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Abstract

This paper focuses on the optimal sensor placement problem for the identification of pipe failure locations in large-scale
urban water systems. The problem involves selecting the minimum number of sensors such that every pipe failure can be
uniquely localized. This problem can be viewed as a minimum test cover (MTC) problem, which is NP-hard. We consider
two approaches to obtain approximate solutions to this problem. In the first approach, we transform the MTC problem to
a minimum set cover (MSC) problem and use the greedy algorithm that exploits the submodularity property of the MSC
problem to compute the solution to the MTC problem. In the second approach, we develop a new augmented greedy algorithm
for solving the MTC problem. This approach does not require the transformation of the MTC to MSC. Our augmented greedy
algorithm provides in a significant computational improvement while guaranteeing the same approximation ratio as the first
approach. We propose several metrics to evaluate the performance of the sensor placement designs. Finally, we present detailed
computational experiments for a number of real water distribution networks.
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1 Introduction

Infrastructure deterioration, demand-supply uncer-
tainty, and risk of disruptions pose new challenges in
maintaining modern infrastructures. Resilient urban
infrastructures including water distribution systems,
transportation networks, and electric grids are crucial
for societal well-being. Smart infrastructure operation
driven by sensing and actuation technologies have been
identified as one of the primary solutions towards re-
silient urban systems [26,40]. Through a network of
sensors, an individual fault or correlated failures in a
system component can be detected and localized, and
restorative actions can be executed in response to these
faults. Whereas network observability for a given sens-
ing capability has been widely studied in the context of
fault detection, sensor placement for fault isolability, i.e.
the ability to distinguish between faults, has not been a
commonly studied problem, especially in the context of
pipe bursts in water distribution networks.
The goal of this work is to design a sensor placement
configuration for identification of pipe failure locations by
using the minimum number of sensors. The underlying
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idea behind our approach is to ensure that the sensor
placement results in a collective output that is unique for
each failure event. Specifically, our main contributions
are as follows, we:
– Define the localization of pipe bursts as the design
objective of a sensor network configuration, and using
ideas from combinatorial optimization, we formulate
the fault location identification problem as aminimum
test cover (MTC) problem;

– Develop a computationally efficient augmented greedy
algorithm to solve the minimum test cover problem
(resp. identification problem), which is significantly
faster in comparison to the previous approaches and
therefore, scalable to large-scale networks; and

– Test and evaluate our sensor placement approach on a
batch of real-networks of various sizes and parameters
using practically relevant performance measures.

Our paper is motivated by the need to consider local-
ization of pipe bursts in the deployment phase of new
sensing technologies, since this consideration can sig-
nificantly reduce the response time and overall costs of
fault localization to the distribution utilities. We base
our work on the use of low-cost, high-rate online sensors
measuring water pressure for remote detection of pipe
burst using data mining techniques. Real-world exam-
ples are the PIPENET in Boston, MA, US [34] and the
WaterWise in Singapore [4]. The sensor placement prob-
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lem is not unique to the water sector and can be found
in many engineering applications for system operation.
We discuss some of the related work in Section 7.
In Section 2, we present the network and the sensing
models and formulate the detection and identification
problems as the minimum set cover (MSC) and mini-
mum test cover (MTC) problems, respectively. A key
aspect of the MTC problem formulation is the choice of
the objective function, which is to select the minimum
number of tests from a collection of tests such that ev-
ery event can be uniquely classified in one of the given
categories based on selected tests’ outcomes [22]. In our
setup, the set of outcomes of tests comprise of the output
vector from sensors, events are pipe failures, and classi-
fication categories are the possible locations of the failed
pipes. In Section 3, we present a solution approach as
in [14,35], in which the MTC is first transformed to the
MSC and then solved using the greedy approximation
[20].
In Section 4 we present an augmented greedy algorithm
for solving the MTC that does not require the com-
plete transformation of the MTC to the equivalent MSC,
and directly computes the objective function in a greedy
fashion. This algorithm is much faster than the standard
greedy approach and considerably improves the scala-
bility of our approach. In Sections 5 and 6, we demon-
strate our approach using a benchmark and a batch of
twelve real water distribution networks of various sizes
and specifications. We suggest four metrics to evaluate
the performance of the design including detection, iden-
tification, and localization scores. Although we demon-
strate our results in the context of water networks, our
algorithm provides an improved solution to the generic
test cover problem. Section 8 summarizes our work and
proposes future extensions.

2 Problem formulation
Consider the problem of placing online sensors measur-
ing hydraulic pressures with high frequency such that
the identification of pipe failure locations is maximized.
Based on the number of pipes where link failures (i.e.,
pipe bursts) can happen, we consider n link failures as
a set of failure events, denoted by L = {`1, . . . , `n}.
For the ease of presentation and without the loss of gen-
erality, let `j denote the failure event at the jth pipe.
Moreover, we define a set of sensors that can be placed
at m nodes of the network as S = {S1, . . . , Sm}. Here,
Si denotes the location of the ith sensor. The outputs
from sensors, which are based on the change in pressure
induced by the failure event, are denoted by yS .

