
IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 155 | P a g e

Review on Functional and Non-functional requirement

using Machine Learning Approaches

Neha Dhiman, Er Mohan Singh

Deptt.Of Computer Science & amp; Engg. HPTU Hamirpur

E-mail- nehadhimanneha333555@gmail.com

Assistant Professor HPTU Hamirpur

E-mail- mcamohanchoudhary@gmail.com

Abstract- Agile software development is defined as rapid

development and delivery of the software in the requirement

changing environment which is well suited for present day

business scenario. So requirement analysis and classification

is important task for the agile method in this paper review on

different supervised and unsupervised learning on requirement

classification and reusability.

Keywords- Machine learning, Supervised learning, Clustering

I. INTRODUCTION

Agile software development is defined as rapid development

and delivery of the software in the requirement changing

environment which is well suited for present day business

scenario. Working software measures the progress. Basically,

Agile method involves interleaving the specification,

implementation, design and testing. Series of versions are

developed with the involvement of and evaluation by the stake
holders in each version. Agile methods aim at reducing the

software process overheads (like documentation) and

concentrate more on code rather than the design. Customer

involvement, incremental delivery, freedom of developers to

evolve new working methods, change management, and last

but not the least simplicity is the basic essence of Agile

development. Agile methodologies are well suited for small as

well as medium sized projects. However, uniform customer

involvement throughout the project, appointing appropriate

team to adapt to Agile methodology, ranking of changes to be

accommodated in software, maintaining simplicity, difficulty
in scaling Agile procedures to larger projects and deciding

upon the contract terms account for the major disadvantages

involved in the Agile development.

Fig 1: Agile development essence Agile Methods

Several agile methods have been developed till date like

Extreme Programming, Scrum, Dynamic Systems

Development Method, and Adaptive Software

Development, Feature-Driven Development, Crystal, Lean

Software Development, Kanban, Agile Modeling, Agile

Unified Process, etc.
Text Processing:

General text preprocessing is nothing but preparing the

available text for computer analysis. In involves steps that

prepare the text for computer understandable representation

and extracts the necessary useful matter from the text. There

are mainly three steps involved in text preprocessing, namely:

 Tokenization: This involves the process of converting a

stream of characters into tokens (generally word tokens).

Delimiters like spaces, punctuations etc. are used for

separating one word token from another.

 Stop-word Removal: In this step, words that carry
negligible or little meaning for the sentence like ‘is’, ‘of’,

‘and’, ‘the’, etc. are removed.

 Stemming: It is the process of reducing words in the word

stem to its root form like ‘writes’, ‘writing’, ‘wrote’,

‘written’ these all correspond to a single root “write” [37].

Clustering: As discussed by [38], Clustering is nothing

but partition of data into sets of similar items. Each of the sets

is called a cluster. Document clustering aims at increasing

cohesion in a single cluster and minimizing coupling between

two or more clusters i.e., trying to reduce the intra-cluster

distance and increase inter-cluster distance. Clustering is
considered to be a part of unsupervised learning. Three most

popular clustering methods are described below:

 K-Means: It is the simplest flat and hard clustering

algorithm. This algorithm’s objective function tries to

minimize average squared distance of items from the

cluster centers (which is mean of items in a cluster). This

method is best known for its simplicity and efficiency.

 Expectation Minimization: It is a flat model-based

clustering technique which assumes data to be generated

by a model and tends to recover that original model from

data. This original model further describes clusters and

cluster membership of data. It is considered to be

mailto:nehadhimanneha333555@gmail.com
mailto:mcamohanchoudhary@gmail.com

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 156 | P a g e

generalization of K-means technique. It has alternating

expectation step and maximization step.

 Hierarchical Clustering: As described by [39],

hierarchical technique creates a nested structure of

partitions with an all-inclusive single cluster at root and
singleton clusters of singular points at bottom. Every

intermediate level is built combining the two clusters

from lower level or splitting the top level cluster into two.

