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Abstract

We study all-pay contests with a general finite type-space and show that the most
competitive winner-takes-all contest maximizes both total and maximum effort under
linear or concave costs, resolving a long-standing open question in contest design.
However, the effect of competition is nuanced, as we uncover an interior discouragement
effect : making prizes more unequal may reduce effort if relatively inefficient types
are sufficiently likely. An experiment provides qualitative support for these findings.
Our analysis develops a novel methodology based on characterizing equilibrium effort
through the probability of outperforming an arbitrary opponent, offering a broadly
applicable tool particularly useful in settings where mixed equilibria hinder analysis.
Moreover, it provides a unifying framework that reconciles contrasting results under
complete information and continuum type-space environments (for which we establish
an equilibrium convergence result).

1 Introduction

A central question in contest theory is how prize structures shape agents’ incentives to exert
effort, and in particular, which structures maximize effort. Under complete information,
optimal contests typically feature multiple prizes, allocated in minimally competitive ways
(Barut and Kovenock (1998); Fang, Noe, and Strack (2020)). By contrast, in incomplete
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information settings with a continuum of types, the most competitive winner-takes-all struc-
ture is frequently optimal (Moldovanu and Sela (2001); Zhang (2024)). Yet, what drives this
divergence remains unclear, and it is an open question which (if any) of these findings extend
to the intermediate and fundamental case of a finite type-space. This gap was also noted in
a survey article by Sisak (2009), who conjectured that multiple prizes might be optimal:

“The case of asymmetric individuals, where types are private information but
drawn from discrete, identical or maybe even different distributions, has not been
addressed so far. From the results ... on asymmetric types with full information,
one could conjecture that multiple prizes might be optimal even with linear costs.”

In this paper, we address this question by analyzing all-pay contests where ex-ante sym-
metric agents have private abilities drawn from a finite type-space. The finite type-space
framework embeds the complete information as a special case and can approximate any
continuum type-space. Thus, our analysis not only bridges a gap in the literature, but
provides a unifying approach offering insights into the contrasting results in these extreme
environments. Beyond its theoretical appeal, this framework is practically relevant, can ac-
commodate richer non-parametric type-spaces, and enables experimental investigation.

We begin by characterizing the unique symmetric equilibrium of the Bayesian game,
showing that it is mixed and monotonic: different types randomize over disjoint but contigu-
ous intervals, with more efficient types always outperforming less efficient ones. To overcome
the complexity of analyzing this mixed equilibrium, we introduce a novel representation in
terms of the (ex-ante) probability of outperforming an arbitrary opponent, which is always
uniformly distributed. Using these ideas, we examine how increasing competition affects ef-
fort under linear costs and identify conditions under which they persist under general costs.

Our results show that the winner-takes-all contest maximizes total effort under linear or
concave costs. This resolves Sisak (2009)’s conjecture in the negative and, together with
Moldovanu and Sela (2001), establishes winner-takes-all as being robustly optimal whenever
there is any uncertainty. More broadly, our analysis actually suggests that this optimality
persists as long as the cost function is not too convex, and we conjecture that the degree of
convexity required to overturn the result shrinks as the environment converges to complete
information—where, in contrast, the minimally competitive contest that allocates the bud-
get equally among all but the worst-performing agent is strictly optimal.

Although the most competitive contest is optimal under linear costs, we uncover an in-
terior discouragement effect : shifting value from lower to higher ranked (but not the top)
prizes can reduce effort when relatively inefficient types are sufficiently likely. Intuitively, be-
cause equilibrium is monotonic, such transformations reduce the expected prize for inefficient
types while raising it for efficient ones. After accounting for the resulting changes in equi-
librium utilities (or information rents, which are always zero for the least efficient type), the
residual effect on effort is typically negative for inefficient types, so aggregate effort declines
when these types are prevalent. As a consequence, for design problems where the top prize is
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capped, the remaining budget may be best split equally across all but the lowest-ranked prize.

For general costs, we show that, provided the utility of the most efficient type does not
increase, the effect on effort under linear cost extends: non-negative effects carry over to
equilibrium under concave costs, and non-positive effects to that under convex costs. This
generalizes the complete information analysis of Fang, Noe, and Strack (2020), where in-
creasing competition leaves both equilibrium utilities and expected effort unchanged under
linear costs. While our formal result focuses on expected effort, analogous arguments apply
to other objectives, and in particular, we show that the winner-takes-all contest is more
generally optimal for maximizing total effort of top q agents under linear or concave costs.

Our finite type-space framework enables direct experimental testing of the model’s pre-
dictions. Since implementing a continuum of types is infeasible, prior experiments have relied
on large but finite type-spaces, assuming equilibrium properties extend from the continuum
setting (Müller and Schotter (2010)). While our convergence result justifies this assumption,
our experiment employs a simple binary type-space with linear costs where the inefficient
type is relatively likely. We vary the prize structure by gradually increasing competitiveness
across four contests, including winner-takes-all. The results reveal an over-provision of effort,
particularly by the inefficient type, but aggregate patterns broadly align with our compara-
tive statics: winner-takes-all remains optimal, and the interior discouragement effect receives
partial support. Specifically, although efforts do not decline as theory predicts, we observe
no significant increase in effort when competition intensifies in the interior.

Contest theory related literature. The existing game-theoretic literature in contests
has predominantly focused on the design problem in environments where the type-space is
either a continuum, or a singleton (the complete information case), and the results highlight
how the structure of the optimal contest can vary significantly depending on the environ-
ment. For the continuum type-space, the most competitive winner-takes-all contest has been
shown to be optimal under linear or concave costs (Moldovanu and Sela (2001)), in some
cases under convex costs (Zhang (2024)), with negative prizes (Liu, Lu, Wang, and Zhang
(2018)), and with general architectures (Moldovanu and Sela (2006); Liu and Lu (2014)).
In comparison, in the complete information environments, the minimally competitive bud-
get distribution (all agents but one receive an equal positive prize) has been shown to be
a feature of the optimal contest quite generally (Barut and Kovenock (1998); Letina, Liu,
and Netzer (2023, 2020); Xiao (2018)). In a general framework with many agents, Olszewski
and Siegel (2016, 2020) show that awarding multiple prizes of descending sizes is optimal
under convex costs. Other related work has examined the effect of competition in complete
information setting (Fang, Noe, and Strack (2020)), and continuum type-space setting (Goel

3



(2025); Krishna, Lychagin, Olszewski, Siegel, and Tergiman (2025)).1

There is a related literature on contests with a finite type-space, much of which assumes
binary type-spaces or a small number of agents and focuses on characterizing equilibrium
properties under correlated or asymmetric types. Siegel (2014) establishes the existence of
a unique equilibrium under general distributional assumptions. With correlated types, Liu
and Chen (2016) show that the symmetric equilibrium may be non-monotonic when the de-
gree of absolute correlation is high, Rentschler and Turocy (2016) highlight the possibility of
allocative inefficiency in equilibrium, while Tang, Fu, and Wu (2023) and Kuang, Zhao, and
Zheng (2024) explore the impact of reservation prices and information disclosure policies, re-
spectively. With asymmetric type distributions, Szech (2011) shows that agents may benefit
from revealing partial information about their private types, while Chen (2021) characterizes
equilibrium outcomes for varying levels of signal informativeness.2

Experimental investigations of contests related literature. There is a long tra-
dition of studying contests through incentivized laboratory experiments (see Dechenaux,
Kovenock, and Sheremeta (2015) for a survey). Perhaps the most closely related work is
Müller and Schotter (2010), who provide evidence broadly consistent with the predictions of
Moldovanu and Sela (2001): winner-takes-all is optimal under linear costs, whereas splitting
prizes is favored under convex costs. Two other studies, Barut, Kovenock, and Noussair
(2002) and Noussair and Silver (2006), examine all-pay auctions with private valuations, a
setting strategically equivalent to all-pay contests with private costs. All three experiments
employ large finite type-spaces to approximate continuum-type equilibria, an assumption
that our convergence result formally justifies. Like us, these studies observe substantial over-
bidding relative to theoretical benchmarks. A key difference, however, is that low-valuation
(or less efficient) agents in their settings tend to underbid, whereas in our experiment, inef-
ficient types significantly overbid, driving much of the aggregate over-provision of effort.3

The paper proceeds as follows. In Section 2, we present the model. In Section 3, we
characterize the symmetric Bayes-Nash equilibrium. In Section 4, we study the effect of
increasing competition on effort under different contest environments. In Section 5, we
present the experimental design and results. Section 6 concludes.

1In early work, Glazer and Hassin (1988) highlight the distinction between the two environments by solving
the problem in some special cases. Other related studies include Schweinzer and Segev (2012); Drugov and
Ryvkin (2020) who examine the budget allocation problem under different contest success functions. For
general surveys of the literature in contest theory, see Corchón (2007); Sisak (2009); Konrad (2009); Vojnović
(2015); Fu and Wu (2019); Chowdhury, Esteve-González, and Mukherjee (2023); Beviá and Corchón (2024).

2Other related work has studied imperfectly discriminating contests (Ewerhart and Quartieri (2020)),
contests with altruistic or envious types (Konrad (2004)), and common value all-pay auctions with private
asymmetric information (Einy, Goswami, Haimanko, Orzach, and Sela (2017)). There is also some work in
mechanism design and auction design with finite type-spaces (Maskin and Riley (1985); Jeong and Pycia
(2023); Vohra (2012); Lovejoy (2006); Doni and Menicucci (2013); Elkind (2007)).

3In other related work, Brookins and Ryvkin (2014) compares behavior under complete and incomplete
information in Tullock contests.
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2 Model

Contest environment

There is a set of N +1 risk-neutral agents. Each agent has a privately known type, which is
their effort cost function. We assume that there are K possible types, each of which is such
that agents incur zero cost from zero effort, higher cost from higher effort, and arbitrarily
large costs from arbitrarily large effort. Formally, each agent’s type is drawn from a finite
type-space

C = {ck ∈ F : k ∈ [K]},

where the set F is defined as

F = {c : R+ → R+ | c(0) = 0, c′(x) > 0 for all x > 0, and lim
x→∞

c(x) = ∞}.

We further assume that the K possible types can be ordered by efficiency, and without
loss of generality, let types associated with higher indices be more efficient than those with
lower indices. Formally, the type-space C is an ordered type-space, defined as follows:

Definition 1 (Ordered type-space). A type-space C = {ck ∈ F : k ∈ [K]} is an ordered
type-space if, for all x > 0,

c′1(x) > · · · > c′K(x).

A particularly relevant subclass of ordered type-spaces, commonly studied in the liter-
ature on contests (with a continuum of types), consists of type-spaces where the types are
simply scaled versions of a single base function.

Definition 2 (Parametric type-space). A type-space C = {ck ∈ F : k ∈ [K]} is a parametric
type-space if there exists a (base) cost function c ∈ F and parameters θ1, . . . , θK ∈ R+, with
θ1 > · · · > θK , such that for each k ∈ [K],

ck(x) = θkc(x) for all x ∈ R+.