2.1 Network dynamics and sensing model
A water distribution network can be represented by a
graph comprising nodes (supply and demand) connected
by links (pipes, valves, and pumps). Physical failures
of the infrastructure, such as pipe bursts, cause a dis-
turbance in the flow, which moves through the system

as a pressure wave known as water hammer, or surge
with very high velocity, varying typically in the range of
600 − 1500[ms ] [21]. This implies that the steady state
analysis employed by traditional methods such as super-
visory control and data acquisition (SCADA) systems
are inadequate and that the transient system dynamics
between the initial and the final steady state conditions
need to be considered.
The transient system state can be typically described
by mass and momentum partial differential equations
[38]. The method of characteristics (MOC) is a numer-
ical technique typically used to approximate the solu-
tion of the hydraulic transients. The MOC transforms
the partial differential equations into ordinary differen-
tial equations that evolve along specific characteristic
lines of the numerical grid, which are solved explicitly to
compute the head and flow, hi,t+1, qi,t+1, at new point in
time and space. Here, t and i indicate the discrete points
of the numerical grid. For a given pipe, the two charac-
teristic equations describing the hydraulic transients are
formulated as [21]:

hi,t+1 =
1

2

[
hi−1,t + hi+1,t + b (qi−1,t − qi+1,t)

+ r (qi+1,t|qi+1,t| − qi−1,t|qi−1,t|)
]

(1)

qi,t+1 =
1

b

[
hi,t+1 − hi+1,t + qi+1,t − r|qi+1,t|

]
, (2)

where r is the resistance coefficient associated with the
steady state, and b is the impedance coefficient associ-
ated with the transient state. For b = 0 the set of equa-
tions (17),(18) is reduced to the steady state, where the
head loss along a pipe occurs only due to friction [36]. Ad-
ditional information describing transient dynamics can
be found in the supporting information (SI) [27].
The effect of a pipe burst at location i can be translated
into boundary conditions using the orifice head-flow re-
lation [38]. Before the burst occurs, the cross-section
area of the orifice is equal to zero and it increases dur-
ing a burst, hence we can expect a sudden change in
the hydraulic head. The relationship between the head
and the pressure, measured by the sensors at location
i, is related to the elevation of the sensor location. If zi
is the elevation, and pi,t is the pressure at location i at
any given time t, then pi,t = (hi,t − zi) ρg, where g is
the gravitational acceleration [ m

sec2 ] and ρ is water den-
sity [ kgm3 ]. Hence, the disturbance caused by a pipe burst
that reaches the sensor location can be detected by sens-
ing the hydraulic pressure. Similar approaches have been
suggested in [39].
The disturbance caused by the pipe burst quickly dissi-
pates with the distance between the burst event `j and
the location of the sensor Si. For the purpose of sensor
placement, we are interested in obtaining the sensor’s
output as a result of some event `j . Let ySi

(t, `j) ∈ {0, 1}
be a discrete state (output) of the sensor Si at time t,
where 1 represents a possible detected event and 0 rep-
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resents otherwise. Let ξ be a function characterizing the
distance between the expected pressure (i.e., when there
is no pipe burst), denoted by p̂i,t, and the measured pres-
sure, denoted by pi,t. The sensor output can then be for-
mulated as:

ySi
(t, `j) =

{
1 if ξ (pi,t − p̂i,t) ≥ ε
0 otherwise

(3)

where ε is a threshold value. A simple detection model
would be where the sensor Si indicates an event if the
change in the pressure is above some threshold value ε.
We note here that when the failure event `j occurs during
a given time period, then the output of Si will be 1 (or
0) independent of the time of the event `j . Hence, we
can neglect the time dependency of the sensor output to
detect the event and can restate the output of the sensor
as:

ySi
(`j) =

{
1 if ySi

(t, `j) = 1, for any t > 0

0 otherwise
(4)

Let yS(`j) = [yS1
(`j), · · · ,ySm

(`j)] be the fault signa-
ture [6] of the failure event `j represented by a boolean
vector of the outputs of sensors in the set S.
Consequently, for a sensor set S and the set of events
L, we can instantiate a boolean matrix of dimensions
|L| × |S| called the influence matrix and denoted by
M. The jth row of M consists of sensors’ outputs in
response to the event `j , i.e., yS(`j). Similarly,Mij = 1
indicates that a sensor Si detected the failure at link `j ,
andMij = 0 means otherwise. Each row of the influence
matrixM is analogous to the notion of fault signature in
the model-based fault diagnosis systems literature [6].

