
IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 194 | P a g e

Review of Prioritization Testing in Software Testing
Jyoti1, Kirti Bhatia2

1Mtech Scholar, Sat Kabir Institute of technology & Management, Bahadurgarh
2Assistant Professor, Sat Kabir Institute of technology & Management, Bahadurgarh

Abstract—Requirement prioritization techniques have more

pragmatic reference then the theoretical aspects and it differs

with the domain and the organizations. Different BAs consider

different aspects and follow various approaches in the process of

prioritizing the requirements on the premise of different aspects

of prioritization.

Prioritization is the essential skill that you need to make the

very best use of your own efforts and those of your team. It's

also a skill that you need to create calmness and space in your

life so that you can focus your energy and attention on the things

that really matter. Prioritization based on project value or

profitability is probably the most commonly-used and rational

basis for prioritization. Whether this is based on a subjective

guess at value or a sophisticated financial evaluation, it often

gives the most efficient results. Time constraints are important

where other people are depending on you to complete a task, and

particularly where this task is on the critical path of an important

project. Here, a small amount of your own effort can go a very

long way.

Keywords—prioritization technique, regression testing,

efficiency

I. INTRODUCTION

Test case prioritization techniques organize the test cases in a

test suite, prioritize them increase in the effectiveness of testing

on the basis of requirements. One performance goal, the severe

fault detection rate, is a measure of how quickly severe faults are

detected during the testing process. An improved rate of severe

fault detection can provide faster feedback regarding the quality

of the system under testing, as complete testing process is vast

and too expensive. This is often the case with regression testing,

the process of validating the modified version of software to

detect whether new errors have been introduced into previously

tested code and to provide confidence that modifications are

correct.

By increasing the overall rate of severe fault detection, a

greater number of errors can be found more rapidly in the code

developed to meet user requirements. As frequent rebuilding and

regression testing achieves popularity, the need for a time

constraint aware prioritization technique developing as per

requirements. New software development processes such as

extreme programming also promote a short development and

testing cycle and frequent execution of fast test cases. Therefore,

there is a clear need for a prioritization technique that has the

potential for more effectiveness when a test suite's allowed

execution time is known, particularly when that execution time

is short.

This literature review shows that if the maximum time

allotted for execution of the test cases is known using historical

data of testing, a more effective prioritization can be produced.

The time constrained test case prioritization problem can be

effective and reduced to the NP-complete zero/one knapsack

problem. This can often be efficiently approximated with a

genetic algorithm (GA) heuristic search technique. Genetic

algorithms have been effectively used in other software

engineering and programming language problems such as test

generation, program transformation, and software maintenance

resource allocation, this survey demonstrates that they also

prove to be effective in creating time constrained test

prioritizations using requirements factors and technique that

prioritizes regression test suites so that the new ordering:-

1. Will always run within a given time limit and

2. Will have the highest possible potential for severe

defect detection based on derived coverage

information and requirements. In summary, the

important contributions of this survey are as follows:

 (i). a GA based technique to prioritize a regression test

suite that will be run within a time constrained

execution environment.

 (ii). an empirical evaluation of the effectiveness of the

resulting prioritizations in relation to (i) GA-produced

prioritizations using different user requirement

parameters.

II. LITERATURE STUDY

This section discusses an overview of a software

development life cycle (or SDLC) and a general software testing

process. It describes a comprehensive set of existing test case

prioritization methods researched from 1998 to 2008. In

addition, it introduces a new “4C” classification of existing test

case prioritization techniques. In general, the SDLC process

contains the following phases, which are: requirement gathering,

design & analysis, development, testing and maintenance. Those

phases can be represented as follows in fig.1

From the above, the testing phases contain the following

processes: test planning, test development, test execution and

evaluation of results.

With existing test case prioritization techniques researched in

1998-2015, this paper introduces and organizes a new “4C”

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 195 | P a g e

classification of those existing techniques, based on their

prioritization algorithm’s characteristics, as follows:

1. Customer Requirement-based techniques:-Customer

requirement-based techniques are methods to

prioritize test cases based on requirement documents.

Many researchers have researched this area, such as

Srikanth, Zhang and Nilawar. Also, many weight

factors have been used in these techniques, including

custom-priority, requirement complexity and

requirement volatility.

2. Coverage-based techniques:-Coverage-based

techniques are methods to prioritize test cases based

on coverage criteria, such as requirement coverage,

total requirement coverage, additional requirement

coverage and statement coverage. Many researchers

have researched this area, such as Leon, Rothermel,

and Bryce.