Each agent’s type is drawn independently from the type-space C according to distribution
p = (p1, . . . , pK), where pk > 0 for all k and

∑K
k=1 pk = 1. For each k, we let Pk =

∑k
j=1 pj.

We refer to the tuple (N + 1, C, p) as the contest environment and assume it is common
knowledge.4

Contest

A contest v = (v0, . . . , vN) assigns a prize value to each rank, with v0 ≤ · · · ≤ vN and
v0 < vN . Given a contest v and their private types, all N + 1 agents simultaneously choose

4Under a parametric type-space, where ck(x) = θkc(x), the contest environment is strategically equivalent
to an all-pay auction environment in which agents have private (marginal) valuations for prizes, given by 1

θk
,

and face a common bidding cost function c(x).
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their effort. The agents are ranked according to their efforts, with ties broken uniformly at
random, and awarded the corresponding prizes. Specifically, the agent who exerts the highest
effort (outperforming all other N agents) is awarded the prize vN , and more generally, the
agent who outperforms exactly m ∈ {0, . . . , N} out of the N other agents is awarded the
prize vm. If an agent of type ck ∈ C wins prize vm after exerting effort xk ≥ 0, their payoff
is equal to the value of the prize minus the cost of exerting the effort:

vm − ck(xk).

Given a contest environment (N + 1, C, p), a contest v defines a Bayesian game between
the N+1 agents. Since the game induced by v is strategically equivalent to the game induced
by the contest w where wm = vm − v0 for all m ∈ {0, . . . , N}, we assume without loss of
generality that v0 = 0. Formally, we will restrict our attention to contests in the set

V = {v ∈ RN+1 : v0 ≤ v1 ≤ · · · ≤ vN where 0 = v0 < vN}.

Equilibrium

For any contest environment (N +1, C, p) and contest v ∈ V , we will focus on the symmetric
Bayes-Nash equilibrium of the induced Bayesian game. This is a strategy profile where
all agents use the same (potentially mixed) strategy, mapping types to a distribution over
non-negative effort levels, such that if an agent has type ck, choosing any effort level in the
support of the distribution for ck yields an expected payoff at least as high as any other
effort level, given that all other agents use the same strategy. We denote this symmetric
Bayes-Nash equilibrium by (X1, X2, . . . , XK), where Xk ∼ Fk represents the random level of
effort exerted by an agent of type ck. We further denote by X ∼ F the ex-ante random level
of effort exerted in equilibrium by an arbitrary agent, so that for any x ∈ R,

F (x) =
K∑
k=1

pkFk(x),

and the expected effort of an arbitrary agent is

E[X] =
K∑
k=1

pkE[Xk].

Competition

We are interested in examining how increasing competitiveness of a contest influences the
expected equilibrium effort. As is standard in the literature (Fang, Noe, and Strack (2020);
Goel (2025)), we define a contest as being more competitive than another if the prizes are
more unequal, measured using the Lorenz order.
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Definition 3. A contest v ∈ V is more competitive than w ∈ V if v is more unequal than w
in the Lorenz order, i.e.,

m∑
i=0

vi ≤
m∑
i=0

wi for all m ∈ {0, 1, . . . , N},

with equality for m = N .

Observe that, given a fixed budget V ∈ R+, the contest that awards the entire budget
to only the best-performing agent, v = (0, 0, . . . , 0, V ), is more competitive than any other
contest w ∈ V that distributes the entire budget. At the other extreme, the contest that
distributes the budget equally among all but the worst-performing agent, v = (0, V

N
, . . . , V

N
),

is less competitive than any other contest w ∈ V that distributes the entire budget.

Importantly, if v ∈ V is more competitive than w ∈ V , v can be obtained from w through
a sequence of transfers from lower-ranked prizes to higher-ranked prizes. Given a contest
environment (N + 1, C, p) and contest v ∈ V , the marginal effect of such a transfer from a
lower-ranked prize m′ to a higher-ranked prize m (m > m′) on expected equilibrium effort
is captured by

∂E[X]

∂vm
− ∂E[X]

∂vm′
.

Our objective is to understand how this effect depends on the specific pair of prizes, the
underlying contest, and the contest environment, with the aim of identifying conditions
under which increasing the competitiveness of a contest systematically leads to more—or
less—effort from the agents. We will further explore implications of these findings for the
classical design problem of allocating a fixed budget across different prizes to maximize
expected equilibrium effort.

Notation

We now introduce some notation used throughout the rest of the paper. We let

HN
m (t) =

(
N

m

)
tm(1− t)N−m

denote the probability that a binomial random variable Y ∼ Bin(N, t) takes the value m.
We also let

HN
≤m(t) =

m∑
i=0

HN
i (t) and HN

≥m(t) =
N∑

i=m

HN
i (t),

denote the probabilities that Y takes a value at most m and at least m, respectively.

Given a contest v ∈ V , if an agent outperforms each of the N other agents independently
with probability t ∈ [0, 1], notice that HN

m (t) represents the probability that the agent
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outperforms exactly m out of these N agents, in which case they are awarded the prize vm.
We define

πv(t) =
N∑

m=0

vmH
N
m (t),

as the expected value of the prize an agent is awarded under contest v ∈ V if it outperforms
each of the N other agents independently with probability t ∈ [0, 1].

3 Equilibrium

In this section, we characterize the symmetric Bayes-Nash equilibrium of the Bayesian game.
Before presenting the complete characterization, we establish a robust structural property:
different agent types mix over contiguous intervals, with more efficient types choosing higher
effort than less efficient ones.

Lemma 1. Consider any contest environment (N+1, C, p) where C is an ordered type-space.
For any contest v ∈ V, any symmetric Bayes-Nash equilibrium (X1, . . . , XK) must be such
that there exist boundary points b0 < b1 < · · · < bK, with b0 = 0, so that for each k ∈ [K],
Xk is continuously distributed on [bk−1, bk].

Proof sketch. We show that a symmetric equilibrium must satisfy the following:

1. The equilibrium must be in mixed strategies, and cannot have any atoms. This is
because if an agent of type ck chose xk with positive probability, there is a positive
probability that all agents are tied at xk, and an agent of type ck would obtain a strictly
higher payoff by choosing xk+ϵ than that from choosing xk for ϵ > 0 and small enough.

2. The support of the effort distribution across types should be essentially disjoint, with
at most one effort level in the intersection of support of any two different types. This
is because going from one effort level to another, the change in expected prize is the
same irrespective of type, but the change in cost depends on the type. It follows that
two different agent-types cannot both be indifferent between two different effort levels.

3. The supports of the different types must be connected, i.e, there shouldn’t be any gaps.
This is because if there is any gap (d1, d2) in the support, an agent-type that has d2
in the support would obtain a strictly higher payoff by choosing d1. In doing so, the
expected prize awarded to the agent remains the same, while the effort cost is lower.

4. Finally, the effort must be monotonic in types. This is because if the distribution of
type ck contains x and y in its support with x < y, then the indifference condition
of type ck, together with the ordered structure of C, implies that for any less efficient
type cj with j < k, choosing x would lead to a strictly higher payoff than choosing y.

Together, these properties imply the result. The full proof is in the appendix.
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In words, for any environment (N + 1, C, p) and contest v ∈ V , the equilibrium takes the
following form: agents of the least-efficient type c1 mix over the interval [0, b1], agents of type
c2 mix over [b1, b2], and so forth, up to agents of the most-efficient type cK , who mix over
[bK−1, bK ]. Consequently, more efficient agents always exert greater effort than less efficient
agents, and mixing arises solely because agents may compete against others of the same type.

Now for the complete characterization, it remains to determine the exact distributions,
which we derive using the indifference condition. Specifically, if an agent of type ck ∈ C mixes
on the interval [bk−1, bk], they must be indifferent across all effort levels in [bk−1, bk]. This
indifference condition uniquely pins down the equilibrium effort distribution Fk on [bk−1, bk]
for each k ∈ [K]. The following result fully characterizes the unique symmetric Bayes-Nash
equilibrium of the Bayesian game.5

Theorem 1. Consider any contest environment (N + 1, C, p) where C is an ordered type-
space. For any contest v ∈ V, the symmetric Bayes-Nash equilibrium (X1, . . . , XK) is such
that for each k ∈ [K], the distribution Fk : [bk−1, bk] → [0, 1] is defined by

πv(Pk−1 + pkFk(xk))− ck(xk) = uk for all xk ∈ [bk−1, bk], (1)

where the boundary points b = (b0, . . . , bK), with b0 = 0, and the equilibrium utilities u =
(u1, . . . , uK), with u1 = 0, satisfy

πv(Pk)− ck(bk) = uk for all k ∈ [K], (2)

and
πv(Pk−1)− ck(bk−1) = uk for all k ∈ [K]. (3)

Proof. Suppose (X1, X2, . . . , XK) is a symmetric Bayes-Nash equilibrium. From Lemma 1,
there exist boundary points b0 < b1 < b2 < · · · < bK , with b0 = 0, so that Xk is continuously
distributed on [bk−1, bk]. It follows that an agent of type ck must be indifferent between all
effort levels in this interval. Suppose (F1, F2, . . . , FK) is an equilibrium distribution. Notice
that if an agent of type ck ∈ C chooses xk ∈ [bk−1, bk], it outperforms any arbitrary agent
with probability Pk−1 + pkFk(xk), and thus, the expected value of the prize that this agent
is awarded is πv(Pk−1 + pkFk(xk)). Moreover, the cost of choosing xk is ck(xk). Thus, by
the indifference condition, the equilibrium distribution function Fk must satisfy Equation (1).

5The equilibrium under our finite-type space framework exhibits both the mixed structure characteristic
of complete information environments (Barut and Kovenock (1998)) and the monotonic structure observed
in environments with a continuum of types (Moldovanu and Sela (2001)). The complete information en-
vironment is clearly a special case of our model. We also establish an equilibrium convergence result for
the continuum type-space environment (Theorem 4 in Appendix C), which implies that the (pure-strategy)
equilibrium in any continuum type-space can be well-approximated by the equilibrium of a sufficiently large
and appropriately chosen finite type-space. Intuitively, as the finite type-space becomes large, the interval
over which an agent of a certain type mixes shrinks, and essentially converges to the effort level prescribed
by the pure-strategy equilibrium under the continuum type-space.
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It remains to solve for the boundary points and equilibrium utilities. Plugging in xk = bk
in Equation (1) leads to Equation (2), and plugging in xk = bk−1 in Equation (1) leads to
Equation (3). Starting from b0 = 0, Equation (3) gives u1 = 0, and then, Equation (2)
gives b1 = c−1

1 (πv(P1)). In general, once we have bk−1, Equation (3) gives uk, and then,
Equation (2) gives bk. Proceeding iteratively in this way, we can recover all the equilibrium
boundary points and utilities from Equations (2) and (3). Together, these three equations
fully characterize the unique symmetric Bayes-Nash equilibrium of the Bayesian game.