M (L,S) =


yS(`1)

yS(`2)
...

yS(`n)

 (5)

Furthermore, for the set of link failures L, and the set
of all possible sensor locations S, let Ci ⊆ L be the
set of link failure events detected by the sensor Si, i.e.,
Ci = {`j ∈ L| ySi(`j) = 1}. If C is a collection of all
such Ci’s, i.e., C = {Ci : ∀i}, then for a given subset
of sensors S ⊆ S, we define CS ⊆ C as a set of subsets
of failure events, where a subset corresponds to a sensor
in S that detects the failure events in that subset, i.e.,
CS = {Ci : Si ∈ S}.
Example 1 (Sensing model) To illustrate the net-
work dynamics, consider a small network having 8 nodes
connected by 10 links as shown the Figure 10. A pipe
burst event is simulated in the middle of pipe `1 and
system response at network nodes is recorded. For the
ease of notations, we designate the failure events as
pipes’ ids, `j. The transient simulations were computed

1 2
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Fig. 1. Illustrative example layout

0 5 10 15 20 25 30 35 40 45

P
re

ss
ur

e 
[p

si
]

60

65

70

75

Node 2
Node 4

Time [s]
0 5 10 15 20 25 30 35 40 45

S
en

so
r 

ou
tp

ut

0

1

Fig. 2. Failure event generated in pipe `1 in the small example
– pressure head [m] and outputs of sensors S2, S4.

using the HAMMER software [1]. Figure 2 shows simu-
lated pressure heads and boolean outputs yS, for sensors
located at nodes 2 and 4. Thus for S = {S2, S4} the
sensors’ state is yS(`1) = [1, 0]. If sensors are placed
at all nodes of the network, then the sensors’ state in
the case of failure at `1 is yS(`1) = [1, 1, 1, 0, 1, 0, 0, 0],
yS(`2) = [1, 1, 1, 1, 0, 1, 0, 0], and so on. The correspond-
ing influence matrix is

M(L,S) =



S1 S2 S3 S4 S5 S6 S7 S8

`1 1 1 1 0 1 0 0 0
`2 1 1 1 1 0 1 0 0
`3 1 1 0 1 1 0 0 1
`4 1 0 1 1 1 1 1 0
`5 1 0 1 1 0 1 1 0
`6 0 1 1 1 1 0 1 1
`7 0 0 1 1 1 1 1 1
`8 0 1 0 1 1 0 1 1
`9 0 0 1 1 0 1 1 1
`10 0 0 0 1 1 1 1 1


.

Next, we formulate the detection and identification prob-
lems as the minimum set and test cover problems, re-
spectively.

2.2 Detection as MSC
For the set of events L and the set of sensors S, we define
a detectable event as the one for which there exists at
least one sensor in S that detects the event. The detection
problem is to select the minimum number of sensors S ⊆
S, such that when a detectable event occurs, at least
one sensor in S detects the event. For a given subset of
sensors S, we define the detection function, denoted by
fD, as follows:
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fD(CS) =

∣∣∣∣∣ ⋃
Ci∈CS

Ci

∣∣∣∣∣ . (6)

The detection function in (6) gives the number of link
failures inL that can be detected by the sensors in S. The
detection problem is to select a subset of sensors S ⊆ S
with the minimum cardinality such that all detectable
events are detected, i.e. fD(CS) = fD(CS). The detection
performance of a subset of sensors S is defined as the
normalized detection score, ID(S) and is computed as
fD(CS)/|L|. The detection problem is equivalent to the
minimum set cover problem, which could be defined as:

Definition 2.1 (Minimum set cover (MSC)) Let L be
a finite set of elements, and C = {Ci : Ci ⊆ L} be the
collection of given subsets of L. The minimum set cover
is to find Cs ⊆ C with the minimum cardinality such that⋃
Ci∈C

Ci =
⋃

Cj∈Cs
Cj.

In the above definition, if L is the set of link failures
and C is the collection of Ci’s corresponding to all the
available sensors, then a set cover of minimum size Cs,
gives the minimum number and locations of sensors that
solve the detection problem. Thus, we get the following:

Proposition 2.1 The problem of detection of link fail-
ures in a network is equivalent to the minimum set cover
problem, and a solution to MSC is therefore, a solution
to the detection problem.

The MSC problem is closely related to the maximum
coverage problem [37], which emerges when the number
of sensors that could be used is limited, i.e., |S| ≤ B.
The objective of the maximum coverage problem is to
select the sensors such that the number of detectable
events is maximized and the constraint |S| ≤ B is sat-
isfied. In Section 3.1 we discuss the greedy solution ap-
proach, which is very much similar for the MSC and the
maximum coverage problems.

2.3 Identification as MTC
For the identification of link failures, the goal is to
uniquely detect the events in L, i.e. to distinguish be-
tween events using the outputs of sensors. We note that
event `i ∈ L can be distinguished from event `j ∈ L, if
there exists a sensor in S that gives different outputs
for `i and `j . In such a case, we say that the pair-wise
event `i, `j is detectable if ∃Sp ∈ S : ySp(`i) 6= ySp(`j).
In terms of the influence matrix of the network, if a
pair-wise event `i, `j is detectable, then there exists a
column with different i and j row entries. It follows
that an event `i can be uniquely detected if all pair-wise
events `i, `j , ∀j 6= i are detectable.