3. Cost Effective-based techniques:-Cost effective-based

techniques are methods to prioritize test cases based

on costs, such as cost of analysis and cost of

prioritization. Many researchers have researched this

area, for instance, Malishevsky,Alexey, and Elbaum.

4. Chronographic history-based techniques:-

Chronographic history-based techniques are methods

to prioritize test cases based on test execution history.

A few researchers have researched this area.

b) Kristen R. Walcott Mary Lou Soffa, Gregory M.

Kapfhammer Robert S. Roos, “Time Aware Test Suite

Prioritization,” ISSTA’06, July 17–20, (2006),

Portland, Maine, USA[18]:-
 In this fitness based on(using GA):

◦ The line of code coverage.

◦ the time at which each test covers its associated code.

**But does not based on requirements prioritization required by

user.Sujata, Mohit Kumar, Dr. Varun Kumar ,“Requirements

based Test Case Prioritization using Genetic Algorithm,” IJCST

Vol. 1, Issue 2, December 2010.[17]:-

 In this fitness based on(using GA):
◦ Requirement factors but does not satisfy the 80/20 rule

(80% of Defects are Caused by 20% of Code).

Requirements Designing Development Phase Testing Maintenance

Test Planning Test case Develop Test Evalution Evaluation Results

Fig.1:-Software Development Life Cycle

III. REQUIREMENT OF PRIORITIZATION

To find out the severity faults in less time, we can use the

requirements and prioritize them in before developing cycle.

Using this prioritization, we can easily fulfill the requirements of

the user/customer in development phase.By knowing all issue

regarding requirements, we can resolve interface requirement as

user required so that less changed are required after

implementing the code. Some techniques used for requirement

prioritization as shows in fig. 2 below:

Test cases in the test suites are reschedule which will further

prioritize using an algorithm. Before dealing with prioritization

algorithms the problem associated with test case prioritization

requires understanding which is defined as follows:

Given:

T is test suites based on requirements, PT refers to a number

of ways they are chosen, where f is a function whose value

depends on permutation of these T to some real number

Analytical Hierarchy

Process(AHP)

Cumulative Voting

(The 100-Dollar Test)

Numerical Assignment

(Grouping)

Ranking

Top-Ten Requirements

Systematic decision making method to Prioritize the software Requirements by comparing all possible

pairs of hierarchically classified requirements. The number of comparisons performed are n*(n-1)/2.

Very Straightforward prioritization technique where the stakeholders are given 100 imaginary

units(money, hours etc.) to distribute between the requirements and choose them on basis on favorite

requirements by spending more money and some not.

The most common prioritization technique and is suggested both in RFC 2119 and IEEE Std. 830-1998 .

The approach is based on grouping requirements into different priority groups. The number of groups can

vary, but in practice, three groups are very common. Each group represents something that the

stakeholders can relate to (e.g. critical, standard, optional), for a reliable classification.

Based on an ordinal scale which means that the most important requirement is ranked 1 and the least

important is ranked n (for n requirements).Each requirement has a unique rank but it is not possible to see

the relative difference between the ranked items (as in AHP or the 100-dollar test). The list of ranked

requirements could be obtained in a variety of ways, as by using the bubble sort or binary search tree

algorithms

stakeholders pick their top-ten requirements (from a larger set) without assigning an internal order

between the requirements. The main challenge in this technique is to balance conflict requirements

issues.

Fig.2:-Some mainly Requirements Prioritization Techniques

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 196 | P a g e

Problem:

We have to find T'

Such that T' ϵ PT For all T, (T ' ϵ PT)

Where (T! = T') and f (T') >= f (T).

IV. APPROACH FOR TEST CASE PRIORITIZATION TECHNIQUE

Existing algorithms for test case prioritization are based on

greedy approach. Greedy algorithm selects maximum weighted

element based on the criteria decided to be chosen. It can be

statement coverage, branch coverage, function coverage and

fault coverage. Some of the techniques are mentioned in table I.