We now provide our reinterpretation of the equilibrium in Theorem 1, which allows us
to circumvent the analytical challenges associated with directly analyzing the equilibrium
distributions Fk. Specifically, we embed the equilibrium in an alternative space–by associ-
ating with each probability t ∈ [0, 1] of outperforming an arbitrary agent the corresponding
equilibrium effort level. For instance, the probability t = 0 corresponds to zero effort, t = 1
corresponds to maximum effort bK , and t = Pk corresponds to effort bk. In general, from
Equation (1), the equilibrium effort associated with probability t ∈ (Pk−1, Pk) is

c−1
k (πv(t)− uk) .

This interpretation–assigning to each probability t ∈ [0, 1] of outperforming an arbitrary
agent the corresponding equilibrium effort–provides a unified framework for analyzing sym-
metric equilibrium across environments, and is central to our subsequent analysis.

To begin, the interpretation allows us to obtain a tractable representation for the expected
equilibrium effort. Since the probability t of outperforming an arbitrary agent is ex-ante
uniformly distributed on [0, 1], we immediately obtain the following representation.6

Lemma 2. Consider any contest environment (N+1, C, p) where C is an ordered type-space.
For any contest v ∈ V, the expected equilibrium effort of an arbitrary agent is

E[X] =

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
dt,

where gk = c−1
k and k(t) = max{k : Pk−1 ≤ t}.

More generally, even for other quantities of interest—such as maximum effort and min-
imum effort—we can capture the randomness in the effort space by translating it into the
t-space, and use the above interpretation to obtain tractable representations. For instance,
we can show that the expected maximum effort takes the form

E[Xmax] = (N + 1)

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
tNdt,

while the expected minimum effort is

E[Xmin] = (N + 1)

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
(1− t)Ndt.

6Formally, the probability t can be interpreted as F (X), where X ∼ F represents the equilibrium effort
of an arbitrary agent. By the probability integral transform, F (X) is uniformly distributed on [0, 1].
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4 Effect of competition on expected effort

In this section, we examine how increasing competitiveness of a contest influences the ex-
pected equilibrium effort, and also solve the designer’s problem of allocating a fixed budget
across prizes so as to maximize expected equilibrium effort. The same approach extends to
other objectives, and we briefly discuss the more general case of maximizing the total effort
contributed by the top q agents at the end of the section.

From Lemma 2, it follows that for any environment (N + 1, C, p) and contest v ∈ V , the
marginal effect of increasing prize m ∈ [N ] on expected effort is

∂E[X]

∂vm
=

∫ 1

0

g′k(t)
(
πv(t)− uk(t)

) [
HN

m (t)−
∂uk(t)

∂vm

]
dt.

And thus, for any pair of prizesm,m′ ∈ [N ] withm > m′, the marginal effect of increasing
competition by transferring value from worse-ranked prize m′ to better-ranked prize m is

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′k(t)
(
πv(t)− uk(t)

) [
HN

m (t)−HN
m′(t)−

[
∂uk(t)

∂vm
−

∂uk(t)

∂vm′

]]
dt. (4)

To interpret Equation (4), consider again an agent who outperforms an arbitrary agent
with probability t. Transferring value from m′ to m results in a marginal increase in this
agent’s expected prize of HN

m (t)−HN
m′(t). By subtracting the subsequent marginal increase

in utility
[
∂uk(t)

∂vm
− ∂uk(t)

∂vm′

]
, we isolate the marginal increase in effort costs, which is then

translated into the marginal effect on effort. Finally, taking a uniform expectation over
t ∈ [0, 1] gives the overall impact of the transformation on expected effort. Equation (4)
provides a general and useful framework in which to think about the effect of competition
on effort. We will now use this framework to analyze the effect of competition under some
important contest environments.

4.1 Complete information

We begin with the complete information environment, captured by a type-space containing
only a single type. This complete information case was the focus of Fang, Noe, and Strack
(2020), who showed that increasing competition encourages effort when the cost function is
concave, and discourages effort when it is convex. We now recover this result in our frame-
work, introducing and illustrating some key ideas that will be useful later.

Consider a complete information environment with type-space C = {c1} where c1 ∈ F .
From Theorem 1, we know that for any contest v ∈ V , the equilibrium utility u1 = 0.
Consequently, the effect of increasing competition, as captured by Equation (4), simplifies
to

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′1 (πv(t))
[
HN

m (t)−HN
m′(t)

]
dt.
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Observe that
[
HN

m (t)−HN
m′(t)

]
, which captures the marginal effect on effort costs, is

negative for small t-values and positive for large t-values. Moreover, the aggregate effect on
effort cost is ∫ 1

0

[
HN

m (t)−HN
m′(t)

]
dt = 0.

Thus, increasing competition essentially shifts equilibrium effort costs from low t-values to
high t-values. Now for the effect on effort, the term g′1(πv(t)) can be interpreted as assigning
different weights to the effect on effort costs across different t-values. If these weights are
monotonic in t (which they are when c1 is concave or convex), we can recover the effect on
effort from the effect on effort costs. We formalize this idea in the following lemma.

Lemma 3. Suppose a2 : [0, 1] → R is such that there exists t∗ ∈ [0, 1] so that a2(t) ≤ 0 for
t ≤ t∗ and a2(t) ≥ 0 for t ≥ t∗. Then, for any increasing function a1 : [0, 1] → R,∫ 1

0

a1(t)a2(t)dt ≥ a1(t
∗)

∫ 1

0

a2(t)dt.

From here, a straightforward application of Lemma 3 with a2(t) =
[
HN

m (t)−HN
m′(t)

]
leads to the following result about the effect of increasing competition on expected effort in
complete information environments (Fang, Noe, and Strack (2020)).

Theorem 2. Consider any contest environment (N + 1, C, p) where C = {c1} and c1 ∈ F .
For any pair m,m′ ∈ [N ] with m > m′, the following hold:

1. If c1 is concave, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ 0.

2. If c1 is convex, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≤ 0.

Thus, in a complete information environment, the effect of increasing competition on ex-
pected effort is determined solely by the structure of the cost function. It encourages effort
if the cost is concave, and discourages effort if the cost is convex. If the cost is linear, so
that it is both concave and convex, increasing competition has no effect on expected effort
(Barut and Kovenock (1998)).

For the design problem of allocating a budget, the solution follows directly from Theorem
2, and we note it in the following corollary.

Corollary 1. Consider any contest environment (N + 1, C, p) where C = {c1} and c1 ∈ F .
Suppose any contest v ∈ V such that

∑N
m=0 vm ≤ V is feasible.

1. If c1 is strictly concave, the contest v = (0, 0, . . . , 0, V ) uniquely maximizes E[X].

2. If c1 is linear, any contest v ∈ V such that
∑N

m=1 vm = V maximizes E[X].

3. If c1 is strictly convex, the contest v =
(
0, V

N
, . . . , V

N

)
uniquely maximizes E[X].
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4.2 Incomplete information: Linear cost

We now turn to the incomplete information environment. Compared to the complete infor-
mation case, the analysis here is more nuanced, as increasing competition not only effects
the equilibrium effort, but also the equilibrium utilities of the different agent-types. More-
over, these effects on utilities may depend in an intricate way on the specific structure of the
type-space C. To begin, we focus on the special case where all cost functions are linear.

Consider a contest environment (N + 1, C, p) where C is such that ck(x) = θk · x, with
θ1 > · · · > θK > 0. It turns out that in this case, we can explicitly solve for the expected
equilibrium effort. From Lemma 2, we can express the expected effort under contest v ∈ V
as

E[X] =
K∑
k=1

pk ·
1

θk
·

[∫ Pk

Pk−1

πv(t)

pk
dt− uk

]
,

In this representation, observe that

∫ Pk

Pk−1

πv(t)

pk
dt is simply the expected prize awarded to an

agent of type ck ∈ C, and is linear in vm for m ∈ [N ]. Further, using Equations (2) and (3),
we can solve for the equilibrium utilities and show that:

uk = θk

[
k−1∑
j=1

πv(Pj)

(
1

θj+1

− 1

θj

)]
for k ∈ [K], (5)

which is also linear in vm for m ∈ [N ]. Substituting these expressions, we derive the following
representation for the expected effort.

Lemma 4. Consider any contest environment (N+1, C, p) where C is such that ck(x) = θk ·x,
with θ1 > · · · > θK > 0. For any contest v ∈ V, the expected equilibrium effort is

E[X] =
N∑

m=1

αmvm,

where

αm =
1

N + 1

[
1

θK
−

K−1∑
k=1

[
HN+1

≥m (Pk) + (N −m)HN+1
m (Pk)

]( 1

θk+1

− 1

θk

)]
. (6)

Thus, in the incomplete information environment with linear types, the expected equi-
librium effort is linear in the values of the different prizes, with coefficients that depend on
the specifics of the environment. It follows then that the effect of increasing competition in
this environment, as captured by Equation (4), simplifies to

∂E[X]

∂vm
− ∂E[X]

∂vm′
= αm − αm′ ,
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which can now be explicitly evaluated using Equation (6).

In particular, we first note that increasing competition by transferring value to the best-
ranked prize always encourages effort. To see why, notice from Equation (6) that for any
prize m′ ∈ {1, . . . , N − 1},

αN − αm′ =
1

N + 1

[
K−1∑
k=1

[
HN+1

≥m′ (Pk)−HN+1
≥N (Pk) + (N −m′)HN+1

m′ (Pk)
]( 1

θk+1

− 1

θk

)]
.

With m′ < N and K ≥ 2, it is straightforward to verify that αN − αm′ > 0. It follows that
for any contest v ∈ V , transferring value from any lower-ranked prize m′ to the top-prize N
leads to an increase in expected effort.

Consequently, for the design problem, allocating the entire budget to the best-performing
agent is strictly optimal.

Corollary 2. Consider any contest environment (N + 1, C, p) where C is such that ck(x) =
θk ·x, with θ1 > · · · > θK > 0 and K ≥ 2. Among all contests v ∈ V such that

∑N
m=0 vm ≤ V ,

the contest v = (0, 0, . . . , 0, V ) uniquely maximizes E[X].

This result resolves the conjecture of Sisak (2009), who, based on results in complete
information settings, suggested that allocating the budget across multiple prizes might be
optimal in environments with finitely many types. Instead, we show that the winner-takes-all
contest is strictly optimal under arbitrary finite type-space environments, thereby extending
the result of Moldovanu and Sela (2001) for the continuum case. Thus, as soon as there is
even a small amount of uncertainty (i.e., incomplete information), the (most competitive)
winner-takes-all contest is robustly optimal under linear costs.

Interestingly, however, effort is not necessarily monotonic in the level of competition.
Specifically, while transferring value to the best-ranked prize always encourages effort, in-
creasing competition by transferring value to better-ranked intermediate prizes may not. To
see this, consider a contest environment with just two types. In this case, with K = 2, we
can show that for any m ∈ {1, . . . , N − 1}, the marginal effect of transferring value from
prize m to prize m+ 1 on expected effort is

αm+1 − αm ≥ 0 ⇐⇒ P1 ≤
m+ 1

N
.