The identification problem is now defined as follows: for
a given L and S, the identification problem is to select a
subset of sensors S ⊆ S with the minimum cardinality,

such that every detectable pair-wise event can be detected
by at least one sensor in S. The identification function
of S, fI(CS), is the number of pair-wise events that are
detected by a subset of sensors S ⊆ S, and will be further
discussed in Section 3.2.1. The identification problem is
equivalent to the minimum test cover problem, which is
defined as follows [7]:

Definition 2.2 (Minimum test cover (MTC)) Consider
a finite set L and a collection of subsets C = {Ci : Ci ⊆
L}. The minimum test cover is to find Ct ⊆ C with the
minimum cardinality such that if for a pair of elements
{`u, `v} ∈ L, there exists Ci ∈ C that contains either `u
or `v but not both, then there exists some Cj ∈ Ct that
also contains either `u or `v, but not both.

The identification problem is to find a subset Ct ⊆ C of
minimum cardinality, or equivalently the corresponding
subset of sensors S ⊆ S, such that if yS(`j) is unique
with respect to the set of all sensors S, then yS(`j) is
also unique with respect to a subset of sensors S, which
is the MTC problem defined above. Thus, we can state:

Proposition 2.2 The problem of identification of link
failures in networks is equivalent to the minimum test
cover problem, and therefore, a solution to MTC is also
a solution to the identification problem.

Example 2 (Detection vs. Identification) Follow-
ing example 1, consider two sensors placed at nodes 2
and 4, S = {S2, S4}. For the detection problem, we note
that C2 ∪ C4 = L. That is, at least one of the sensors in
S has an output 1 whenever a link fails. Thus, sensors
S2 and S4 cover (detect) all link failures and solve the
detection problem. For the identification problem, sen-
sors 2 and 4 are not sufficient as they generate only three
unique states associated with the 10 events, which makes
it impossible to distinguish between all link failures. For
example, the state {1, 0} is uniquely associated with a
failure in link `1, whereas, the state {1, 1} can be asso-
ciated with a failure in any of the links `2, `3, `6, or `8.
However, for the set of sensors S∗ = {S1, S2, S3, S5},
which solves the MTC problem for example 1, the output
is unique for each link failure, i.e. ten distinct indicator
vectors, each corresponding to a unique failure event,
are obtained.

3 Greedy MTC solution
It is well known that both MSC and MTC are NP-hard
problems [13,37]. In this section, we first introduce an
approximate solution to the MSC, which will be utilized
in Section 4 for constructing a computationally efficient
solution of the MTC problem.

3.1 Detection solution
MSC has been studied extensively owing to its wide va-
riety of applications in theoretical as well as practical
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domains. A straight-forward way to solve the MSC is
by the greedy approach. The greedy approach is to se-
lect, in each iteration, a sensor that detects the maxi-
mum number of undetected link failures, until all link
failures are detected, or no further link failure can be
detected by any sensor. In the maximum coverage prob-
lem, iterations continue until a given number of sensors
are selected. If n is the total number of link failures, m
is the total number of sensors, then greedy algorithm for
the MSC gives the best approximation ratio of O(lnn)
[13,19]. In fact, if k is the maximum number of link fail-
ures that can be detected by any sensor, then the greedy
algorithm has an approximation ratio of O(ln k), which
is the best possible (unless P=NP) [37]. In our context, k
depends on the network topology and the sensing model
as in (5). Similarly, for the maximum coverage problem,
the greedy algorithm gives the approximation ratio of
(1− 1/e), which is again the best possible.

Although the greedy approach gives the best known ap-
proximation ratio, its straightforward implementation
requires a large number of function (as in (6)) evalua-
tions. The running time of greedy approach is a func-
tion of the number of sensors and events, O(mn). For
large scale systems, in which n and m are very large,
this simple greedy approach becomes computationally
intractable owing to a large number of function evalu-
ations, even if computing a function is not expensive.
However, greedy algorithm can be made faster by reduc-
ing the number of function evaluations if the submod-
ularity property is satisfied [20]. Submodular functions
can be defined as follows:

Definition 3.1 (Submodularity) Let C be a finite set and
f be a set function, f : 2C −→ R. Moreover, Cs ⊆ Cr ⊆ C,
and Ci ∈ C \ Cr, then f is submodular whenever

f (Cs ∪ {Ci})− f(Cs) ≥ f (Cr ∪ {Ci})− f(Cr) (7)

