-head

attention mechanism and found it beneficial in the

simulations.

Graph isomorphism network (GIN) [54]. GIN employs a

multilayer perceptron in the aggregation along with a scalar

that distinguishes the representation of a node’s previous

layer from the representations of its neighbors. We define

GIN’s architecture as follows.

hlv ¼ MLPðlÞ 1þ �ðlÞ
� �

:hðl�1Þ
v þ

X

u2Nv

hðl�1Þ
u

 !

ð6Þ

Nested graph neural networks (NGNNs) [55] NGNNs are a

recently proposed GNN framework that uses two levels of

GNNs: a base GNN and an outer GNN. The core idea of

NGNNs is to use rooted subgraphs (subgraphs with local

h-hops) for each node and apply a base GNN to each rooted

subgraph independently. These local node representations

are further aggregated with a subgraph pooling layer to get

final representations for the root nodes. Then, an outer

GNNs is trained to learn the representations for the entire

graph.

4.2.2 Graph descriptors

Graph descriptors are found more effective on graphs with

little information at the node level [56]. These methods

extract feature representations from graphs in a single shot,

and then, off-the-shelf ML models are used for the down-

stream ML task. We present the schematic diagram of a

general graph descriptor framework for the graph classifi-

cation task in Fig. 4. In this work, we applied six graph

descriptors to test their performance on our data. In the

forthcoming section, we briefly discuss those methods.

Family of spectral graph distances (FGSD) [57] FGSD is a

graph representation method that is based on the spectral

pair-wise distances among nodes. It defines a generalized

spectral distance function on graphs to compute their cor-

responding feature representations. The distance function

uses the sum of the squared difference of the eigenvectors

scaled by a function of the eigenvalue to compute a dis-

tance between two nodes. These distances are further

stacked in a multiset and computed histogram

representation.

Network Laplacian spectral descriptor (NetLSD) [50]

NetLSD is a recently proposed simple graph descriptor that

is based on the properties of the graph Laplacian spectrum.

In particular, it inherits heat and wave kernel properties to

extract the corresponding graph representation. The core

idea behind NetLSD is to consider the heat diffusion pro-

cess on the graph. By solving the heat equation, NetLSD

computes the trace of the heat kernel matrix at different

time scales and considers it the representation of the graph.

Distributed statistical graph descriptor (DGSD) [51]

DGSD is a recently proposed statistical graph descriptor

that is based on pair-wise node distances. It encodes nodes’

proximity information by defining a distance function

based on simple graph statistics such as node degree,

common neighborhood, and their mutual connectivity.

NetSimile [58] NetSimile is a simple graph representation

method that considers four social theories to encode the

graph’s structure: social capital, balance, structural holes,

and social exchange. These theories encapsulate several

local and global-level properties of the network, such as

node proximity, information flow, transitivity, and

reciprocity.

Weisfeiler-Lehman Kernel (WL) [59] WL is a well-known

graph kernel that is based on the WL-test of isomorphism

on graphs [60]. At each iteration, it augments node labels

by the set of neighboring node labels and creates a new

compressed label for that node. Finally, it constructs a

histogram from the final node labels to get the desired

graph representation.

Shortest Path Kernel [61] Shortest path kernel defined over

a graph G encapsulates shortest path distances among all

pair of nodes. It first constructs a shortest path graph S from

G whose vertices equal to those in G and its edges are the

subset of G’s edges labeled by the number of shortest path

distances among the endpoints. Based on the shortest path

distances in S, it then defines a graph kernel that extracts

the desired representation from the graph.

4.3 Predicting connections using GNNs

In Problem 3.3, we are given a graph G with nodes types,

as well as a distinguished node v, and the goal of the

problem is to predict the neighborhood of v in G. This

problem can be further simplified by considering the

question whether v, u should be an edge or not for each

u 2 G. This connection test problem in a circuit, given a

component v, can be cast as a link prediction task where the

aim is to predict whether two nodes in a graph are likely to

have an edge based on the rest of graph connectivity. Link

prediction is a well-studied problem with numerous

applications, including knowledge graph completion,

Neural Computing and Applications

123

friend recommendation, and gene interactions in biological

networks. We define the link insertion problem as a link

prediction problem as follows.