The same procedure is followed until gets the order of test cases

with suboptimal solution. Elements are sorted in an increasing

order using quick sorting which gives complexity of O (mn)

where m is the no. of statements and n is no. of test cases. The

major drawback of greedy algorithm is that it gives a local

optimum solution of the problem concern. The solution provided

could be either maximal or minimal based on neighboring

available test cases. Next to the simple greedy algorithm,

additional greedy algorithm came into existence which is similar

as Greedy algorithm with the use of different strategies. The test

cases that focus on maximum coverage are selected by using

greedy algorithm and the information of previous covered code

additionally used to perform greedy algorithm which gives

complexity of order 0 (mn2) . Another 2-0ptimal greedy

algorithm used which is based on the travelling salesmen

problem i.e. "finding the minimum cost path passing through

every node in a graph G at least once". As per the statement test

cases, achieving complete coverage earlier has given highest

priority. The pair of test case is selected with some readjustment

of coverage information which gives complexity of O(mn3). 2-

0ptimal algorithm and additional greedy algorithm are little

similar. Popularize met heuristic search techniques help in

finding a solution to a certain problem with reasonable

computational cost. It implements some sort of stochastic

optimization in which the resultant solution is dependent on the

number of random variables generated. Hill climbing and

Genetic algorithm comes under such technique. Hill climbing

algorithm is very simple to implement. In this algorithm, the

initial solution state is randomly selected which will further

compare with its neighboring states. If the neighboring state has

higher fitness then it will become the current state and thus the

most appropriate state has been chosen to get a solution state.

State here, refers to the test suite contains test cases and

neighbors are the same test suite with different ordering of test

cases.

RCis the value (1 to 10) assigned by the developer based on

the perceived implementation difficulties of the requirement. RV

is the number of times a requirement has changed. Higher factor

values indicate a need for prioritization of test case related to

that requirement. Based on the project and customer needs, the

development team assigns weight to the PFs such that the

assigned total weight (1.0) is divided amongst the PFV.For

every requirement, Equation 1 is used to calculate a weighted

prioritization (WP) factor that measures the importance of

testing a requirement earlier. Test cases are then ordered such

that the test cases for requirements with high WP are executed

before others.

Prioritization Factor Value (pfv) = PFvalue * PFweight

V. DISCUSSION AND ALGORITHM

GAPRIORITIZE (P,T,s,gmax,pc,pm,pa,Pd,Tc,w)

Input: program P

Test suit T

Number of tuples to be created per iterations s

Percent of total requirement coverage pr

Crossover probability :- pc

Mutation probability :-pm

Addition probability:- pa

Deletion probability :-pd

Test adequacy criteria :-tc

Program coverage weight w, based on numbers of prioritized

requirement covered.

Output : Maximum fitness tuple Fmax ε F in set Rmax

tmax<- total number of requirements.

R0<-null;

repeat

R0<-R0 U {random individual created}

until |R0|=s

g<-0

repeat

F<-0

For Rj ε Rg

F<-FUCalculateFitness(P,Rj,pt,tc,w)

F<-fv*fw;

Rg+1 <- SelectTwoTuple(Rg,F).

repeat

Rk,Rl<-SelectParents(Rg,F)

Rq,Rr<-ApplyCrossover(pc,Rk,Rl)

Rq<-ApplyMutation(pm,Rq)

Rq<-ApplyMutation(pm,Rq)

Rq<-AddAdditionalTests(T,pa,Rq)

Rr<-AddAdditionalTests(T,pa,Rr)

Rq<-DeleteATest(pd,Rq)

Rr<-DeleteATest(pd,Rr)

Rg+1<-Rg+1U{Rq}U{Rr}

until |Rg+1|=s

g<-g+1

until g>gmax

Rmax<-FindMaxFitnessTuple(Rg-1,F)

returnRmax

A genetic algorithm is used to solve the problem. First

execution of each test case is recorded to find that the particular

test case is covering which and how many requirements.First

find the total number of requirements for the system and store

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 197 | P a g e

them in tmax. Select the tuples that is covering

maximumnumber of requirements and make a set sayR0.

Apply the fitness function to find each of Rj and its fitnessvalue

is denoted by Fj to determines its quality. Select the two best

tuple using R0 and F to form Rg which will be the next

generation. Identifies Rk and Rl through a roulette wheel

selection technique based on the probability proportional to

|F|.the fitness values are normalized in relation to the rest ofthe

test tuple set by multiplying each FjεF by a fixed number,so that

sum of all fitness values equals one. The test tuples are then

sorted by descending fitness values, and the accumulated fitness

values are calculated.