Two main approaches of hierarchical clustering are:

 Agglomerative: It is a bottom up approach. Points are

considered as individual clusters at the starting. At

each step, most similar clusters are merged according

the cluster similarity/distance definition. These are

known for their quality. Examples of agglomerative

techniques are Intra-cluster Similarity Technique

(IST), Centroid Similarity Technique (CST) and

Unweighted Pair Group Method with Arithmetic
Mean (UPGMA). F-measure for UPGMA is better

than the other two.

 Divisive: It is a top down approach. Process starts

with root cluster and is split until singleton clusters of

individual points are formed. At each step, decision

of which and how cluster should be split is made.

II. LITERATURE REVIEW

John Mylopoulos et al [1]: To propose a comprehensive

process oriented qualitative framework that integrates non-

functional requirements into the process of software
development. To illustrate the application of proposed

methodology by taking examples of accuracy requirements in

design phase and performance requirements in

implementation phase for information systems. Evidence for

the power of the framework is provided through the study of

accuracy and performance requirements for information

systems.

A. Eberlein and J. C. Leite [2]: Agile methods are an attractive

alternative for those pressured to produce code fast. Many

programmers like the hands-on strategy of these approaches

which also help them avoid some of the less exciting tasks,
such as specification. On the other hand, some people appear

to welcome agile methods as an excuse to throw overboard

everything that requirement engineering has been teaching.

This position paper looks at numerous aspects of requirements

engineering and argues about their suitability for agile

approaches. The aim is to elicit lessons from requirements

engineering that agile methods might consider, if quality is a

major concern.

F. Paetsch, A. Eberlein and F. Maurer [3]: This article

compares traditional requirements engineering approaches and

agile software development. Their paper analyzes

commonalities and differences of both approaches and
determines possible ways how agile software development

can benefit from requirements engineering methods.

N. S. Rosa et al[4]: Non-functional requirements (NFRs) are

rarely taken in account in most software development

processes. There are some reasons that can help us to

understand why these requirements are not explicitly dealt

with: their complexity, NFRs are usually stated only
informally, their high abstraction level and the rare support of

languages, methodologies and tools. In this paper, they

concentrate on defining how to reason and how to refine

NFRs during the software development. Their approach is

based on software architecture principles that guide the

definition of the proposed refinement rules. In order to

illustrate their approach, they adopt it to an appointment

system.

L. Chung and J. C. S. do Prado Leite [5]: Essentially a

software system’s utility is determined by both its

functionality and its non-functional characteristics, such as

usability, flexibility, performance, interoperability and
security. Nonetheless, there has been a lop-sided emphasis in

the functionality of the software, even though the functionality

is not useful or usable without the necessary non-functional

characteristics. In this chapter, they review the state of the art

on the treatment of non-functional requirements (hereafter,

NFRs), while providing some prospects for future directions.

S. Farhat et.al [6] This work recognizes four NFR sorts and

gives the philosophy for creating space particular NFR by

utilizing procedures for changing over the necessities into

outline ancient rarities per NFR sort. The commitment is four

NFR sorts: Functionally Restrictive, Additive Restrictive,
Policy Restrictive, and Architecture Restrictive and the

software engineering process that gives particular refinements

that outcome in one of a kind compositional and plan curios.

By applying the same utilitarian prerequisite center to the

distinctive NFR areas it upgrades the improvement process

and advances software quality characteristics, for example,

compensability, viability, resolvability, and traceability.

Taehoon Um et.al.[7]They proposed a lightweight quality

evaluation method for an lithe way to deal with reflect non-

functional aspects. Their approach bolsters early

distinguishing proof of non-functionality, and makes a

difference members reliably continue focusing on quality
qualities. Members get inputs for the following discharge by

the evaluation consequences of demonstrating unsatisfied

quality traits in each discharge. Besides, members can make

anticipates quality change. Be that as it may, members have

their claim criteria when they lead evaluation with

prototypes.Accordingly, the proposed evaluation method

could be subjective. Accordingly, it is expected to make a

quantitative evaluation show, utilizing estimation

measurements to enable members to have more trust in the

outcomes.