One category of solutions to the link prediction problem

is known as the ‘‘heuristic methods,’’ where the likelihood

of links is computed through different node similarity

measures such as Jaccard Similarity, Katz Index, Common

Neighbors, and PageRank. A second class of link predic-

tion approach is based on machine learning, where the

structure of the graph is learned and then the likelihood of

links is predicted. The learning-based approaches are more

robust as they are computationally efficient and can be

applied in an inductive setting. Typically, these methods

take a single graph as an input and learn the structure of the

network in an end-to-end fashion. And then, the trained

model is used for the desired link prediction task.

We propose to select the SEAL (subgraphs, embeddings

and attributes for link prediction) framework that is based

on the learning approach.

The idea is to enclose subgraphs around the links present

in a graph (positive class instances) to extract training data.

For a pair (x, y), the enclosing subgraph is a subgraph that

contains h-hop neighborhood for both x and y nodes. In

practice, the idea of enclosing subgraphs works quite well

for the link prediction task. Moreover, this work also

proposes a node labeling approach denoted as ‘‘DRNL’’

(Double-Radius Node Labeling) to label nodes within the

subgraphs. The purpose of using DRNL is to mark nodes’

different roles to preserve structural information. We adapt

SEAL for the link prediction task on circuit graphs and

train it with DRNL one-hot encoding concatenated with the

original component node features. We present the sche-

matic diagram for the SEAL framework in Fig. 5.

5 Feature-enhanced graph isomorphism
network (FEGIN)

In addition to training and evaluating the graph machine

learning models that are discussed in the previous section,

we also propose a novel graph neural network-based

framework called feature-enhanced graph isomorphism

network (FEGIN). In this section, we provide details of this

novel model.

As outlined in the previous sections, GNNs encode

graph structure using message-passing mechanisms to

iteratively update the features vector at each node followed

by a weighted custom aggregation function. Various GNN

models differ based on the choice of aggregation functions

and the implementation mechanism of message passing.

For instance, GCN [32] uses mean aggregation function,

GAT [53] uses attention mechanism during the message

passing, and GIN [54] uses MLP to aggregate node fea-

tures. In a graph classification setting, this node-level

information is then aggregated through a pooling mecha-

nism to construct the desired graph-level feature repre-

sentations. The main objective of the graph pooling

mechanism is to collapse all nodes’ features into a fixed

dimensional feature vector that is independent of the size of

the input graph. We note that in general GNNs tend to

perform better on dense graphs as compared to sparse

graphs. This might be due to the fact that message-passing

mechanism is more effective in dense graphs as relative

pairwise distances among nodes are smaller. On the other

hand, the fewer edges in a sparse network, such as the one

representing circuit designs, may prevent GNNs from

exploiting the full potential of the otherwise quite effective

message-passing mechanism. Moreover, the graph pooling

AC 1

V1
IN

100K

R3

R1

10K

U1

V2

V1

INV

R2

100K

Graph Descriptor

Input

Feature Representation Classification

... ...010 1

Fig. 4 A schematic visualization of graph descriptor framework

Neural Computing and Applications

123

operators that compress the learned node-level features to

fixed dimensional latent space may result in further

potential loss of information. This significantly affects the

performance of the graph classification method [62] on

circuit-based graph inputs with mostly constant node

degrees.

To address these limitations, we propose a feature-en-

hanced graph isomorphism network (FEGIN) that combi-

nes the latent representation of a graph embedding method

with a message-passing mechanism such as GIN to

accommodate for any loss of information in sparse net-

works. In addition, we use global sort pooling [63] fol-

lowed by a multi-layer perceptron (MLP) to further

stabilize the pooling mechanism. As illustrated in Fig. 6,

the proposed framework consists of three main compo-

nents: a) a message-passing network such as GIN, (b) a

fixed-dimensional graph embedding such as NetLSD

descriptor, and (c) sort pooling layer with MLP.