For the detection problem, this means that as the num-
ber of link failures detected by the selected sensors in-
creases, the marginal value of adding a sensor to the
cover decreases. It can be shown that the function in (6)
is submodular (see [27]), and the submodularity of fD
can be exploited to obtain the lazy greedy algorithm as
in [20]. The basic idea behind the lazy greedy approach
is to eliminate the redundant computations in each iter-
ation. This can be further explained as follows: For the
κth iteration, let Fκ(Ci) denotes the utility of adding a
sensor i to the cover, i.e. fD(Cs ∪ {Ci} − fD(Cs), then
by the submodularity of fD, we know that Fκ+1(Ci) ≤
Fκ(Ci). Moreover, without the loss of generality, we as-
sume that Fκ(C1) ≥ Fκ(C2) ≥ . . . , thenC1 is the greedy
choice in the κth iteration. However, in the next itera-
tion, if Fκ+1(C2) ≥ Fκ(C3), then Fκ+1(C2) ≥ Fκ+1(Cj),
∀j ≥ 3, which means that there is no need to compute
Fκ+1(Cj), ∀j ≥ 3. This saves a large number of poten-
tial computations and improves scalability of the solu-
tion approach to large scale systems.

3.2 Identification solution

One approach to solve the MTC problem is to first trans-
form it to an equivalent MSC problem [7], and then
to solve the MSC problem using lazy greedy algorithm,
as explained earlier. The greedy approach to solve the
MTC yields a (2 lnn+1) approximation ratio algorithm,
which is the best possible [22]. A solution of the equiv-
alent MSC is a solution to the original MTC problem.
Thus, a straight-forward way to solve the identification
problem for link failures is to first obtain an equivalent
detection problem, in which each event represents a pair-
wise link failure, and then utilize the greedy approach to
solve the corresponding detection problem. We call this
the transformed lazy greedy (TLG) and will use it in Sec-
tion 6.2 to demonstrate the simulation results. Next, we
summarize the transformation of the MTC to the MSC
problem as outlined in [7].

3.2.1 Transformation of MTC to MSC
Given an instance of the MTC, i.e., L and C = {Ci},
where Ci ⊆ L, we transform the MTC to the MSC by
taking the following two steps:

• Create a new set of events: Lt = {`t12, · · · , `t(n−1)n}.
For each unordered pair {`i, `j}, define a new element
`tij ; Lt consists of all such `tij ’s.
• Create a new sets of sensors’ outputs: Ct = {Ct1, · · · , Ctm},

where Ctv = {`tij : |{`i, `j} ∩ Cv| = 1}, ∀k ∈
{1, · · · ,m}. In other words, `tij ∈ Ctv if and only if
exactly one of `i or `j is in Cv. Moreover, for a subset
of sensors S ⊆ S, we define CtS = {Ctv : Sv ∈ S}.

Hence, we obtain a new identification matrixMt(Lt,S)

of dimensions
(
n

2

)
×m, in which each row corresponds

to a pair-wise link failure and each column represents
sensor’s output. If a specific row inMt represents a pair
`i, `j , then the vth column entry of the corresponding
row inMt is an exclusive OR of the (i, v)th and (j, v)th

entries of the influence matrixM. The above point illus-
trates the fact that to localize an event `i, there always
exists a sensor that distinguishes `i from `j by produc-
ing different outputs for `i and `j respectively, i.e., if a
sensor output is 1 (resp. 0) in case of `i, then its output
for `j is 0 (resp. 1), for all j 6= i.

Note that for a given subset of sensors S, the identifica-
tion function, which is the number of pair-wise link fail-
ures detected by S, is essentially same as the detection
function of S in the corresponding MSC instance i.e.,

fI(CS) = fD(CtS), (8)

where fD is defined as in (6). The normalized identifi-
cation score, denoted by II(S), is computed by dividing
fI by the total number of pair-wise events, |Lt|.
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3.2.2 Greedy approach based solution
Once the MTC problem has been transformed to the
MSC problem, a straightforward way to obtain a solu-
tion is to employ the greedy algorithm, as outlined in
Algorithm 1.

Algorithm 1Minimum Test Cover – Greedy Algorithm
1: Input: C = {C1, · · · , Cm}, Ci ⊆ L
2: Output: MTC: C∗ ⊆ C
3: Initialize: C∗ ← ∅
4: Transform: the test cover instance to the set cover in-

stance, i.e., from a given L and C, obtain a corresponding
Lt and Ct (Section 3.2.1).

5: Solve: using greedy algorithm
(a) Select Ct

i∗ ∈ Ct (i.e., the sensor i∗) covering the most
uncovered elements in Lt.

(b) Add to current set C∗ ← C∗ ∪ {Ci∗}.
(c) Repeat until all elements in Lt are covered, or no

new element in Lt can be covered by any Ct
i ∈ Ct.

As in the case of the MSC problem, the lazy greedy ap-
proach, which exploits the submodularity property of
the set cover problem, can be utilized. However, if there
are n link failures that need to be localized, then the

corresponding set cover instance contains
(
n

2

)
events,

and the time complexity of the greedy approach in Al-

gorithm 1 is O
(
m

(
n

2

))
, where m is the total number

of sensors. Even for small-sized networks with a limited
number of possible link failures, this approach becomes
quite inefficient owing to a large number of computations
required. Moreover, employing lazy greedy also achieves
desired computational efficiency for realistic size of fail-
ure event set. In the next section, we focus on improv-
ing the computational time of the solution of the MTC
problem.

