b

a

d

с

20.

		Pre					Post		
1.	а	b	c	d	1.	a	b	с	d
2.	а	b	c	d	2.	а	b	c	d
3.	а	b	c	d	3.	а	b	c	d
4.	а	b	с	d	4.	a	b	с	d
5.	а	b	c	d	5.	a	b	c	d
6.	а	b	c	d	6.	a	b	c	d
7.	а	b	c	d	7.	a	b	c	d
8.	а	b	с	d	8.	a	b	с	d
9.	а	b	с	d	9.	a	b	с	d
10.	а	b	с	d	10.	a	b	с	d
11.	а	b	с	d	11.	a	b	с	d
12.	а	b	с	d	12.	a	b	с	d
13.	а	b	с	d	13.	a	b	с	d
14.	а	b	с	d	14.	а	b	с	d
15.	а	b	с	d	15.	a	b	с	d
16.	а	b	с	d	16.	a	b	с	d
17.	а	b	с	d	17.	a	b	с	d
18.	а	b	c	d	18.	a	b	c	d
19.	а	b	с	d	19.	а	b	с	d

20.

b

с

a

d

Pre/Post Assessment Response Sheet Name _____ Date _____

Directions: Circle the letter below that best completes each of the statements on the following pages. Record all responses on this sheet; do not write on the following pages.

- 1. Error Proofing and Poka Yoke strategies should be comprehended on the _____.
 - a. PFD
 - b. PFMEA
 - c. Control Plan
 - d. all of the above
- 2. The most effective error proofing strategies for machining are typically based on ______.
 - a. defined CNC programs, recommended initial speeds and feeds
 - b. fixtures, tooling, and job kitting
 - c. sensors, limit switches, vision systems, and other technology
 - d. an appropriate combination of strategies
- 3. The most important step of the FMEA process is _____.
 - a. proper calculation of occurrence rankings based on appropriate data
 - b. proper assignment of severity rankings based on potential hazard to the end user
 - c. proper definition of product and process requirements
 - d. proper identification of causes using brainstorming
- 4. FMEAs should be performed with input from _____.
 - a. all concerned stakeholders
 - b. a cross-function team of technical subject matter experts
 - c. not only engineering, but marketing and manufacturing as well
 - d. the engineer with design responsibility
- 5. The PFD should include _____.
 - a. process or operation output requirements
 - b. process failure severity rankings
 - c. inspection sample size and frequency
 - d. all of the above
- 6. The most frequent escape to GE is _____.
 - a. dimensional non-conformances
 - b. foreign material or contamination
 - c. shipping damage or in-system damage
 - d. incorrect part marking
- 7. Pre-determined RPN cutoffs or thresholds for addressing high priority issues ______.
 - a. should be established prior to conducting the FMEA
 - b. should range between 90 and 120 depending on customer requirements
 - c. dictate the type of recommended actions prescribed by AIAG
 - d. should not be established

- 8. Severity _____.
 - a. considers negative impact on the end user, the customer plant, and supplier operation.
 - b. always focuses on the next person in the production process
 - c. is determined primarily based on the adverse financial impact the failure will have
 - d. both b. and c.

9. Occurrence rankings _____.

- a. are calculated using the same criteria and assumptions for both DFMEAs and PFMEAs
- b. should be based primarily on field failures and MRBs
- c. should be based on data from similar products and processes, prototype data, and current production
- d. are rankings of the probability that the cause will occur
- 10. A detection ranking of "1" should be reserved for _____.
 - a. error proofing that completely prevents the cause and the failure
 - b. 100% automated inspection before the parts have left the operation
 - c. SPC and control charting that detects the presence of special cause variation
 - d. 100% operator visual inspection
- 11. The scope of FMEAs should include _____.
 - a. the stock to dock process including outside vendors
 - b. only high risk operations
 - c. only new processes or operations
 - d. all of the above
- 12. An effective model for addressing Human Factors can be reduced to the ______ acronym.
 - a. WADE
 - b. SCORE
 - c. PEAR
 - d. AIM
- 13. The least effective attention activator from the following options is ______.
 - a. sound
 - b. change in motion or pattern
 - c. color
 - d. shape or symbol
- 14. Lack of communication, lack of teamwork, and lack of assertiveness are human factors that form what is known as ______.
 - a. the Three Lacks
 - b. Governing Human Factors (GHF)
 - c. Primary Human Factors
 - d. the Dirty Dozen

- 15. When more than one severity ranking per failure is identified ______.
 - a. all rankings should be multiplied times occurrence rankings
 - b. the highest ranking should be used to calculate one or more RPNs
 - c. the average ranking should be multiplied times all occurrence and detection rankings
 - d. all rankings should be used to calculate RPNs, with special emphasis on rankings of eight or higher
- 16. Recommended Actions _____.
 - a. should consider containment, investigation, and product or process changes
 - b. may not be required for all RPNs
 - c. should be assigned to the appropriate engineering department for implementation
 - d. both a. and. b
- 17. If visual inspection is the only control used to detect a manufacturing failure, the applicable detection ranking is ______.
 - a. 2
 - b. 4
 - c. 6
 - d. 8
- 18. The RPN _____.
 - a. is calculated by multiplying all severity, occurrence, and detection rankings from left to right for each failure
 - b. is calculated by multiplying the highest severity effect for each failure times all cause/occurrence rankings for the failure times the lowest detection ranking for the group of controls related to each cause
 - c. is calculated by multiplying the average rankings for severity, occurrence, and detection for each failure
 - d. can be converted into the RPN Root Ratio by calculating the square root of the inverse of the RPN
- 19. Detection rankings _____.
 - a. should consider both prevention and detection controls
 - b. have the same criteria for both Design and Process FMEAs
 - c. should be tied to Cpk data to be most accurate according to aviation industry guidelines
 - d. both a. and c.
- 20. When determining potential causes of failures on a PFMEA, you should typically ______.
 - a. assess the validity of the product specifications and drawing requirements
 - b. assume the operator always performs the job correctly
 - c. assume incoming parts and materials are to specification
 - d. qualify occurrence and severity data based on warranty projections