Sects. 4.2.1 and 4.2.2, respectively, provide details on

graph isomorphism network (GIN) and network Laplacian

spectral descriptor (NetLSD) that we use for message-

passing mechanism and graph embedding of FEGIN,

respectively. Given a graph as an input, the NetLSD

embedding is computed as follows:

Ht ¼ e�Lt ¼ eUð�KtÞU> ¼ Ue�KtU>: ð7Þ

where L is the graph Laplacian matrix, t is the time, U is

the matrix of mutually orthogonal eigenvectors, and K is a

diagonal matrix of the eigenvalues of L. Here Ht defines the

heat kernel over the graph at time t where ijth entry indi-

cates the amount of heat transferred from node i to node j.

NetLSD embedding is then defined over Ht at different

scales as: h0ðGÞ ¼ ftrðHtÞgt[0. Similarly, we use GIN,

equation 6 to extract node embeddings hv. Once we have

the embeddings matrix Hn�d using GIN, we apply sort

pooling operator [63] which provides us graph-level

embedding h(G) for the given graph G. The key idea of sort

pooling is to choose the top k rows of H after row-wise

sorting based on the last feature channel in decreasing

order and flatten them into a single feature vector. Here, k

is a hyper-parameter that may need to tuned for the par-

ticular application at hand and available computational

resources but customarily, it is chosen in such a way that it

covers 60% of the nodes of the entire training dataset. This

allows for a consistent and refined WL ordering to be

imposed on the graph vertices, which makes it possible to

apply traditional learning models to the sorted representa-

tions. Finally, we concatenate h(G) and h0ðGÞ and apply a

two-layered MLP to get the final embedding of the graph.

We note that we compute h0ðGÞ only once for the entire

Fig. 5 Link prediction (SEAL)

framework. (Left) enclosing

subgraphs are extracted for each

target link, and (right), a GNN

model to learn subgraph

representations and perform link

prediction

NetLSD

ClassMLPNew embeddingInput

GIN

Polling

Fig. 6 Illustration of the proposed FEGIN framework

Neural Computing and Applications

123

dataset and then use them as per need in EFGIN’s

architecture.

6 Experimental results

We perform extensive experiments to evaluate the perfor-

mance of the proposed framework on three netlist datasets.

The results show that the proposed framework is an

effective and well-suited framework for the detection of

counterfeit designs. It achieves satisfactory results on both

the component classification and link prediction tasks. For

evaluation, we use F1 for graph classification and AUC for

link prediction. We repeat all the experiments 10 times and

report the average evaluation metrics along with the stan-

dard deviations. We made the source code4 and datasets5

publicly available to foster reproducibility of the results. In

the forthcoming sections, we present the details of dataset

preprocessing, models, and experimental results.

6.1 Component classification task

Datasets We use three electric circuit datasets: Ltspice

examples, Ltspice demos and Kicad Github in our experi-

mentation. The details of which are presented in Sect. 4.1.

We initially split each netlist dataset with 80:20 train-test

ratio, transform each of the netlists to graphs, and then

generate the desired train and test sets separately for the

classification. Because of the extreme class imbalance, we

remove classes having less than 300 instances for the

Ltspice examples dataset, 100 instances for the Ltspice

demos and 50 instances for the Kicad Github dataset. We

chose these different thresholds due to the difference in the

number of instances for each class in each dataset. We

present the component details of these datasets in Table 1.

Each dataset has 5 classes with at least 50 training samples

per class. We further remove graphs with sizes \5 and

greater than 25 from each dataset for the link prediction

task (Table 4).

Models We evaluate the proposed framework against

GNNs and graph descriptors on component classification

task. GNN baselines include graph convolutional networks

(GCN) [32], GraphSAGE [44], graph isomorphism net-

work (GIN) [54], graph attention network (GAT) and four

versions of these methods with nested graph neural net-

works (NGNNs) [55]. We also tested graph descriptors

including NetLSD [50], DGSD [51], FGSD [57], NetSimile

[58] and two kernels WL [59], and shortest path [61] to

further showcase the performance without using node

attributes. We describe these models in detail in Sect. 4.2.