It follows that the effect of the transformation depends on the relative likelihood of efficient
and inefficient types. In particular, if the inefficient type is relatively rare (P1 < 2

N
), in-

creasing competition by transferring value to better-ranked prizes always encourages effort.
However, if the inefficient type is highly likely (P1 > N−1

N
), increasing competition actually

generally discourages effort, except when transferring value to the best-ranked prize. Intu-
itively, increasing competition encourages effort from the efficient types, while discouraging
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effort from the inefficient types. Thus, if the population is more likely to be efficient, the
overall effect is positive, but if it is more likely to be inefficient, increasing competition by
transferring value across intermediate prizes may actually discourage effort, which we refer
to as the interior discouragement effect.

4.3 Incomplete information: General cost

In this subsection, we continue our analysis of the incomplete information environment, al-
lowing for more general cost functions. Unlike the linear case, where expected effort depends
linearly on the value of prizes, the relationship between expected effort and prize values un-
der general costs can be significantly more complex. For tractability, we focus on parametric
type-spaces. Our approach builds on the ideas and techniques developed in the complete
information setting, and we identify conditions under which the effect of increased competi-
tion on equilibrium effort can be inferred from its impact under linear costs.

Consider a contest environment (N +1, C, p) where C is a parametric type-space, defined
by parameters θ1 > · · · > θK and a (base) cost function c ∈ F , so that ck(x) = θk·c(x). In this

case, if we let g = c−1, notice that we can express gk(y) = g
(

y
θk

)
, so that g′k(y) =

1
θk
g′
(

y
θk

)
.

Thus, for any contest v ∈ V , the effect of increasing competition on expected effort, as
captured by Equation (4), can be expressed as

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′
(
πv(t)− uk(t)

θk(t)

)[
HN

m (t)−HN
m′(t)

θk(t)
− 1

θk(t)

[
∂uk(t)

∂vm
−

∂uk(t)

∂vm′

]]
dt

=

∫ 1

0

g′
(
πv(t)− uk(t)

θk(t)

)
[λm(t)− λm′(t)] dt, (7)

where

λm(t) =

(
HN

m (t)

θk(t)
− 1

θk(t)

∂uk(t)

∂vm

)
.

To analyze this, we first discuss how increasing competition affects the equilibrium utilities
of the different agent types. Notice that we can reinterpret the Bayesian game as one where
agents directly choose their effort cost, c(x), instead of choosing effort x. Consequently,
the properties of equilibrium effort x under linear costs, derived in Subsection 4.2, actually
more generally describe properties of equilibrium effort cost c(x) under cost function c.7 In
particular, it follows that the equilibrium utilities are exactly as those described in Equation
(5), so that the marginal effect of increasing competition on utility of type ck(·) = θk · c(·) is

∂uk

∂vm
− ∂uk

∂vm′
= θk

[
k−1∑
j=1

HN
m (Pj)−HN

m′(Pj)

(
1

θj+1

− 1

θj

)]
.

7Formally, for any contest v ∈ V, if X ∼ F when c(x) = x, then c(X) ∼ F . In particular, from Lemma
4, we have that E[c(X)] = αmvm, where αm is as described in Equation (6). Moreover, the winner-takes-all
contest v = (0, . . . , 0, V ) uniquely maximizes E[c(X)] among all contests feasible with a budget V .
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Notice that this effect of competition on equilibrium utilities is independent of the cost func-
tion c, and also the contest v.

We now return to analyzing the effect of competition on equilibrium effort, as described
in Equation (7). It follows from above that the cost function c only influences the first term

of the integrand, g′
(

πv(t)−uk(t)

θk(t)

)
, which we will interpret as simply assigning weights across

different t-values (as in our analysis of the complete information case). The second term,
λm(t)−λm′(t), captures the marginal effect of the transformation on (base) effort costs across
different t-values. From our analysis of the linear cost case (c(x) = x), we know that∫ 1

0

[λm(t)− λm′(t)] dt = αm − αm′ ,

which we can now interpret more generally as the marginal effect of increasing competition
on expected equilibrium (base) effort cost, and compute using Equation (6).

If the function λm(t) − λm′(t) further exhibits the single-crossing property (as it does
under the complete information case), this effect on effort cost may be informative about
the effect on effort itself. It is straightforward to verify that λm(t) − λm′(t) is continuous
in t, and is almost everywhere differentiable with a derivative that has the same sign as
the derivative of HN

m (t) −HN
m′(t). It follows that, starting from zero at t = 0, the function

initially decreases, then increases, and eventually decreases again (unless m = N). As a
result, the condition λm(1) − λm′(1) ≥ 0 ensures that λm(t) − λm′(t) is single-crossing in t.
In words, while increasing competition reduces the effort cost associated with low t-values,
this condition ensures that it increases effort costs associated with all higher t-values. The
condition is clearly satisfied, for instance, when an increase in competition does not increase
the equilibrium utility of the most efficient type.

Our main result extends Theorem 2 (Fang, Noe, and Strack (2020)) to the incomplete
information setting by showing that, under the above condition (which is always satisfied
in the complete information case), the effect of increasing competition on equilibrium effort
under general cost functions can be inferred from its effect on effort costs (or, equivalently,
from its effect on effort under linear costs).

Theorem 3. Consider any contest environment (N + 1, C, p) where C is a parametric type-
space, defined by parameters θ1 > · · · > θK and (base) function c ∈ F , so that ck(x) =
θk · c(x). Let m,m′ ∈ [N ] with m > m′ be such that, either m = N or(

∂uK

∂vm
− ∂uK

∂vm′

)
≤ 0 ⇐⇒

K−1∑
k=1

(
HN

m (Pk)−HN
m′(Pk)

)( 1

θk+1

− 1

θk

)
≤ 0.

Then, the following hold:

1. If αm − αm′ ≥ 0 and c is concave, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ 0.
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2. If αm − αm′ ≤ 0 and c is convex, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≤ 0.

In words, if increasing competition does not lead to an increase in the equilibrium utility
of the most-efficient type, or if it involves transferring value to the best-ranked prize, then
its effect on effort may be inferred from its effect on effort costs. In such cases, the effect
on effort costs (or effort under linear costs) extends to the effect on effort under concave
costs if it is positive, and to the effect on effort under convex costs if it is negative. Despite
being somewhat limited in its scope, Theorem 3 provides a convenient method to check if
increasing competitiveness of a contest would encourage or discourage effort under fairly
general environments.

In particular, it allows us to solve the design problem of allocating a budget across prizes
for the case of concave costs. To see how, fix any contest environment (N + 1, C, p) where C
is a parametric type-space with a concave cost c ∈ F . For any contest v ∈ V , consider the
effect of transferring value from an arbitrary prize m′ ∈ {1, . . . , N − 1} to the best-ranked
prize m = N . From Theorem 3, if αN−αm′ ≥ 0, the transformation will have an encouraging
effect on expected equilibrium effort. But we know from our analysis of the linear costs in
Subsection 4.2 that αN − αm′ ≥ 0. It follows that for any concave cost c ∈ F and contest
v ∈ V , transferring value to the best-ranked prize encourages expected equilibrium effort.
As a result, it is optimal to allocate the entire budget to the top-ranked prize.

Corollary 3. Consider any contest environment (N +1, C, p) where C is a parametric type-
space, defined by parameters θ1 > · · · > θK and (base) function c ∈ F , so that ck(x) =
θk · c(x). If c is (weakly) concave, among all contests v ∈ V such that

∑N
m=0 vm ≤ V , the

contest v = (0, 0, . . . , 0, V ) maximizes E[X].

This result extends the optimality of the winner-takes-all contest under concave costs, pre-
viously established for a continuum type-space environment by Moldovanu and Sela (2001),
to the finite type-space setting. Together with Corollaries 1 and 2, it follows that the
winner-takes-all contest is robustly optimal for maximizing expected effort under concave
costs, irrespective of whether the environment is a complete or incomplete information en-
vironment.

While Theorem 3 focuses on expected effort, it can be readily generalized with impli-
cations for other quantities of interest. The key insight is that the concavity or convexity
of the cost function c in Theorem 3 ensures only that the weighting term in Equation (7),

g′
(

πv(t)−uk(t)

θk(t)

)
, is monotonic in t. As such, we may replace this term with any monotonic

weighting function and derive analogous results.

To illustrate, consider the expected total effort of the top q agents, another commonly
studied objective in contest design (Archak and Sundararajan (2009); Wasser and Zhang
(2023)). When q = 1, so that the designer is concerned only with expected maximum effort,
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it follows from the representation derived earlier that the effect of transferring value from
prize m′ to m on E[Xmax] is

∂E[Xmax]

∂vm
− ∂E[Xmax]

∂vm′
= (N + 1)

∫ 1

0

g′
(
πv(t)− uk(t)

θk(t)

)
[λm(t)− λm′(t)] tNdt,

which mirrors the structure of Equation (7), albeit with a different density function. By the
same reasoning as in the proof of Theorem 3, we obtain an analogous result for expected
maximum effort, with the original condition on c replaced by the requirement that the new

weighting function g′
(

πv(t)−uk(t)

θk(t)

)
tN is monotonic. In particular, when c is concave, this

weighting function is strictly increasing. More generally, under concavity, the weighting
function corresponding to the total effort of the top q agents is also increasing in t, since
the associated density is monotone in t. Applying the logic of Corollary 3, we conclude that
the winner-takes-all contest is optimal not only for maximizing expected effort, but also for
maximizing the total effort of the top q agents.

Corollary 4. Consider any contest environment (N +1, C, p) where C is a parametric type-
space, defined by parameters θ1 > · · · > θK and (base) function c ∈ F , so that ck(x) =
θk · c(x). If c is (weakly) concave, among all contests v ∈ V such that

∑N
m=0 vm ≤ V ,

the contest v = (0, 0, . . . , 0, V ) maximizes expected total effort of the top q agents for any
q ∈ {1, . . . , N + 1}.

5 Experiment

In this section, we present findings from an incentivized experiment designed to test the equi-
librium predictions of our model regarding the effect of competition on effort. Our primary
objective is to test the optimality of the (most competitive) winner-takes-all contest under
linear costs, originally established by Moldovanu and Sela (2001) in a continuum type-space
setting. Our result for the finite type-space model establishes its robustness under incom-
plete information and enables experimental investigation. We test this by comparing effort
levels in a winner-takes-all structure with those in less competitive alternatives.

Our second goal is to test for the interior discouragement effect of competition, which our
model predicts emerges when inefficient types are sufficiently likely. To test this, we consider
an environment where this condition holds and gradually increase the competitiveness of the
prize structure within an interior range, where the model predicts a decrease in expected
equilibrium effort. Below, we present the experimental design, implementation details, and
our findings.

5.1 Experimental Design

In our experiment, subjects competed in groups of four for monetary prizes. Effort levels
were chosen independently and privately, without any possibility of communication. There
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were two possible types (marginal costs of effort): 1 and 2, assigned with probabilities 20%
and 80%, respectively.8 We implemented the strategy method so that for each contest, sub-
jects submitted two effort choices (between 0 and 100), one for each possible type. At the
end of the experiment, each subject was independently assigned a type according to the type
distribution, and the corresponding decisions were used to determine payoffs.