Weam M. Farid et.al.[8] This examination exhibits a
lightweight building of NFRs for agile processes. The

proposed Non-functional Requirements Modeling for Agile

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 157 | P a g e

Processes (NORMAP) Strategy recognizes, connections, and

models Agile Loose Cases (ALCs) with Agile Use Cases

(AUCs) and Agile Choose Cases (ACCs). A lightweight

adjusted adaptation of the NFR System was created including

25 critical NFRs. Further, a hazard driven agile requirements
usage arrangement and a visual tree-like view were created.

The procedure was approved through building up a Java-based

modeling reproduction apparatus and two contextual

investigations. W. M. Farid and F. J. Mitropoulos [10]: This

research proposes NORMATIC, a Java-based simulation tool

for modeling non-functional requirements for semi-automatic

agile processes. NORMATIC is the semi-automatic tool that

supports the more general Non-Functional Requirements

Modeling for Agile Processes (NORMAP) Methodology.

Early results show that the tool can potentially help agile

software development teams in reasoning about and visually

modeling NFRs as first-class artifacts early on during
requirements gathering and analysis phases. The tool can also

aid project managers and Scrum teams in user story estimate

and risk calculations as well as risk-driven planning and

visualization of the proposed plans.

Review Table

Author Name YEAR TECHNOLOGY USED DESCRIPTION

John

Mylopoulos et

al

1992 A process-oriented

approach

To propose a comprehensive process oriented qualitative framework that

integrates non-functional requirements into the process of software

development.To illustrate the application of proposed methodology by

taking examples of accuracy requirements in design phase and

performance requirements in implementation phase for information

systems. Evidence for the power of the framework is provided through

the study of accuracy and performance requirements for information

systems.

A. Eberlein and

J. C. Leite

2002 Agile method This position paper looks at numerous aspects of requirements

engineering and argues about their suitability for agile approaches. The

aim is to elicit lessons from requirements engineering that agile methods
might consider, if quality is a major concern. On the other hand, some

people appear to welcome agile methods as an excuse to throw overboard

everything that requirement engineering has been teaching. This position

paper looks at numerous aspects of requirements engineering and argues

about their suitability for agile approaches. The aim is to elicit lessons

from requirements engineering that agile methods might consider, if

quality is a major concern.

F. Paetsch, A.

Eberlein and F.

Maurer

2003 Agile software This article compares traditional requirements engineering approaches

and agile software development. Their paper analyzes commonalities and

differences of both approaches and determines possible ways how agile

software development can benefit from requirements engineering

methods.

N. S. Rosa et al 2004 Non-functional

requirements

In this paper, they concentrate on defining how to reason and how to

refine NFRs during the software development. Our approach is based on

software architecture principles that guide the definition of the proposed

refinement rules. In order to illustrate their approach, they adopt it to an

appointment system.

L. Chung and J.

C. S. do Prado

Leite

2009 Non-functional

requirements

Essentially a software system’s utility is determined by both its

functionality and its non-functional characteristics, such as usability,

flexibility, performance, interoperability and security. Nonetheless, there

has been a lop-sided emphasis in the functionality of the software, even

though the functionality is not useful or usable without the necessary

non-functional characteristics. In this chapter, they review the state of the

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 158 | P a g e

art on the treatment of non-functional requirements (hereafter, NFRs),

while providing some prospects for future directions.

S. Farhat et.al. 2009 Non-functional

requirements

This work recognizes four NFR sorts and gives the philosophy for

creating space particular NFR by utilizing procedures for changing over

the necessities into outline ancient rarities per NFR sort. The

commitment is four NFR sorts: Functionally Restrictive, Additive
Restrictive, Policy Restrictive, and Architecture Restrictive and the

software engineering process that gives particular refinements that

outcome in one of a kind compositional and plan curios. By applying the

same utilitarian prerequisite center to the distinctive NFR areas it

upgrades the improvement process and advances software quality

characteristics, for example, compensability, viability, resolvability, and

traceability.