Experimental Setup We run all the experiments on an 11th

Gen Intel Corei9 machine with 64 GB of RAM and a

GeForce GTX 1660 Ti GPU. For the GNNs experiments,

we use the source code made publicly available by [55]

which contains the implementations of all the baselines as

well. 80 : 20 train-test split was used to split the initial

circuit data, and then, the transformation of both train and

test sets was separately performed for constructing the

classification datasets. We use the same GNNs architec-

tures with 4 layers, 128 batch size, learning rate of 0.001

and train with 100 number of epochs. Hidden dimensions

were set to 32 for each layer. For NGNNs, we set the

subgraph height (h) to 2 and use hþ 1 message passing

layers throughout the experiments. Finally, each model was

tested 10 times, and the average weighted-F1 scores on test

sets along with the standard deviations are reported. For the

graph descriptors, we use a random forest classifier with

500 number of estimators for each descriptor.

Results We report the classification results in Table 2 for

GNNs methods and in Table 3 for the graph descriptors.

We observe from the results that FEGIN shows excellent

results on all three datasets and outperforms all other

models. The second-best results on these datasets were

achieved by the GIN model. From Table 3, we observed

that, compared to GNNs, the performance of the graph

descriptors is quite low. Among the models in graph

descriptors, NetSimile-based embeddings achieve the best

results. Based on the results presented, we conclude that

using a graph classification framework with graph neural

networks, specifically the proposed feature-enhanced graph

isomorphism network (FEGIN) shows a promising

approach as a solution to the circuit completion problem.

6.2 Link prediction task

In the previous section, we presented experimental results

of a graph classification-based solution to predicting a

missing component problem. The second part of the

problem is to find the optimal placement or connections

from the predicted component to all other components in a

given circuit. This is formulated as a link prediction task. In

the following, we present the details of the experimental

setup and the obtained results.

Models We consider a recently proposed linked prediction

model titled SEAL (subgraphs, embeddings and attributes

for link prediction) [52]. SEAL is a well-known link pre-

diction model that shows excellent results on many bench-

mark datasets and has been widely used for link prediction

tasks.We present the details of the SEALmodel in Sect. 6.2.
4 https://github.com/Anwar-Said/Circuit-Completion-Using-GNNs.
5 https://github.com/symbench/spice-datasets.

Neural Computing and Applications

123

https://github.com/Anwar-Said/Circuit-Completion-Using-GNNs
https://github.com/symbench/spice-datasets

Experimental setup We adapted publicly available Pytorch

Geometric’s implementation for the SEAL model. Similar to

the component classification split, we chose the same 80:20

split and construct one training graph from the whole training

set.Weset batch size of1, learning rate 1eð�4Þ, number of hops

to 2, and train the model with 50 number of epochs.

Throughout the experiments, we use one-hot encoding of the

node labeling generated through Double Radius Node

Labeling (DRNL) and concatenate them with one-hot

encoding of the components’ type. Apart from these param-

eters, we adapted the similar architecture and experimental

setup presented in [52]. In the testing phase, we remove one

vertex from each test graph and predict its connections. We

repeat this process 10 times and report the average AUC.

ResultsWe report the link prediction results in Table 5. We

note that the implementation based on SEAL model

obtained results up to 75% on Ltspice examples and Kicad

Github datasets. The results on Ltspice LTSpice demo

dataset are lower, which may be due to the limited number

of training instances in this dataset. Although link predic-

tion on such a sparse dataset is a challenging task, SEAL

obtained encouraging results indicating that the proposed

framework is effective in learning the netlist structures and

can be used for the placement of new components.