The experimental treatments varied the contest v = (v0, v1, v2, v3), which awards prizes
based on effort rankings: v3 for the highest effort, v2 for the second highest, v1 for the third
highest, and v0 = 0 for the lowest. The most competitive treatment, WTA, is a winner-takes-
all structure with (0, 0, 0, 100). We consider three other treatments with the same total prize
but progressively less competitive: High with v = (0, 0, 25, 75), Med with v = (0, 0, 50, 50),
and Low with v = (0, 25, 25, 50). Table 1 summarizes the treatments and their equilibrium
effort predictions.

The contest order was randomized across subjects. The group composition in each con-
test was also randomized and the subjects were unable to identify with each other between
contests. Feedback on contest outcomes was withheld until the end of the experiment, how-
ever on-screen information informed subjects of their potential earnings for each possible
prize they could win (i.e. prize minus effort costs) to ensure proper comprehension of the
payoffs. Subjects were paid for one randomly selected contest, with tokens converted to U.S.
dollars at a rate of 50:1, plus a $2 show up fee. The protocols for subject group matching,
feedback, and payment were chosen to minimize reputation-building or repeated-play con-
cerns, thereby inducing the one-shot nature of the game under study.

Treatment (0, v1, v2, v3)
Equilibrium Effort (E[X]) Observed Effort

ck(x) = x ck(x) = 2x Pooled ck(x) = x ck(x) = 2x Pooled

WTA (0, 0, 0, 100) 48.2 6.4 14.76 52.8 40.5 42.96

High (0, 0, 25, 75) 37.0 8 13.80 46.9 37.4 39.3

Med (0, 0, 50, 50) 25.8 9.6 12.84 43.3 36.5 37.86

Low (0, 25, 25, 50) 24.6 10.2 13.08 42.9 35.9 37.3

Table 1: Equilibrium and Observed Efforts, by Treatment and Cost Type

We recruited 700 subjects from Prolific, an online labor market, during April 2025. We
administered a comprehension quiz to ensure that subjects understood the instructions, the
structure of the contests, and how the earnings were determined. Subjects who failed to pass
the quiz after a second attempt were not allowed to continue, resulting in a final sample of
445 subjects. The experimental interface and instructions are provided in Appendix E.

8In terms of our notation, the contest environment (N + 1, C, p) is defined by N + 1 = 4, the type-space
C = {c1(x) = 2x, c2(x) = x}, and type distribution p = (0.8, 0.2).
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5.2 Experimental Results

Table 1 summarize our findings on mean effort. The mean effort is highest under the WTA.
Also, efforts are higher for the efficient type (ck(x) = x) and lower for the inefficient type
(ck(x) = 2x), as expected. Regression analysis, reported in column 1 of Table 4 in Appendix
D, confirms the statistical significance of these findings.

To directly test whether behavior aligns with the theory, we use Lemma 4, which repre-
sents the expected equilibrium effort as a linear combination of the contest prizes. For the
environment considered in the experiment, we have that for any contest v ∈ V ,

E[X] = 0.119 · v1 + 0.109 · v2 + 0.148 · v3 .

In this representation, observe that the largest coefficient is on the highest-ranked prize (v3),
which implies that transferring value from any lower-ranked prize to the highest-ranked prize
increases expected effort, thus resulting in the optimality of the WTA prize structure. The
interior discouragement effect is reflected in the fact that the coefficient v2 is smaller than
that of v1, so that increasing competition by transferring value from lower-ranked prize v1
to higher-ranked prize v2 decreases expected equilibrium effort.

We can also decompose the expected effort by cost type and obtain that

E[X | ck(x) = x] = −0.014 · v1 + 0.034 · v2 + 0.482 · v3

and
E[X | ck(x) = 2x] = 0.152 · v1 + 0.128 · v2 + 0.064 · v3 .

Observe that the highest-ranked prize (v3) has the largest coefficient for the efficient type
and the smallest for the inefficient type. This suggests that the overall optimality of the
WTA structure is primarily driven by the strong incentive it creates for the efficient type.
For the interior prizes, transferring value from v1 to v2 encourages effort from the efficient
type, but discourages effort from the inefficient type. The overall interior discouragement
effect arises because the inefficient type is significantly more likely.

Table 2 presents results from a linear regression of effort choices on the three prizes.9 We
find that, in contrast to theoretical predictions, the highest-ranked prize carries the largest
coefficient not only for the efficient type, but also for the inefficient type. Moreover, both
the intermediate prizes appear to be overweighted in observed effort choices relative to theo-
retical expectations, for both types. Even so, in the aggregate, the highest-ranked prize has
the largest coefficient for mean effort, and therefore, the transfer of value from any lower-
ranked prize to the highest-ranked prize is empirically correlated with an increase in effort.
This finding speaks to the global optimality of winner-take-all contest, in line with the theory.

9Since the expected equilibrium effort is zero when all prizes are zero, we estimate the regression without
a constant to align directly with the theoretical specification.
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For the interior discouragement effect, we find that the difference in the estimated coef-
ficients is negligible (0.006), and statistically insignificant (the Wald test for the coefficients
being equal yields a p-value of 0.850). Although we do not find a significant negative effect
of transferring value from the v1 to v2, we also do not find a positive effect. We interpret this
result as partially in line with equilibrium behavior, as it provides evidence that increasing
the competitiveness of the prize structure need not lead to higher effort.

Prize
Equilibrium Weight Estimated Coefficient

ck(x) = x ck(x) = 2x Pooled ck(x) = x ck(x) = 2x Pooled

First place prize (v3) 0.482 0.064 0.148 0.524 0.401 0.426

Second place prize (v2) 0.034 0.128 0.109 0.335 0.321 0.324

Third place prize (v1) -0.014 0.152 0.119 0.334 0.314 0.318

Table 2: Linear Decomposition of the Expected Effort: Equilibrium and Regression Results
Note: Lemma 4 establishes that the equilibrium effort can be expressed as a linear function of the contest
prize vector. The columns labeled “Equilibrium Weight” report the theoretical coefficients for each prize
under the two cost types and in the aggregate. The columns labeled “Estimated Coefficient” present the
corresponding regression estimates. Full regression results are provided in Table 3.

5.3 Discussion of Experimental Results

In the preceding subsection, we focused on testing the theoretical predictions. While we find
qualitative support for the main comparative statics of the model, our results also reveal
evidence of rent dissipation in the form of excessive effort, especially from the inefficient
type. This phenomenon of over-provision of effort has been previously identified in contest
experiments.

We briefly discuss the non-strategic determinants of behavior by examining how individ-
ual characteristics correlate with effort choices, as is common in the analysis of experimental
data. For this purpose, we elicited self-reported measures of risk attitudes (willingness to
take risks on a 0–10 Likert scale) and competitiveness (willingness to compete on a 0–10
Likert scale) at the end of the experiment to proxy for the intrinsic joy of winning that
subjects may derive beyond the pecuniary earnings. We also control for gender. Note that
these factors have been shown to influence behavior in prior studies on contests (Dechenaux,
Kovenock, and Sheremeta (2015)). Regression results, reported in column 2 of Table 4 in
Appendix D, show that subjects who declare a higher willingness to take risks (coefficient
1.528, p < 0.01) and claim to be more competitive (coefficient 1.063, p < 0.05) choose
significantly higher efforts. We find no significant gender differences in effort choices.
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6 Conclusion

We analyze all-pay contests with finite type-spaces and show that the most-competitive
winner-takes-all contest maximizes total effort of top q agents under linear or concave costs,
thereby resolving a long-standing open question. At the same time, we uncover an interior
discouragement effect: when inefficient types are sufficiently likely, gradually increasing com-
petition by reallocating value to higher-ranked prizes may fail to raise effort. We complement
the theory with an experiment which reveals significant over-provision of effort, especially
among inefficient types, but aggregate patterns broadly align with the model’s comparative
statics, including the optimality of winner-takes-all and the interior discouragement effect.
Our analysis rests on a novel methodology that represents equilibrium effort in terms of the
probability of outperforming an arbitrary opponent, enabling tractable analysis of otherwise
complex mixed-strategy equilibria.

Our findings open several promising avenues for future research. First, the question of
optimal contest design under convex costs remains unresolved. While we do not present
formal results, our analysis suggests that winner-takes-all remains optimal as long as costs
are not too convex, with the threshold of convexity shrinking as information approaches
completeness. Second, exploring non-parametric type-spaces, particularly unordered envi-
ronments, may yield new insights into contest design. Third, allowing for more general
mechanisms beyond rank-order allocation is an important direction, as emphasized in recent
work by Letina, Liu, and Netzer (2023) and Zhang (2024). More broadly, the techniques
we develop apply to a wider class of contest and auction environments and may prove espe-
cially valuable in settings where mixed-strategy equilibria have previously impeded tractable
analysis. Finally, finite type-spaces offer a natural framework for experimental work: with
explicit equilibrium characterization and convergence results, our analysis provides a strong
foundation for testing the many theoretical predictions in the growing literature on contests
under incomplete information.
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A Proofs for Section 3 (Equilibrium)

Lemma 1. Consider any contest environment (N+1, C, p) where C is an ordered type-space.
For any contest v ∈ V, any symmetric Bayes-Nash equilibrium (X1, . . . , XK) must be such
that there exist boundary points b0 < b1 < · · · < bK, with b0 = 0, so that for each k ∈ [K],
Xk is continuously distributed on [bk−1, bk].

Proof. Suppose (X1, X2, . . . , XK) is a symmetric Bayes-Nash equilibrium, and let X ∼ F
denote the ex-ante effort of an arbitrary agent. Let uk denote the payoff of agent of type
ck ∈ C under this symmetric strategy profile.

1. Mixed strategies: We first show that Xk cannot have any atoms. Suppose instead
that Pr[Xk = xk] > 0. We will argue that an agent of type ck obtains a strictly higher
payoff from choosing xk+ ϵ as compared to xk for ϵ > 0 and small enough. Notice that
under the given profile, there is a positive probability that all N +1 agents are tied at
effort level xk, in which case the ties are broken uniformly at random. Thus, choosing
xk + ϵ results in a discontinuous jump in the expected value of the prize awarded to
the agent (since v0 < vN), even though the additional cost ck(xk + ϵ)− ck(xk) can be
made arbitrarily small with ϵ small enough. It follows that for agent of type ck ∈ C,
the payoff from choosing xk + ϵ is strictly higher than that from choosing xk, which is
a contradiction. Thus, Xk must be a continuous random variable. Consequently, we
assume, without loss of generality, that the support of Xk is closed.

2. Disjoint support (essentially) across types: We now show that for any j ̸= k,
the support of Xj and Xk have at most one point of intersection. Suppose instead that
both x, y are in the support of both Xj and Xk and x ̸= y. Since an agent of type ck
must be indifferent between all actions in the support of Xk, it must be that

uk = πv(F (x))− ck(x) = πv(F (y))− ck(y),

and similarly for agent of type cj, it must be that

uj = πv(F (x))− cj(x) = πv(F (y))− cj(y).

But this implies that

πv(F (x))− πv(F (y)) = ck(x)− ck(y) = cj(x)− cj(y),

which contradicts the fact that C is ordered.