Taehoon Um

et.al.

2011 Attributes Evaluation

Method

They proposed a lightweight quality evaluation method for anlithe way to

deal with reflect non-functional aspects. Their approach bolsters early

distinguishing proof of non-functionality, and makes a difference

members reliably continue focusing on quality qualities. Members get

inputs for the following discharge by the evaluation consequences of

demonstrating unsatisfied quality traits in each discharge. Besides,
members can make anticipates quality change. Be that as it may,

members have their claim criteria when they lead evaluation with

prototypes.Accordingly, the proposed evaluation method could be

subjective. Accordingly, it is expected to make a quantitative evaluation

show, utilizing estimation measurements to enable members to have

more trust in the outcomes.

Weam M. Farid

et.al.

2012 NORMAP Methodology This examination exhibits a lightweight building of NFRs for agile

processes. The proposed Non-functional Requirements Modeling for

Agile Processes (NORMAP) Strategy recognizes, connections, and

models Agile Loose Cases (ALCs) with Agile Use Cases (AUCs) and

Agile Choose Cases (ACCs). A lightweight adjusted adaptation of the

NFR System was created including 25 critical NFRs. Further, a hazard
driven agile requirements usage arrangement and a visual tree-like view

were created. The procedure was approved through building up a Java-

based modeling reproduction apparatus and two contextual

investigations.

W. M. Farid and

F. J.

Mitropoulos

2012 NORMATIC This research proposes NORMATIC, a Java-based simulation tool for

modeling non-functional requirements for semi-automatic agile

processes. NORMATIC is the semi-automatic tool that supports the more

general Non-Functional Requirements Modeling for Agile Processes

(NORMAP) Methodology. Early results show that the tool can

potentially help agile software development teams in reasoning about and

visually modeling NFRs as first-class artifacts early on during

requirements gathering and analysis phases.

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 159 | P a g e

III. REFERENCES
[1]. J. Mylopoulos, L. Chung and B. Nixon, "Representing and using

nonfunctional requirements: A process-oriented approach,"
IEEE Transactions on Software Engineering, vol. 18, no. 6, pp.
483-497, 1992.

[2]. A. Eberlein and J. C. Leite, "Agile requirements definition: A
view from requirements engineering," in Proceedings of the

International Workshop on Time-Constrained Requirements
Engineering (TCRE’02), 2002.

[3]. F. Paetsch, A. Eberlein and F. Maurer, " Requirements
engineering and agile software development," in Proceedings of
twelfth IEEE international workshops on enabling technologies:
Infrastructure for collaborative enterprises (WETICE), 2003.

[4]. N. S. Rosa, P. R. Cunha and G. R. Justo, "An approach for
reasoning and refining non-functional requirements," Journal of

the Brazilian Computer Society, vol. 10, no. 1, pp. 59-81, 2004.
[5]. L. Chung and J. C. S. do Prado Leite, "On non-functional

requirements in software engineering," Conceptual modeling:
Foundations and applications, pp. 363-379, 2009.

[6]. S. Farhat, G. Simco and F. J. Mitropoulos, "Refining and
reasoning about nonfunctionalrequirements," in Proceedings of
the 47th Annual Southeast Regional Conference.ACM, 2009.

[7]. T. Um, N. Kim, D. Lee and H. P. In, "A Quality Attributes
Evaluation Method for an Agile Approach," in 2011 First
ACIS/JNU International Conference on Computers, Networks,
Systems, and Industrial Engineering, 2011.

[8]. W. M. Farid and F. J. Mitropoulos, "NORMATIC: A visual tool
for modeling non-functional requirements in agile processes," in
Proceedings of the IEEE SoutheastCon 2012, 2012.