4 Augmented greedy MTC solution
The main idea behind the augmented greedy approach
is to achieve a computationally efficient approximation
algorithm. We do so by avoiding the complete transfor-
mation of the MTC to the MSC and directly evaluat-
ing the function (8), thus eliminating the need to pre-
compute the identification matrixMt(Lt,S). For exam-
ple, for a network with m = 2000;n = 2000; we would
require ∼ 4 GB computer memory to store the trans-
formed MSC.

In each iteration of the greedy algorithm for the MTC
solution, a sensor that covers (detects) the most pair-

wise link failures from a total of
(
n

2

)
pair-wise failures,

is selected. Thus O
((

n

2

))
comparisons are made in

a single iteration for each potential sensor. In the aug-
mented greedy approach, we avoid this by significantly
reducing the number of comparisons made in each step.

In fact, for each sensor, the number of comparisons made

in a single iteration are always bounded byO
(
K

(
k

2

))
,

where k is the maximum number of link failures that are
detected by any sensor, and K is the number of sensors
that are included in the test cover until that iteration.
Since k is typically much smaller than n, a large number
of computations are thus avoided in each iteration.
To explain our approach, we first observe that a sensor
i that detects k events (i.e., |Ci| = k) can distinguish
between k detected events and (n−k) undetected events.
Thus, such a sensor detects k(n − k) pair-wise events
(i.e., |Cti | = k(n− k)). Unlike the detection problem, in
which a sensor with a large k is desirable for the detection
purposes, a sensor that detects a large number of failures
is not always useful for the identification. Figure 3 shows
the number of pair-wise events detected by a sensor as a
function of the number of (single) events detected by the
sensor. The maximum number of pair-wise events, which
are link failures in our case, are detected when k = n/2.
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Fig. 3. The number of pair-wise link detections as a function
of the number of detected events.

Moreover, if a sensor i included in a test cover and
`u, `v ∈ Ci, then a distinction between the occurrence
of `u and `v is not possible through the sensor i. Thus,
a set of sensors that can distinguish between events
`u, `v ∈ Ci, or equivalently that can detect pair-wise
events corresponding to the events in Ci, also need to be
included in the test cover. Based on this observation, we
suggest an augmented greedy approach to compute the

test cover without computing the
(
n

2

)
events priori.

Let C∗ ⊆ C be the test cover until the current iteration,
and Ccov be the set of link failures detected by the sensors
that are included in the test cover, i.e., Ccov =

⋃
Cu∈C∗

Cu.

Thus, the utility of adding Ci to C∗ (i.e., adding sensor
Si to the test cover) in each iteration is based on the
following two factors:

(i) How many pair-wise link failures corresponding to
the links which are not included in Ccov can be
detected by Ci? We define this value as xi.

(ii) How many pair-wise link failures corresponding to
the links already included in Ccov can be detected
by Ci? We define this value as yi.
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The overall utility of adding sensor Si to the test cover,
denoted by wi, is the sum of xi and yi. A sensor Si∗
that maximizes this overall utility, let wi∗ denote the
maximum utility, will then be included in the test cover,
and Ccov will be updated to Ccov ← Ccov ∪Ci∗ . Now, we
state how to compute xi and yi in the jth iteration.

(i) Computing xi – If nj is the number of link failures
that are not yet included in Ccov, (i.e., nj = n −
|Ccov|), and Ci contains ki,j of such link failures,
then xi = ki,j(nj − ki,j). Note that computing
xi is very straight forward and does not require
computing pair-wise link failures from a given set
of link failures.

(ii) Computing yi – If a sensor u is already included in
the test cover, then the pair-wise link failures cor-
responding to the links in Cu remain undetected.
Thus, yi computes how many of such pair-wise link
failures can be detected by the inclusion of sensor
i in the test cover. To make it precise, we proceed
as follows:

If X and Y are two sets, then we define:
β(X) = set of all 2-element subsets of X,

and α(Y, β(X)) = {a ∈ β(X) : |Y ∩ a| = 1}.

Here, α(Y, β(X)) is a set consisting of such 2-element
subsets of X that have exactly one common element
with Y . For instance, if X = {1, 2, 3} and Y = {1, 3},
then β(X) = {{1, 2}, {1, 3}, {2, 3}}, and α(Y, β(X)) =
{{1, 2}, {2, 3}}.
To compute yi, first we compute the set of link failures
common to Ci and Ccov and call it as Yi = Ci ∩ Ccov.
Now, if sensor u is already included in the test cover,
and Gu ⊆ β(Xu) is the set of undetected pair-wise link
failures corresponding to the links in Xu ⊆ Cu, then

yi =
∑

Cu∈C∗

|α(Yi, Gu)|

The complete algorithm is stated in Algorithm 2.