7 Conclusion

In this work, we introduced a graph learning framework for

the circuit completion problem by mapping the problem of

missing components as a graph classification task and

presenting a novel approach to find the solution. Further,

Table 4 Dataset stats for link

prediction task
Dataset Train Test # of classes # of nodes # of edges

Ltspice examples 901 217 5 13.52 17.71

Ltspice demos 82 25 5 16.47 22.71

Kicad Github 112 29 5 11.69 11.43

Table 1 Datasets’ class-wise

stats for component

classification task

Ltspice examples Ltspice demos Kicad Github

Component class Train Test Train Test Train Test

Voltage_source 1238 303 142 38 N/A N/A

Sub_element 1224 300 142 38 N/A N/A

Junction-node 1243 305 142 38 254 72

Resistor 1107 272 142 38 135 38

Behavioral cap 835 189 124 37 114 32

UnifDistRCLine N/A N/A N/A N/A 142 43

JunFETrans N/A N/A N/A N/A 86 25

Table 2 Test performance of eight GNNs against the proposed method on three circuit datasets. mean±std of 10 runs of each model are shown

Dataset GCN GIN GAT GraphSAGE NGCN NGIN NGAT NGSAGE FEGIN

Ltspice

examples

79:5� 0:01 92:7� 0:005 78:1� 0:04 78:6� 0:03 81:9� 1:04 88:9� 0:01 82:7� 0:03 82:2� 0:03 93:1� 0:010

Ltspice

demos

61:8� 0:01 87:9� 0:02 58:5� 0:03 59:0� 0:04 52:6� 0:08 82:4� 0:03 53:8� 0:09 53:7� 0:06 90:0� 0:016

Kicad

Github

51:7� 0:03 66:1� 0:02 56:7� 0:04 46:6� 0:02 58:1� 0:01 62:5� 0:02 56:8� 0:03 57:0� 0:02 67:4� 0:01

Italic indicates the best results for each dataset

Table 3 Classification results

comparison of graph descriptors

and kernel methods (F1)

Dataset DGSD NetLSD WL FGSD NetSimile Shortest path

Ltspice examples 77.63 77.22 77.21 48.88 85:11 77.21

Ltspice demos 57.60 52.07 48.27 33.03 70:86 48.26

Kicad Github 47.89 47.77 49.35 51.52 59:27 49.35

Neural Computing and Applications

123

we formulated a link prediction task to find the links of the

missing component and proposed a link prediction solu-

tion. Finally, we conducted extensive experiments to

evaluate the performance of the proposed framework. The

results demonstrate that our solution is robust and offers a

suitable approach to solving the inherently complex and

challenging circuit completion problem.

Acknowledgements This work is supported in part by DARPA

through contract number FA8750-20-C-0537. Any opinions, findings,

and conclusions or recommendations expressed are those of the

authors and do not necessarily reflect the views of the sponsor.

Data availability statement The datasets generated during and/or

analyzed during the current study are available in the spice-datasets

repository, https://github.com/symbench/spice-datasets.

Code availability The source code and preprocessed data for the

experiments are available in the Circuit-Completion-Using-GNNs

repository, https://github.com/Anwar-Said/Circuit-Completion-

Using-GNNs

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Cai F, de Rijke M (2016) A survey of query auto completion in

information retrieval. Found Trends Inf Retr 10:273–363

2. Foster SP, Griswold WG, Lerner S (2012) Witchdoctor: Ide

support for real-time auto-completion of refactorings. In: 2012

34th international conference on software engineering (ICSE),

pp 222–232

3. Moran K, Vásquez ML, Bernal-Cárdenas C, Poshyvanyk D

(2015) Auto-completing bug reports for android applications. In:

Proceedings of the 2015 10th joint meeting on foundations of

software engineering

4. Rahman MM, Yeasmin S, Roy CK (2014) Towards a context-

aware ide-based meta search engine for recommendation about

programming errors and exceptions. In: 2014 software evolution

week - IEEE conference on software maintenance, reengineering,

and reverse engineering (CSMR-WCRE), pp 194–203

5. Sobania D, Briesch M, Rothlauf F (2022) Choose your program-

ming copilot: a comparison of the program synthesis performance

of Github copilot and genetic programming. In: Proceedings of the

genetic and evolutionary computation conference

6. Floridi L, Chiriatti M (2020) Gpt-3: Its nature, scope, limits, and

consequences. Mind Mach 30(4):681–694

7. Amazon: Introducing Amazon CodeWhisperer, the ML-powered

coding companion (2022) https://aws.amazon.com/blogs/

machine-learning/introducing-amazon-codewhisperer-the-ml-

powered-coding-companion/. Accessed: 2022-08-02

8. Botero UJ, Wilson R, Lu H, Rahman MT, Mallaiyan MA, Ganji

F, Asadizanjani N, Tehranipoor MM, Woodard D, Forte D (2021)