A random number r ε [0,1] is next generated, and the first

individual whose accumulatednormalized value is greater than

orequal to r is selected. This selection method is repeated until

enough tuple are selected to fill the set Rg. Then apply crossover

that may merge the pair {Rk,Rl} to create the two potentially

new tuples {Rq,Rr} based on pc, a user provided crossover

probability. Each tuple in the pair {Rq,Rr} may then be muted

based on pm, a user provided mutation probability. Finally a

new test case may be added or deleted from Rq and Rr. After

each of these modifications have been made to the original pair,

both tuples Rq and Rr are entered into R1. The same

transformation are applied to allpairs selected by R0 until

R1contains s test tuples, In total gmax sets of s test tuples are

iteratively created in this fashion. When the final set Rgmax has

been created, the test tuple with the greatest fitness, Rmax, is

determined. This tuple is guaranteed to be the tuple with the

highest fitness out of allg sets of size s.

VI. CONCLUSION

Fitness function for this algorithm would be calculated in the

following form in which fitness function has two components.

The first component is primary fitness which we calculated in

this form:

Fpri(P,Ri, tc,w) = rc(P,Ri, tc) * w, where Fpri=primary fitness ,

andthe second component would take the following form:

Fsec(P,Ri, tc) = Fs-actual(P,Ri, tc)/Fs-max(P,Ri, tc), where

Fsec=second component considers the incremental

requirement coverage of the tuple, giving precedence to test

tuples whose earlier tests have greater coverage. Fsec is also

calculated in two parts.

(i) Fs-actual-> calculated by summing the product of the

requirement coverage and fault severity of faults generated by

respective test cases.

(ii) F-actual->that represent the maximum value that Fsactual

can take.

As an example of a fitness calculation, let the program

coverage weight w = 100, P be a program, and tc be a test

adequacycriterion (e.g., requirement coverage). Suppose

Ri=<T1,T2,T3>. Also, assume we have severity information

based on requirement prioritization is T1=5,T2=3, T3=2, and

test tuple requirement

coveragerc(P,Ri, tc) = 0.20.

Then, primary fitness =0.2*100=20

Fsec next gives preference to test tuples that have more high

prioritized requirement covered early in execution. To calculate

Fsec, the requirement coverages of

Ri(1,1)=<T1>,Ri(1,2)=<T1,T2>,Ri(1,3)=<T1,T2,T3> must be

measured. Suppose for this example that rc(P,Ri(1,1),tc) = 0.05,

rc(P,Ri(1,2),tc) = 0.19, and, as already known, rc(P,Ri(1,3), tc) =

rc(P,Ri, tc) =0.20. Fsec is calculated as follows,

Fs-actual(P,Ri, tc) = (5* 0.05) + (3* 0.19) + (2* 0.20)= 1.27

Fs-max(P,Ri, tc) = 0.2(5 + 3 + 2) = 2.0,

Fsec(P,Ri, tc) =1.27/2.0= 0.635

Evaluation of this approach:

Consider an example table for understanding the concept of

this proposed algorithm. In this case we are using severity value

which will be based on requirement weight and value. As the

test case is covering maximum number of highly prioritized

requirements means it is finding most severe faults early in the

testing process.

Issues for GA Practitioners:-

 Choosing basic implementation issues:

 representation

 population size, mutation rate, ...

 selection, deletion policies

 crossover, mutation operators

 Termination Criteria.

 Performance, scalability.

Solution is only as good as the evaluation function (often

hardest part).

Benefits of Genetic Algorithms:-

 Concept is easy to understand.

 Modular, separate from application.

 Supports multi-objective optimization.

 Good for “noisy” environments.

 Always an answer; answer gets better with time.

 Inherently parallel; easily distributed.

 Many ways to speed up and improve a GA-based

application as knowledge about problem domain is gained.

 Easy to exploit previous or alternate solutions.

 Flexible building blocks for hybrid applications.

 Substantial history and range of use.

When to Use a GA:-

 Alternate solutions are too slow or overly complicated.

 Need an exploratory tool to examine new approaches.

 Problem is similar to one that has already been successfully

solved by using a GA.

 Want to hybridize with an existing solution.

 Benefits of the GA technology meet key problem

Requirements.

Approaches and Challenges

Possible approaches:-

 Case Studies to find out requirement factors and optimize

them using GA.

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 198 | P a g e

Challenges are:-

 Find test cases with the greatest fitness to prioritize test

case.(Implementation of fitness function using GA based on

requirement factors).

Objective

 Detection of severe faults in less cost and less time to

reduce cost and time by optimization of regression test

selection.

Techniques

 by using Requirement prioritization considering Business

value.