Example 3 (Augmented greedy) Consider the net-
work shown in Figure 10. Let ki be the number of fail-
ure events detected by the sensor i, i.e., |Ci| = ki, where
Ci ⊆ S. In the first iteration (j = 1) of the while loop,
size of the event space is n = 10, and ki,j = ki, ∀i.
Then, the number of new pair-wise link failures detected
by the sensor i is given by xi = ki,j(n − ki,j). Since
there are no sensors in the test cover in the first itera-
tion, yi = 0 for all the sensors. The maximum value of
wi is attained for the sensors 1 and 2 with w1 = w2 =
x1 = x2 = 5(10 − 5) = 25. We include sensor 1 in the
test cover, thus C∗ = C1 after the first iteration of the
while loop. The set of all undetected pair-wise events for
sensor 1, G1 = {{1, 2}, {1, 3}, · · · , {4, 5}}, are then up-
dated. Finally, we update the number of covered events as
Ccov = {1, 2, 3, 4, 5}. For the second iteration, i.e., j = 2,
size of the event space is updated as n2 = 5. A complete

Algorithm 2 Minimum Test Cover – Augmented
Greedy Algorithm
1: Input: C = {C1, · · · , Cm}, Ci ⊆ L
2: Output: MTC: C∗ ⊆ C
3: Initialization: Ccov = ∅; C∗ = ∅; G0 = ∅; j = 1;
n = |L|; wi∗ = 1;

4: while wi∗ > 0 do
5: nj ← n− |Ccov|
6: for all i do
7: Xi ← (Ci \ Ccov) ; ki,j ← |Xi|
8: xi ← ki,j(nj − ki,j)
9: Yi ← Ci ∩ Ccov
10: yi ←

j−1∑
t=0

|α(Yi, Gt)|

11: wi = xi + yi
end for

12: wi∗ ← maxwi

13: if wi∗ > 0 then
14: C∗ ← C∗ ∪ {Ci∗}
15: Ccov ← Ccov ∪ Ci∗

16: Gj ← β(Xi∗)
17: for t = 0 to j − 1 do
18: Gt ← Gt \ α(Yi∗ , Gt)

end for
19: j ← j + 1

end if
end while

account of the states of variables of the algorithm for the
example is provided in the [27]. The algorithm returns the
test cover consisting of sensors {1, 2, 3, 5} that uniquely
identify all link failures.

The augmented greedy approach in Algorithm 2 pro-
duces the same solution as the greedy approach in Algo-
rithm 1. Thus, Algorithm 2 has the same approximation
ratio as the standard greedy algorithm, which has been
proven to be the best possible.
Since a large number of computations are avoided in the
execution of Algorithm 2, it is more efficient than the

simple greedy. In contrast to theO
((

n

2

))
comparisons

performed in each iteration for a sensor in Algorithm 1,

O
(
mj∑
i

(
ki
2

))
comparisons are done in each iteration of

the Algorithm 2. Here, n is the total number of link
failures, ki is the number of link failures detected by
the sensor i (i.e., ki = |Ci|), and mj is the number of
sensors included in the test cover until that iteration.
Thus, if k = max(ki), then Algorithm 2 is at least n/k
times faster than the simple greedy approach as shown
below. Moreover, typically k << n in the case of link
failure detection in water distribution networks, thus,
n/k factor turns out to be a significant improvement.

Proposition 4.1 Let
∑
i

ki = n, and k = max(ki), then

∑
i

(
ki
2

)
≤ k

n

(
n

2

)
(9)
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Proof –∑
i

(
ki
2

)
=

1

2

(∑
i

k2i −
∑
i

ki

)
≤ 1

2

(
k
∑
i

ki − n

)

=
1

2
(kn− n) ≤ 1

2
(kn− k) =

k

n

(
n

2

)
. 2

We note that Algorithm 2 is somewhat similar to the
two-step greedy algorithm presented in [7]. However, in
our approach, both xi and yi are computed in the same
iteration resulting in a more efficient implementation.

5 Application to a benchmark network
We first test our approach on a medium-size water net-
work. Net1 is a benchmark system that has been exten-
sively studied in the context of sensor placement for wa-
ter quality [25]. The system consists of 126 nodes, 168
pipes, one reservoir, one pump, and two storage tanks
and its layout is shown in Figure 4. The system supplies
a daily demand of 5.15 × 103[m3/day] and has a total
pipe length of 37.5× 103[m].
For all our simulations, we consider a single failure event
occurring at the center of each pipe and enumerate all
possible failure events. For the detection problem, when
fully calibrated transient model of the network is not
available, we approximate the disturbance propagation
using a simple distance based model emulating the dis-
sipation of the pressure wave with the distance from the
origin. As in [9], our influence model is based on the
shortest distance threshold model, assuming that the
disturbance in pressure can be sensed within a specified
distance from the location of the burst, i.e., ySi

(`j) =
{1 | d(Si, `j) ≤ ε}, where d is the length of the short-
est path between two locations Si and `j , and ε is some
threshold. Figure 4 shows an example of the influence
range (in red) of a burst in LINK-126 of the network for
a threshold distance of ε = 1000[m], i.e., a sensor located
in the red region can detect the pipe failure.