Hardware trust and assurance through reverse engineering: a

survey and outlook from image analysis and machine learning

perspectives. ArXiv arXiv:2002.04210

9. Bao C, Forte D, Srivastava A (2016) On reverse engineering-

based hardware trojan detection. IEEE Trans Comput Aided Des

Integr Circuits Syst 35:49–57

10. Botero UJ, Tehranipoor MM, Forte D (2019) Upgrade/down-

grade: efficient and secure legacy electronic system replacement.

IEEE Des Test 36:14–22

11. Grand JA (2014) Printed circuit board deconstruction techniques.

In: WOOT

12. Elnaggar R, Chakrabarty K (2018) Machine learning for hard-

ware security: opportunities and risks. J Electron Test

34:183–201

13. Tehranipoor MM, Guin U, Forte D (2015) Counterfeit integrated

circuits. Springer, Cham, pp 15–36

14. Robertson J, Riley M (2018) The big hack: Amazon, apple,

supermicro, and the Chinese Government. Bloomberg

Businessweek

15. Botero UJ, Wilson R, Lu H, Rahman MT, Mallaiyan MA, Ganji

F, Asadizanjani N, Tehranipoor MM, Woodard DL, Forte D

(2020) Hardware trust and assurance through reverse engineering.

Association for Computing Machinery, New York

16. Zhao L, Goh S, Chan Y, Yeoh B, Hu H, Thor M, Tan A, Lam J

(2018) Prediction of electrical and physical failure analysis suc-

cess using artificial neural networks. In: 2018 IEEE international

symposium on the physical and failure analysis of integrated

circuits (IPFA), pp. 1–5. IEEE

17. Ye F, Zhang Z, Chakrabarty K, Gu X (2013) Board-level func-

tional fault diagnosis using artificial neural networks, support-

vector machines, and weighted-majority voting. IEEE Trans

Comput Aided Des Integr Circuits Syst 32(5):723–736

18. Pradhan M, Bhattacharya BB (2021) A survey of digital circuit

testing in the light of machine learning. Wiley Interdiscip Rev

Data Mining Knowl Discov 11(1):1360

19. Ivanova M, Petkov N (2021) Machine learning for in-circuit

testing of printed circuit board assembly. In: 2021 4th artificial

intelligence and cloud computing conference, pp 221–228

20. Huang Z, Wang Q, Chen Y, Jiang X (2020) A survey on machine

learning against hardware Trojan attacks: recent advances and

challenges. IEEE Access 8:10796–10826

21. Acampora G, Schiattarella R (2021) Deep neural networks for

quantum circuit mapping. Neural Comput Appl

33(20):13723–13743

22. Kahng AB (2018) New directions for learning-based ic design

tools and methodologies. In: 2018 23rd Asia and South pacific

design automation conference (ASP-DAC), pp 405–410. IEEE

23. Lopera DS, Servadei L, Kiprit GN, Hazra S, Wille R, Ecker W

(2021) A survey of graph neural networks for electronic design

automation. In: 2021 ACM/IEEE 3rd workshop on machine

learning for CAD (MLCAD), pp. 1–6. IEEE

24. Said A, Hassan S-U, Abbas W, Shabbir M (2021) Netki: a

kirchhoff index based statistical graph embedding in nearly linear

time. Neurocomputing 433:108–118

25. Lee T-H, Wang T-C (2008) Congestion-constrained layer

assignment for via minimization in global routing. IEEE Trans

Comput Aided Des Integr Circuits Syst 27(9):1643–1656

26. Selvakkumaran N, Karypis G (2006) Multiobjective hypergraph-

partitioning algorithms for cut and maximum subdomain-degree

minimization. IEEE Trans Comput Aided Des Integr Circuits

Syst 25(3):504–517

27. Yu B, Yuan K, Ding D, Pan DZ (2015) Layout decomposition for

triple patterning lithography. IEEE Trans Comput Aided Des

Integr Circuits Syst 34(3):433–446

Table 5 Link prediction results

with SEAL framework (AUC)
Dataset SEAL

Ltspice examples 74.74

Ltspice demos 61.39

Kicad Github 75.09

Neural Computing and Applications

123

https://github.com/symbench/spice-datasets
https://github.com/Anwar-Said/Circuit-Completion-Using-GNNs
https://github.com/Anwar-Said/Circuit-Completion-Using-GNNs
https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/
https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/
https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/
http://arxiv.org/abs/2002.04210