3. No gaps in support: We now show that there cannot be any gaps in the support of
X, and that it must take the form [0, bK ]. Suppose instead that there is an interval
(d1, d2) which is not in the support of X. Then, an agent with a type that has d2 in its
support obtains a strictly higher payoff from choosing d1, as this agent is still awarded
the same expected prize, but the cost incurred by this agent is lower. It follows that
the support of X must be convex. An analogous argument leads to the property that
the lower bound of the support must be 0.
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4. Monotonicity across types: Lastly, we show that there exist boundary points b1 <
b2 < · · · < bK such that the support of Xk is [bk−1, bk]. Suppose that x, y with x < y is
in the support of Xk. We will show that for an agent of type cj where j < k, choosing
x leads to a strictly higher payoff than choosing y. Observe that

uk = πv(F (x))− ck(x) = πv(F (y))− ck(y).

Now the payoff of agent of type cj from choosing y is

πv(F (y))− cj(y) = uk + ck(y)− cj(y),

and that from choosing x will be

πv(F (x))− cj(x) = uk + ck(x)− cj(x).

Since C is ordered,

cj(y)− cj(x) > ck(y)− ck(x) =⇒ ck(x)− cj(x) > ck(y)− cj(y).

It follows that the agent of type cj obtains a strictly higher payoff from choosing x as
compared to y.

Together, the properties imply that the equilibrium exhibits the structure in the Lemma.

Lemma 2. Consider any contest environment (N+1, C, p) where C is an ordered type-space.
For any contest v ∈ V, the expected equilibrium effort of an arbitrary agent is

E[X] =

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
dt,

where gk = c−1
k and k(t) = max{k : Pk−1 ≤ t}.

Proof. We first find the expected effort exerted in equilibrium by an agent of type ck. From
Theorem 1, we have that the (random) level of effort Xk satisfies

πv(Pk−1 + pkFk(Xk))− ck(Xk) = uk.

Rearranging and taking expectations on both sides, we obtain

E[Xk] = E [gk (πv(Pk−1 + pkFk(Xk))− uk)] (Since gk = c−1
k )

=

∫ bk

bk−1

gk (πv(Pk−1 + pkFk(xk))− uk) fk(xk)dxk

=

∫ 1

0

gk (πv(Pk−1 + pkt)− uk) dt (Substituting Fk(xk) = t).
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Then,

E[X] =
K∑
k=1

pkE[Xk]

=
K∑
k=1

pk

∫ 1

0

gk (πv(Pk−1 + pkt)− uk) dt

=
K∑
k=1

∫ Pk

Pk−1

gk (πv(p)− uk) dp (Substituting Pk−1 + pkt = p)

=

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
dt (where k(t) = max{k : Pk−1 ≤ t})

as required.

B Proofs for Section 4 (Effect of competition on ex-

pected effort)

Lemma 3. Suppose a2 : [0, 1] → R is such that there exists t∗ ∈ [0, 1] so that a2(t) ≤ 0 for
t ≤ t∗ and a2(t) ≥ 0 for t ≥ t∗. Then, for any increasing function a1 : [0, 1] → R,∫ 1

0

a1(t)a2(t)dt ≥ a1(t
∗)

∫ 1

0

a2(t)dt.

Proof. Observe that∫ 1

0

a1(t)a2(t)dt =

∫ t∗

0

a1(t)a2(t)dt+

∫ 1

t∗
a1(t)a2(t)dt

≥
∫ t∗

0

a1(t
∗)a2(t)dt+

∫ 1

t∗
a1(t

∗)a2(t)dt

= a1(t
∗)

∫ 1

0

a2(t)dt.

Theorem 2. Consider any contest environment (N + 1, C, p) where C = {c1} and c1 ∈ F .
For any pair m,m′ ∈ [N ] with m > m′, the following hold:

1. If c1 is concave, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ 0.

2. If c1 is convex, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≤ 0.
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Proof. From Theorem 1, we know that u1 = 0, and thus, from Equation (4), we have that

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′1 (πv(t))
[
HN

m (t)−HN
m′(t)

]
dt.

If c1 is concave, g1 = c−1
1 is convex, and thus, g′1(πv(t)) is increasing in t. Applying

Lemma 3 with a1(t) = g′1 (πv(t)) and a2(t) =
[
HN

m (t)−HN
m′(t)

]
gives the result.

If c1 is convex, g1 = c−1
1 is concave, and thus, g′1(πv(t)) is decreasing in t. Applying

Lemma 3 with a1(t) = −g′1 (πv(t)) and a2(t) =
[
HN

m (t)−HN
m′(t)

]
gives the result.

Lemma 4. Consider any contest environment (N+1, C, p) where C is such that ck(x) = θk ·x,
with θ1 > · · · > θK > 0. For any contest v ∈ V, the expected equilibrium effort is

E[X] =
N∑

m=1

αmvm,

where

αm =
1

N + 1

[
1

θK
−

K−1∑
k=1

[
HN+1

≥m (Pk) + (N −m)HN+1
m (Pk)

]( 1

θk+1

− 1

θk

)]
. (6)

Proof. Using the representation in Lemma 2, we have that for any contest v ∈ V ,

E[X] =

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
dt

=

∫ 1

0

(
πv(t)− uk(t)

)
θk(t)

dt

(
gk(y) =

y

θk

)
=

K∑
k=1

pk ·
1

θk
·

[∫ Pk

Pk−1

πv(t)

pk
dt− uk

]
.

1. Notice that for any k ∈ [K],

∫ Pk

Pk−1

πv(t)

pk
dt is the expected prize awarded to an agent of

type ck. To compute this, we instead compute the ex-ante expected total prize awarded
to agents of type ck. Notice that for any prize m ∈ {0, . . . , N}, the ex-ante probability
that this prize is awarded to an agent of type ck is simply[

HN+1
≥m+1(Pk)−HN+1

≥m+1(Pk−1)
]
.

Thus, the ex-ante expected total prize awarded to agents of type ck is

N∑
m=1

vm
[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
.
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By an alternative calculation, which entails adding up over the N + 1 agents, this
expectation should equal

(N + 1) · pk ·
∫ Pk

Pk−1

πv(t)

pk
dt.

Equating these two, we get that∫ Pk

Pk−1

πv(t)dt =

∑N
m=1 vm

[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
N + 1

.

Alternatively, we can also directly use the following fact to compute this integral:

∂HN+1
≥m+1(t)

∂t
= (N + 1)HN

m (t)

2. For the equilibrium utilities uk, we simply solve the Equations (2) and (3). For the
given type-space C with ck(x) = θk · x, these equations can be rewritten as

πv(Pk)− θkbk = uk and πv(Pk−1)− θkbk−1 = uk.

Solving this system of equations gives

bk =
k∑

j=1

πv(Pj)− πv(Pj−1)

θj
for k ∈ [K],

and

uk = θk

[
k−1∑
j=1

πv(Pj)

(
1

θj+1

− 1

θj

)]
for k ∈ [K].

Substituting these expressions in the above representation, we get that

E[X] =
K∑
k=1

1

(N + 1)θk

N∑
m=1

vm
[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
−

K∑
k=1

pkuk

θk
.

From here, it follows that we can write

E[X] =
N∑

m=1

αmvm

where

αm =
K∑
k=1

[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
(N + 1)θk

−
K∑
k=1

pk

k−1∑
j=1

HN
m (Pj)

(
1

θj+1

− 1

θj

)
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=
K∑
k=1

[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
(N + 1)θk

−
K−1∑
k=1

(1− Pk)H
N
m (Pk)

(
1

θk+1

− 1

θk

)

=
1

N + 1

[
1

θK
−

K−1∑
k=1

HN+1
≥m+1(Pk)

(
1

θk+1

− 1

θk

)]
− (N + 1−m)

N + 1

K−1∑
k=1

[
HN+1

m (Pk)

(
1

θk+1

− 1

θk

)]

=
1

N + 1

[
1

θK
−

K−1∑
k=1

[
HN+1

≥m (Pk) + (N −m)HN+1
m (Pk)

]( 1

θk+1

− 1

θk

)]
.

Theorem 3. Consider any contest environment (N + 1, C, p) where C is a parametric type-
space, defined by parameters θ1 > · · · > θK and (base) function c ∈ F , so that ck(x) =
θk · c(x). Let m,m′ ∈ [N ] with m > m′ be such that, either m = N or(

∂uK

∂vm
− ∂uK

∂vm′

)
≤ 0 ⇐⇒

K−1∑
k=1

(
HN

m (Pk)−HN
m′(Pk)

)( 1

θk+1

− 1

θk

)
≤ 0.

Then, the following hold:

1. If αm − αm′ ≥ 0 and c is concave, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ 0.

2. If αm − αm′ ≤ 0 and c is convex, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≤ 0.

Proof. For the given parametric type-space, we have from Equation (4) that for any contest
v ∈ V and any pair of prizes m,m′ ∈ [N ] with m > m′,

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′
(
πv(t)− uk(t)

θk(t)

)
(λm(t)− λm′(t)) dt,

where

λm(t) =

(
HN

m (t)

θk(t)
− 1

θk(t)

∂uk(t)

∂vm

)
.

Further, we know from Theorem 1 that the equilibrium boundary points b = (b1, . . . , bK)
and utilities u = (u1, . . . , uK) must satisfy Equations (2) and (3). Solving these equations,
we get that the equilibrium utilities are as described in Equation (5), and thus, we get that

∂uk

∂vm
= θk

[
k−1∑
j=1

HN
m (Pj)

(
1

θj+1

− 1

θj

)]
.

Plugging in, we get that

λm(t)− λm′(t) =

(
HN

m (t)−HN
m′(t)

θk(t)

)
−

k(t)−1∑
j=1

(
HN

m (Pj)−HN
m′(Pj)

)( 1

θj+1

− 1

θj

) .

From here, one can verify that
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1. λm(0)− λm′(0) = 0

2. λm(1)− λm′(1) =


1
θK

− 1
θK

(
∂uK

∂vm
− ∂uK

∂vm′

)
if m = N

− 1
θK

(
∂uK

∂vm
− ∂uK

∂vm′

)
otherwise

3. λm(t)− λm′(t) is continuous in t

4. λm(t)−λm′(t) is differentiable at t ∈ [0, 1] for t ̸= Pk, and at any such t, the derivative
has the same sign as the derivative of HN

m (t)−HN
m′(t) with respect to t.

Since m,m′ are such that either m = N or

(
∂uK

∂vm
− ∂uK

∂vm′

)
≤ 0, we get that λm(1) −

λm′(1) ≥ 0. Together with the above properties, this implies that there is some t∗ ∈ [0, 1]
such that λm(t)− λm′(t) ≤ 0 for t ∈ [0, t∗], and λm(t)− λm′(t) ≥ 0 for t ∈ [t∗, 1].

Now if c is concave, g = c−1 is convex, and thus, g′
(

πv(t)−uk(t)

θk(t)

)
is increasing in t. Applying

Lemma 3 with a1(t) = g′
(

πv(t)−uk(t)

θk(t)

)
and a2(t) = λm(t)− λm′(t) gives

∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ g′

(
πv(t

∗)− uk(t∗)

θk(t∗)

)∫ 1

0

(λm(t)− λm′(t))dt

= g′
(
πv(t

∗)− uk(t∗)

θk(t∗)

)
(αm − αm′)

and the result follows. An analogous argument applies for the case where c is convex.