 Selection: Code-coverage TCP techniques using

requirement factors.

 Prioritization : Prioritization of Requirements for Testing

(PORT Version 1.1) and Genetic Algorithm.

Tool used

Mat Lab used for implementation and evolution of the required

fittest function based on requirement factors provide by

user/stakeholder.

VII. REFERENCES

[1] K. F. Man, Member, IEEE, K. S. Tang, and S. Kwong,

Member, IEEE“Genetic Algorithms: Concepts and

Applications,” IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996.

[2] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Test

Case Prioritization,” Technical Report GIT-9-28, college of

computing ,Georgia institute of technology ,Dec.,1999.

[3] Paolo Tonella, Angelo Susi, Francis Palma, “Using

Interactive GA for Requirements Prioritization,” 2nd

International Symposium on Search Based Software

Engineering.

[4] HemaSrikanth, Laurie Williams, Jason Osborne, “System

test case prioritization of new and regression test cases,”

Proceedings of the seventh international workshop on

Economics driven software engineering research, pages 64-

73, May 2005 IEEE.

[5] Dr. Varun Kumar, Sujata, Mohit Kumar, “Test Case

Prioritization Using Fault Severity,” IJCST Vol. 1, Issue 1,

September 2010.

[6] G. Rothermel, R. Untch, C. Chu, and M. Harrold,"Test

Case Prioritization," IEEE Transactions on Software

Engineering, vol. 27, pp. 929-948, October 2001.

[7] S. Elbaum, A. Malishevsky, and G. Rothermel,"Test Case

Prioritization: A Family of Empirical Studies,"IEEE Trans.

on Software Engineering, vol. 28, February2002.

[8] Md. ImrulKayes,” Test Case Prioritization for Regression

Testing Based on Fault Dependency”, (2011) IEEE.

[9] Zheng Li, Mark Harman, and Robert M. Hierons, “Search

algorithms for regression test case prioritization,” IEEE

Trans. On Software Engineering, vol 33, no.4, April 2007 .

[10] Wang Jun, Zhuang Yan, Jianyun Chen,” Test Case

Prioritization Technique based on Genetic Algorithm”,

(2011) IEEE.

[11] Kristen R. Walcott Mary Lou Soffa, Gregory M.

Kapfhammer Robert S. Roos, “Time Aware Test Suite

Prioritization,” ISSTA’06, July 17–20, (2006), Portland,

Maine, USA [12.] G. Duggal, B. Suri ,”Understanding

Regression Testing Techniques”, COIT, (2008), India.

[12] Dr. Varun Kumar, Sujata, Mohit Kumar, “Requirment

based Test casse Prioritization using Genetic Algorithm”

,IJCST Vol. 1, Issue 1, December, 2010.

[13] Thillaikarasi Muthusamy1 and Dr. Seetharaman,

“EFFECTIVENESS OF TEST CASE PRIORITIZATION

TECHNIQUES BASED ON REGRESSION

TESTINGInternational Journal of Software Engineering &

Applications (IJSEA), Vol.5, No.6, November 2014.

[14] G.N. Purohit, Sujata, “A Schema Support for Selection of

Test Case Prioritization Techniques,” International Journal

of Software Engineering & Applications (IJSEA), Vol.5,

No.6, November 2014.

[15] Ms. Sujata, and Nancy Dhamija,"Test Cases Prioritization

Using Model Based Test Dependencies: A

survey,"International Journal of Information &

Computation Technology.ISSN 0974-2239 Volume 4,

Number 10 (2014), pp. 1003-1010.

[16] PatrikBerander and

AnnelieseAndrews,"RequirementsPrioritization,“inengneeri

ng and managing software reqquirements,edited by A.

Aurum and C. Wohlin,springerVerlag.

[17] Neha Sharma, Sujata, Prof. G.N. Purohit Test Case

Prioritization Techniques HAn Empirical Study"”, 2014

IEEE.

[18] Sujata, Mohit Kumar, Dr. Varun Kumar ,“Requirements

based Test Case Prioritizationusing Genetic Algorithm,”

IJCST Vol. 1, Iss ue 2, December 2010.

[19] Jyoti1, Mrs. LekhaBhambhu, “An Efficient Genetic

Algorithm for Fault Based Regression Test Case

Prioritization,” International Journal of Advanced Research

in Computer and Communication Engineering Vol. 4, Issue

8, August 2015.

[20]]https://www.google.co.in/