28. Moreno-Garcı́a CF, Elyan E, Jayne C (2019) New trends on

digitisation of complex engineering drawings. Neural Comput

Appl 31(6):1695–1712

29. Cheng K-T, Lin C-J (1995) Timing-driven test point insertion for

full-scan and partial-scan bist. In: Proceedings of 1995 IEEE

international test conference (ITC), pp 506–514. IEEE

30. Ma Y, Ren H, Khailany B, Sikka H, Luo L, Natarajan K, Yu B

(2019) High performance graph convolutional networks with

applications in testability analysis. In: Proceedings of the 56th

annual design automation conference 2019, pp 1–6

31. Ma Y, He Z, Li W, Zhang L, Yu B (2020) Understanding graphs

in EDA: from shallow to deep learning. In: Proceedings of the

2020 international symposium on physical design, pp 119–126

32. Kipf TN, Welling M (2016) Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907

33. Khailany B, Ren H, Dai S, Godil S, Keller B, Kirby R, Klinefelter

A, Venkatesan R, Zhang Y, Catanzaro B et al (2020) Acceler-

ating chip design with machine learning. IEEE Micro

40(6):23–32

34. Hamilton WL (2020) Graph representation learning. Synth Lect

Artif Intell Mach Learn 14(3):1–159

35. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger

O, Tunyasuvunakool K, Bates R, Žı́dek A, Potapenko A et al

(2021) Highly accurate protein structure prediction with alpha-

fold. Nature 596(7873):583–589

36. Derrow-Pinion A, She J, Wong D, Lange O, Hester T, Perez L,

Nunkesser M, Lee S, Guo X, Wiltshire B, et al. (2021) Eta pre-

diction with graph neural networks in google maps. In: Pro-

ceedings of the 30th ACM international conference on

information & knowledge management, pp 3767–3776

37. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Don-

ghia NM, MacNair CR, French S, Carfrae LA, Bloom-Acker-

mann Z et al (2020) A deep learning approach to antibiotic

discovery. Cell 180(4):688–702

38. Dey M, Mia SM, Sarkar N, Bhattacharya A, Roy S, Malakar S,

Sarkar R (2021) A two-stage CNN-based hand-drawn electrical

and electronic circuit component recognition system. Neural

Comput Appl 33(20):13367–13390

39. Ustun E, Deng C, Pal D, Li Z, Zhang Z (2020) Accurate opera-

tion delay prediction for fpga hls using graph neural networks. In:

Proceedings of the 39th international conference on computer-

aided design, pp 1–9

40. Mirhoseini A, Goldie A, Yazgan M, Jiang JW, Songhori E, Wang

S, Lee Y-J, Johnson E, Pathak O, Nazi A et al (2021) A graph

placement methodology for fast chip design. Nature

594(7862):207–212

41. Xie Z, Liang R, Xu X, Hu J, Duan Y, Chen Y (2021) Net 2: A

graph attention network method customized for pre-placement

net length estimation. In: 2021 26th Asia and South Pacific design

automation conference (ASP-DAC), pp 671–677. IEEE

42. Agnesina A, Chang K, Lim SK (2020) Vlsi placement parameter

optimization using deep reinforcement learning. In: Proceedings

of the 39th international conference on computer-aided design,

pp 1–9

43. Lu Y-C, Pentapati S, Lim SK (2020) Vlsi placement optimization

using graph neural networks. In: 34th advances in neural infor-

mation processing systems (NeurIPS) workshop on ML for

systems

44. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation

learning on large graphs. Adv Neural Inf Process Syst 30
45. Ren H, Kokai GF, Turner WJ, Ku T-S (2020) Paragraph: layout