C Convergence to continuum type-space equilibrium

In this section, we establish an equilibrium convergence result for the continuum type-space.
Specifically, we show that if a sequence of (parametric) finite type-space distributions con-
verges to a differentiable distribution over a continuum type-space, then the corresponding
sequence of mixed-strategy equilibria converges to the pure-strategy equilibrium in the con-
tinuum model. Intuitively, as the finite type-space becomes large, the interval over which
a given type mixes shrinks, and essentially converges to the effort level prescribed by the
pure-strategy equilibrium under the continuum type-space. Thus, the equilibrium in an ap-
propriate and sufficiently large finite-type space provides a reasonable approximation to the
equilibrium strategy under the continuum type-space, and vice versa.

We begin by recalling the symmetric equilibrium under a (parametric) continuum type-
space (Moldovanu and Sela (2001)). For this section, we focus on the linear cost case (c(x) =
x), which is without loss of generality due to the equivalence between convergence in effort
cost and in effort.
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Lemma 5. Suppose there are N+1 agents, each with a private type (marginal cost of effort)
drawn from Θ = [θ, θ] according to a differentiable CDF G : [θ, θ] → [0, 1]. For any contest
v ∈ V, there is a unique symmetric Bayes-Nash equilibrium and it is such that for any θ ∈ Θ,

X(θ) =

∫ θ

θ

π′
v(1−G(t))g(t)

t
dt.

Proof. Suppose N agents are playing a strategy X : [θ, θ] → R+ so that if an agent’s type is
θ, it exerts effort X(θ). Further suppose that X(θ) is decreasing in θ. Now we want to find
the remaining agent’s best response to this strategy of the other agents. If the agent’s type
is θ and it pretends to be an agent of type t ∈ [θ, θ], its payoff is

πv(1−G(t))− θX(t).

Taking the first order condition, we get

π′
v(1−G(t))(−g(t))− θX ′(t) = 0.

Now we can plug in t = θ to get the condition for X(θ) to be a symmetric Bayes-Nash
equilibrium. Doing so, we get

π′
v(1−G(θ))(−g(θ))− θX ′(θ) = 0

so that

X(θ) =

∫ θ

θ

π′
v(1−G(t))g(t)

t
dt.

We now state and prove the convergence result.

Theorem 4. Suppose there are N+1 agents and fix any contest v ∈ V. Let G : [θ, θ] → [0, 1]
be a differentiable CDF and let G1, G2, . . . , be any sequence of CDF’s, each with a finite
support, such that for all θ ∈ [θ, θ],

lim
n→∞

Gn(θ) = G(θ).

Let F n : R → [0, 1] denote CDF of the equilibrium effort under Gn, and let F : R → [0, 1]
denote CDF of the equilibrium effort under G. Then, the sequence of CDF’s F 1, F 2, . . . ,
converges to the CDF F , i.e., for all x ∈ R,

lim
n→∞

F n(x) = F (x).

Proof. For the finite support CDF Gn, let Θn = (θn1 , θ
n
2 , . . . , θ

n
K(n)) denote the support

and pn = (pn1 , p
n
2 , . . . , p

n
K(n)) denote the probability mass function. From Theorem 1, let
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bn = (bn1 , b
n
2 , . . . , b

n
K(n)) denote the boundary points, un = (un

1 , u
n
2 , . . . , u

n
K(n)) denote the equi-

librium utilities, and F n
k denote the equilibrium CDF of agent of type θnk on support [bnk−1, b

n
k ].

Then, the CDF of the equilibrium effort, F n : R → [0, 1], is such that for any x ∈ R,

F n(x) =


0 if x ≤ 0

P n
k−1 + pnkF

n
k (x) if x ∈ [bnk−1, b

n
k ]

1 if x ≥ bnK(n)

. (8)

For the continuum CDF G : [θ, θ] → [0, 1], the CDF of the equilibrium effort, F : R →
[0, 1], is such that for any x ∈ R,

F (x) =


0 if x ≤ 0

1−G(θ(x)) if x ∈ [0, B]

1 if x ≥ B

. (9)

where θ(x) is the inverse of X(θ) (from Lemma 5) and B = X(θ). The following Lemma
will be the key to showing that F n(x) converges to F (x) for all x ∈ R.

Lemma 6. Consider any θ ∈ (θ, θ) and for any n ∈ N, let k(n) ∈ {0, 1, 2, . . . , K(n)} be
such that θnk(n) > θ ≥ θnk(n)+1 (where θn0 = ∞ and θnK(n)+1 = 0). Then,

lim
n→∞

bnk(n) = X(θ) and lim
n→∞

F n(bnk(n)) = 1−G(θ).

Proof. From Lemma 5 and Theorem 1, we have

X(θ) =

∫ θ

θ

π′
v(1−G(t))g(t)

t
dt and bnk(n) =

k(n)∑
j=1

πv(P
n
j )− πv(P

n
j−1)

θnj
.

Observe that

bnk(n) =

πv(P
n
k(n))

θnk(n)
−

k(n)−1∑
j=1

πv(P
n
j )

[
1

θnj+1

− 1

θnj

]
=

∫ 1/θn
k(n)

0

[
πv(P

n
k(n))− πv(1−Gn(1/x))

]
dx

n→∞−−−→
∫ 1

θ

0

[πv(1−G(θ))− πv(1−G(1/x))] dx (dominated convergence)

= [x(πv(1−G(θ))− πv(1−G(1/x)))]
1
θ
0︸ ︷︷ ︸

this is 0

+

∫ 1
θ

0

π′
v(1−G(1/x))g(1/x)

x
dx

=

∫ ∞

θ

π′
v(1−G(t))g(t)

t
dt (substitute t = 1/x)

= X(θ)
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By definition, we have

lim
n→∞

F n(bnk(n)) = lim
n→∞

P n
k(n)

= lim
n→∞

[1−Gn(θ)]

= 1−G(θ)

Returning to the proof of Theorem 4, fix any x ∈ (0, B) and let θ ∈ (θ, θ) be such that
X(θ) = x. Then, we know that

F (x) = 1−G(θ).

We want to show that
lim
n→∞

F n(x) = 1−G(θ).

Take ϵ > 0. Find θ′ < θ and θ′′ > θ such that

0 < G(θ)−G(θ′) = G(θ′′)−G(θ) <
ϵ

4
.

Let x′ = X(θ′), x′′ = X(θ′′), so that x′ > x > x′′. Let δ = min{x′−x, x−x′′}. From Lemma
6, let N(ϵ) be such that for all n > N(ϵ),

max{|bnk(n) − x|, |bnk′(n) − x′|, |bnk′′(n) − x′′|} <
δ

2

and
max{|F n(bnk′(n))− (1−G(θ′))|, |F n(bnk′′(n))− (1−G(θ′′))|} <

ϵ

4
,

where k(n), k′(n), k′′(n) are sequences as defined in Lemma 6 for θ, θ′ and θ′′ respectively.
Then, for all n > N(ϵ),

F n(x) > F n(bnk′′(n))

> 1−G(θ′′)− ϵ

4

> 1−G(θ)− ϵ

2

and

F n(x) < F n(bnk′(n))

< 1−G(θ′) +
ϵ

4

< 1−G(θ) +
ϵ

2

so that |F n(x)− (1−G(θ))| < ϵ. Thus, limn→∞ F n(x) = 1−G(θ) = F (x) for all x ∈ R.

D Regression tables
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Table 3: OLS for Effort Choice as Function of Prizes

ck(x) = x ck(x) = 2x Pooled

First place prize (v3) 0.524*** 0.401*** 0.426***

(0.012) (0.010) (0.009)

Second place prize (v2) 0.335*** 0.321*** 0.324***

(0.015) (0.016) (0.015)

Third place prize (v1) 0.334*** 0.314*** 0.318***

(0.026) (0.030) (0.026)

N 1780 1780 1780

R2 0.806 0.734 0.786

Standard errors in parentheses clustered at the subject level.

Constant omitted from estimation. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table 4: OLS for Effort

Model 1 Model 2

Constant 43.866*** 26.087***

(1.004) (3.252)

Treatment Med 0.472 0.472

(0.664) (0.665)

Treatment High 2.715*** 2.715***

(0.687) (0.687)

Treatment WTA 7.203*** 7.203***

(0.735) (0.736)

Inefficient type (ck(x) = 2x) -8.900*** -8.900***

(0.939) (0.939)

Male (1 =yes) -2.285

(1.542)

Willingness to take Risks (0-10) 1.528***

(0.499)

Willingness to Compete (0-10) 1.063**

(0.503)

N 3560 3560

R2 0.051 0.106

Standard errors in parentheses clustered at the subject level.

Treatment Low is the omitted category. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Welcome to the experiment
This experiment is conducted by a research team at New York University Abu
Dhabi. Our objective is to investigate the bidding behavior of participants in
competitive situations under conditions of uncertainty regarding the
characteristics of their opponents.

Voluntary Participation
Your participation in this experiment is entirely voluntary. If you choose to
withdraw, you will forfeit any payment. Please review the information below
carefully before deciding whether to participate.

About Your Participation

1. In this experiment, you will take part in various contests, bidding against
other participants for monetary rewards. Your performance relative to
others will determine your earnings.

2. Your personal information will remain confidential. We may share
anonymized data from this study publicly, ensuring that no personal
identifiers are included.

3. The experiment is expected to last approximately 15 minutes.
4. You can expect to earn around 5 US dollars. This includes a participation

fee of 2 US dollars and a bonus component ranging from 0 to 6 US dollars,
depending on your bids and the bids of your opponents.

5. The bonus portion of your payment will be distributed via Prolific within one
week after the experiment concludes.

6. To be eligible for any payment, you must pass a comprehension quiz. If you
do not pass, you will not receive any payment.

7. There are no known risks associated with this experiment.

If you consent to participate, please click 'I agree' below.

I agree

I do not agree

→

Share PreviewRestart Survey
   

Tools
 

Place Bookmark 
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What is your Prolific ID?
Please note that this response should auto-fill with the correct ID.

→

Share PreviewRestart Survey
   

Tools
 

Place Bookmark 
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About the experiment

In this experiment, you and other participants will compete in a contest to win
monetary prizes by submitting costly bids.

Each participant's final payout will be:

Endowment - Bidding cost + Prize won.

The endowment, bidding costs, and prizes will be denominated in tokens. You
will be paid a bonus of 1 US dollar for every 50 tokens in your final payout.
So, if your final payout is 225 tokens, your bonus payment will be 4.5 US dollars.

We will now describe each of the three components that make up the final
payout.

1) Endowment
Each participant's endowment is 200 tokens.

2) Bidding cost
Each participant will be assigned a cost-per-bid. This will be either 1 token with
a 20% chance, or 2 tokens with an 80% chance.

Participants will not be informed about the cost-per-bid assigned to other
participants.

If a participant is assigned a cost-per-bid of 1 token and bids 45, the bidding
cost will be 45 tokens.

If a participant is assigned a cost-per-bid of 2 tokens and bids 45, the bidding
cost will be 90 tokens.

3) Prize won
Each participant’s prize won (in tokens) will be determined by their bid and the
bid(s) of their opponent(s) in the contest. The exact rules will be explained later.

Participants will now be required to pass a comprehension quiz to continue with
the experiment.

→



Comprehension Quiz: Attempt #1

There are four questions in this quiz.
You must answer all questions correctly to pass.
You have two attempts to pass the quiz.
If you pass, you will proceed with the experiment.
If you do not pass in two attempts, your participation will be discontinued and no
compensation will be provided.

Please answer the following questions carefully.

Suppose you are participating in the following contest:

No. of participants: 2 (including you)
1st prize: 100 tokens
2nd prize: 0 tokens

Rules: Participants will be ranked based on their bids and awarded the
corresponding prizes. Ties will be broken uniformly at random.

Reminder:

You pay a bidding cost equal to cost-per-bid × your bid tokens, regardless of
the prize you win.
Each participant's cost-per-bid will be either 1 token with a 20% chance, or
2 tokens with an 80% chance.

Suppose your cost-per-bid is 2 tokens.
What is the probability that your opponent has a cost-per-bid of 2 tokens?

Suppose your cost-per-bid is 2 tokens, and you submit a bid of 30.
What will be your bidding cost?

0%

20%

80%

100%

15 tokens

30 tokens

60 tokens
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Suppose your cost-per-bid is 2 tokens, and you bid 30. Further suppose your
opponent bids 45. Recall that the 1st prize is 100 tokens, and the 2nd prize is 0
tokens.
What will be your prize won?

Recall that your endowment is 200 tokens and that your final payout is:

endowment - bidding cost + prize won

What will be your final payout (in tokens) in the situation described above?

Please check your answers carefully.
You can also go back to read the instructions again.
If all your answers are correct, you will proceed further in the experiment.

None of the above

0 tokens

50 tokens

100 tokens

Depends on my opponent's cost-per-bid

70 tokens

140 tokens

240 tokens

270 tokens

← →
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Attempt #1: Pass

You have answered all questions correctly and passed the comprehension quiz.
Please click “Next” to proceed with the experiment.

→
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Four Contests

Participants will now be asked to submit bids for four different contests. In each
contest, you will be competing against 3 other opponents. The contests will differ
in the values of the prizes.

Participants will be required to submit bids for each of the four contests under
both possible cost-per-bid assignments: 1 token or 2 tokens.

After the experiment, each participant’s final payout will be determined as
follows:

1. One of the four contests will be randomly selected.
2. The participant's opponents for that contest will be randomly chosen.
3. The participant and their opponents will each be independently assigned a

cost-per-bid, which will be either 1 token with a 20% chance, or 2 tokens
with an 80% chance.

4. Given the selected contest (Step 1), the assigned opponents (Step 2), and
the cost-per-bid assignments (Step 3), we will use participants’ bids to
determine the final payout.

Participants will now see the details of the four contests and will be required to
submit their bids for each, under both possible cost-per-bid assignments.

→
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Contest #1

Here are the details of this contest:

No. of participants: 4 (including you)
1st prize: 50 tokens
2nd prize: 50 tokens
3rd prize: 0 tokens
4th prize: 0 tokens

Rules: Participants will be ranked in order of their bids and awarded the
corresponding prizes. Ties will be broken uniformly at random.

Reminder:

You pay your bidding cost, calculated as cost-per-bid × your bid, regardless
of the prize you receive.
Each participant's cost-per-bid will be 1 token with a 20% chance, or 2
tokens with an 80% chance.

Please choose your bid for this contest using the slider below.

0 10 20 30 40 50 60 70 80 90 100

Your bid (if your cost-per-bid=1 token)

Your bid (if your cost-per-bid=2 tokens)

→
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Bid Check

If contest #1 is selected and you are assigned a cost-per-bid of 1 tokens, your
final payout will be:

200 - 1 × 59 + Your prize
= 141 + Your prize

Your final payout will depend on your opponents' bids, as shown below:
Your rank Your prize Your final payout
1 50 tokens 191 tokens
2 50 tokens 191 tokens
3 0 tokens 141 tokens
4 0 tokens 141 tokens

If contest #1 is selected and you are assigned a cost-per-bid of 2 tokens, your
final payout will be:

200 - 2 × 35.5 + Your prize
= 129 + Your prize

Your final payout will depend on your opponents' bids, as shown below:
Your rank Your prize Your final payout
1 50 tokens 179 tokens
2 50 tokens 179 tokens
3 0 tokens 129 tokens
4 0 tokens 129 tokens

If you wish to revise your bids, please click the Previous button and choose
your bids again.
Otherwise, please click the Next button to continue.

← →
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Contest #2

Here are the details of this contest:

No. of participants: 4 (including you)
1st prize: 75 tokens
2nd prize: 25 tokens
3rd prize: 0 tokens
4th prize: 0 tokens

Rules: Participants will be ranked in order of their bids and awarded the
corresponding prizes. Ties will be broken uniformly at random.

Reminder:

You pay your bidding cost, calculated as cost-per-bid × your bid, regardless
of the prize you receive.
Each participant's cost-per-bid will be 1 token with a 20% chance, or 2
tokens with an 80% chance.

Please choose your bid for this contest using the slider below.

0 10 20 30 40 50 60 70 80 90 100

Your bid (if your cost-per-bid=1 token)

Your bid (if your cost-per-bid=2 tokens)

→
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Bid Check

If contest #2 is selected and you are assigned a cost-per-bid of 1 tokens, your
final payout will be:

200 - 1 × 50.8 + Your prize
= 149.2 + Your prize

Your final payout will depend on your opponents' bids, as shown below:
Your rank Your prize Your final payout
1 75 tokens 224.2 tokens
2 25 tokens 174.2 tokens
3 0 tokens 149.2 tokens
4 0 tokens 149.2 tokens

If contest #2 is selected and you are assigned a cost-per-bid of 2 tokens, your
final payout will be:

200 - 2 × 30.4 + Your prize
= 139.2 + Your prize

Your final payout will depend on your opponents' bids, as shown below:
Your rank Your prize Your final payout
1 75 tokens 214.2 tokens
2 25 tokens 164.2 tokens
3 0 tokens 139.2 tokens
4 0 tokens 139.2 tokens

If you wish to revise your bids, please click the Previous button and choose
your bids again.
Otherwise, please click the Next button to continue.

← →
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Contest #3

Here are the details of this contest:

No. of participants: 4 (including you)
1st prize: 50 tokens
2nd prize: 25 tokens
3rd prize: 25 tokens
4th prize: 0 tokens

Rules: Participants will be ranked in order of their bids and awarded the
corresponding prizes. Ties will be broken uniformly at random.

Reminder:

You pay your bidding cost, calculated as cost-per-bid × your bid, regardless
of the prize you receive.
Each participant's cost-per-bid will be 1 token with a 20% chance, or 2
tokens with an 80% chance.

Please choose your bid for this contest using the slider below.

0 10 20 30 40 50 60 70 80 90 100

Your bid (if your cost-per-bid=1 token)

Your bid (if your cost-per-bid=2 tokens)

→
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Bid Check

If contest #3 is selected and you are assigned a cost-per-bid of 1 tokens, your
final payout will be:

200 - 1 × 37.7 + Your prize
= 162.3 + Your prize

Your final payout will depend on your opponents' bids, as shown below:
Your rank Your prize Your final payout
1 50 tokens 212.3 tokens
2 25 tokens 187.3 tokens
3 25 tokens 187.3 tokens
4 0 tokens 162.3 tokens

If contest #3 is selected and you are assigned a cost-per-bid of 2 tokens, your
final payout will be:

200 - 2 × 25.7 + Your prize
= 148.6 + Your prize

Your final payout will depend on your opponents' bids, as shown below:
Your rank Your prize Your final payout
1 50 tokens 198.6 tokens
2 25 tokens 173.6 tokens
3 25 tokens 173.6 tokens
4 0 tokens 148.6 tokens

If you wish to revise your bids, please click the Previous button and choose
your bids again.
Otherwise, please click the Next button to continue.

← →
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Contest #4

Here are the details of this contest:

No. of participants: 4 (including you)
1st prize: 100 tokens
2nd prize: 0 tokens
3rd prize: 0 tokens
4th prize: 0 tokens

Rules: Participants will be ranked in order of their bids and awarded the
corresponding prizes. Ties will be broken uniformly at random.

Reminder:

You pay your bidding cost, calculated as cost-per-bid × your bid, regardless
of the prize you receive.
Each participant's cost-per-bid will be 1 token with a 20% chance, or 2
tokens with an 80% chance.

Please choose your bid for this contest using the slider below.

0 10 20 30 40 50 60 70 80 90 100

Your bid (if your cost-per-bid=1 token)

Your bid (if your cost-per-bid=2 tokens)

→
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Bid Check

If contest #4 is selected and you are assigned a cost-per-bid of 1 tokens, your
final payout will be:

200 - 1 × 51.7 + Your prize
= 148.3 + Your prize

Your final payout will depend on your opponents' bids, as shown below:
Your rank Your prize Your final payout
1 100 tokens 248.3 tokens
2 0 tokens 148.3 tokens
3 0 tokens 148.3 tokens
4 0 tokens 148.3 tokens

If contest #4 is selected and you are assigned a cost-per-bid of 2 tokens, your
final payout will be:

200 - 2 × 36.7 + Your prize
= 126.6 + Your prize

Your final payout will depend on your opponents' bids, as shown below:
Your rank Your prize Your final payout
1 100 tokens 226.6 tokens
2 0 tokens 126.6 tokens
3 0 tokens 126.6 tokens
4 0 tokens 126.6 tokens

If you wish to revise your bids, please click the Previous button and choose
your bids again.
Otherwise, please click the Next button to continue.

← →



Final Questions

You have completed the main experiment. In this final part, we will ask you
some additional questions. Your answers will not affect your payment.

What is your gender?

How do you see yourself? Are you generally someone who is fully prepared to
take risks, or do you try to avoid taking risks? Please tick a box on the scale
below, where 0 means "not at all willing to take risks" and 10 means "fully
prepared to take risks."

How do you see yourself? Are you generally a person who is competitive, or do
you try to avoid competitive environments? Please tick a box on the scale
below, where 0 means "not at all competitive" and 10 means "extremely
competitive."

A pillow and a blanket cost $110 in total. The blanket costs $100 more than the
pillow. How much does the pillow cost?

Male

Female

Other

Do not wish to disclose

Not at all willing to take risks Fully prepared to take risks

0 1 2 3 4 5 6 7 8 9 10

Not at all competitve Extremely competitive

0 1 2 3 4 5 6 7 8 9 10

$5

$10

$100

$105
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If it takes 5 machines 5 minutes to make 5 pens, how long would it take 100
machines to make 100 pens?

In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it
takes 50 days for the patch to cover the entire lake, how long would it take for
the patch to cover half of the lake?

When choosing how much to bid in the different contests, can you explain your
reasoning process?

$

5 minutes

100 minutes

500 minutes

None of the above

1 day

25 days

45 days

49 days

→
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