parasitics and device parameter prediction using graph neural

networks. In: 2020 57th ACM/IEEE design automation confer-

ence (DAC), pp 1–6. IEEE

46. Zhang G, He H, Katabi D (2019) Circuit-GNN: Graph neural

networks for distributed circuit design. In: International confer-

ence on machine learning, pp 7364–7373. PMLR

47. Wang H, Wang K, Yang J, Shen L, Sun N, Lee H-S, Han S

(2020) Gcn-rl circuit designer: Transferable transistor sizing with

graph neural networks and reinforcement learning. In: 2020 57th

ACM/IEEE design automation conference (DAC), pp 1–6. IEEE

48. Li Y, Lin Y, Madhusudan M, Sharma A, Xu W, Sapatnekar SS,

Harjani R, Hu J (2020) A customized graph neural network

model for guiding analog IC placement. In: 2020 IEEE/ACM

international conference on computer aided design (ICCAD),

pp 1–9. IEEE

49. Abualigah L, Shehab M, Alshinwan M, Alabool H (2020) Salp

swarm algorithm: a comprehensive survey. Neural Comput Appl

32(15):11195–11215

50. Tsitsulin A, Mottin D, Karras P, Bronstein A, Müller E (2018)

Netlsd: hearing the shape of a graph. In: Proceedings of the 24th

ACM SIGKDD international conference on knowledge discovery

& data mining, pp 2347–2356

51. Said A, Hassan S-U, Tuarob S, Nawaz R, Shabbir M (2021)

Dgsd: Distributed graph representation via graph statistical

properties. Futur Gener Comput Syst 119:166–175

52. Zhang M, Chen Y (2018) Link prediction based on graph neural

networks. Adv Neural Inf Process Syst 31
53. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio

Y (2017) Graph attention networks. arXiv preprint arXiv:1710.

10903

54. Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are

graph neural networks?. arXiv preprint arXiv:1810.00826

55. Zhang M, Li P (2021) Nested graph neural networks. Adv Neural

Inf Process Syst 34:15734–15747

56. Ahmed A, Hassan ZR, Shabbir M (2020) Interpretable multi-

scale graph descriptors via structural compression. Inf Sci

533:169–180

57. Verma S, Zhang Z-L (2017) Hunt for the unique, stable, sparse and

fast feature learning on graphs. Adv Neural Inf Process Syst 30
58. Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C (2013)

Network similarity via multiple social theories. In: Proceedings

of the 2013 IEEE/ACM international conference on advances in

social networks analysis and mining, pp 1439–1440

59. Shervashidze N, Schweitzer P, Van Leeuwen EJ, Mehlhorn K,

Borgwardt KM (2011) Weisfeiler-Lehman graph kernels.

J. Mach. Learn. Res. 12(9):2539–2561

60. Weisfeiler B, Leman A (1968) The reduction of a graph to

canonical form and the algebra which appears therein. NTI, Ser

2(9):12–16

61. Borgwardt KM, Kriegel H-P (2005) Shortest-path kernels on

graphs. In: Fifth IEEE international conference on data mining

(ICDM’05), p 8. IEEE

62. Cangea C, Veličković P, Jovanović N, Kipf T, Liò P (2018)

Towards sparse hierarchical graph classifiers. arXiv preprint

arXiv:1811.01287

63. Zhang M, Cui Z, Neumann M, Chen Y (2018) An end-to-end

deep learning architecture for graph classification. In: Proceed-

ings of the AAAI conference on artificial intelligence, vol 32

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications

123

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1811.01287

	Circuit design completion using graph neural networks
	Abstract
	Introduction
	Related work
	Preliminaries and problem formulation
	Circuit completion through graph learning
	Dataset collection and preprocessing
	Component prediction using graph representations
	Graph neural networks
	Graph descriptors

	Predicting connections using GNNs

	Feature-enhanced graph isomorphism network (FEGIN)
	Experimental results
	Component classification task
	Link prediction task

	Conclusion
	Code availability
	References