Fig. 4. Layout of Net1 and propagation of failure in LINK-126

Assuming that a sensor can be placed at any of the 126
network nodes and any of the 168 network pipes can
fail, we solve the MTC problem, as described previously
in sections 2.3, 3.2, and 4. Figure 5 shows the normal-
ized identification score, II , defined in Section 3.2.1, as
a function of the number of sensors using the greedy
approach. As noted in Section 3.1, we observe that the
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Fig. 6. Localization performance for Net1

identification score function exhibits a diminishing re-
turn property. The maximum identification score of 0.99
is attained with 48 sensors.

Observing that the identification score of the network is
not sufficient to evaluate the quality of the design, since
it does not indicate about the number of events that
are uniquely identified and, respectively, the number of
events that are not uniquely identified. For this reason,
we suggest two complementary metrics for evaluating
the performance of the sensor network design:

Localization score – Let L ⊆ L be a subset of all such
link failures for which the outputs of sensors in S is same,
i.e., yS(`i) = yS(`j), ∀`i = `j ∈ L. We call such a sub-
set of link failures L as a localization set. A localization
can be associated with every unique vector of sensors’
outputs. Localization score is the total umber of local-
ization sets obtained under the sensor configuration S.
We note that it is not possible to distinguish between
the failure events in a localization set by merely observ-
ing the outputs of sensors. We define the normalized lo-
calization score, IL(S), as the ratio of the total number
of localization sets formed under the sensor configura-
tion S to the total number of event failures. Ideally, the
normalized localization score should be equal to 1, indi-
cating that each fault can be uniquely identified.

Localization size – is the number of faults associated with
a unique output of sensors, or the number of elements in
a localization set L. A localization size of higher value
means that it would be difficult to identify the location of
the fault, and additional local inspection methods might
be needed. We define the worst set size, IW (S) as the
largest localization set. For complete localization it is
required that, IW (S) = 1, indicating that all faults could
be distinguished from each other, and therefore could be
uniquely detected.
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Example 4 (Localization score) Continuing Exam-
ple 2 for the two-sensor design S = {S2, S4}, three
localization sets are formed, i.e. L1 = {`1}, L2 =
{`4, `5, `7, `9, `10}, L3 = {`2, `3, `6, `8}. The correspond-
ing localization sizes are |L1| = 1, |L2| = 5, |L3| = 4.
The normalized localization score is thus IL = 3/10
and the worst localization size is IW = 5. It means
that if an event is detected, its distinction between
three distinct groups is possible, but further distinction
within the groups is not possible, with the largest indis-
tinctive group of 5 links. With the four-sensor design,
S∗ = {S1, S2, S3, S5}, the optimal normalized localiza-
tion score and the maximum localization size of 1 are
achieved, and we observe ten unique outputs of sensors,
each associated with a unique failure event.

Figure 6a shows the normalized localization score as a
function of the number of sensors. The highest localiza-
tion score of 0.65 is achieved when 48 sensors are in-
stalled. This result indicates that 110 unique vectors of
sensors output are associated with the 168 failure events.
Figure 6b shows the worst, median, and minimum lo-
calization set sizes as a function of the number of sen-
sors for Net1. We observe that initially sizes of localiza-
tion sets decrease rapidly with the number of sensors,
until the worst localization-set-size reaches a plateau at
20 sensors, and does not improve further. This implies
that deploying more sensors might improve local per-
formance, but will not improve the overall network lo-
calization performance, making further deployment of
sensor unattractive for the water utility from the cost
viewpoint.

6 Application to real networks

We tested our approach on a batch of real water net-
works. Principal information is listed in Table 1 and the
complete data can be obtained from [15] for Nets 2-10
and from [2] for Nets 1,11,12. In all our simulations we
again assume, that a single failure can occur at each of
the network links and that sensors can be placed at each
of the network nodes, and set the distance threshold to
ε = 1000[m].

Table 1
Network data

Network Length Demand No. of No. of
[km] 103[m3/day] pipes nodes

Net1 37.56 5.15 168 126
Net2 91.29 7.59 366 269
Net3 96.58 8.58 496 420
Net4 137.05 5.78 603 481
Net5 123.20 6.20 644 543
Net6 166.60 5.66 907 791
Net7 153.30 8.93 940 778
Net8 152.25 7.91 1124 811
Net9 260.24 5.67 1156 959
Net10 247.34 9.33 1614 1325
Net11 760.89 71.88 3032 1891
Net12 1844.04 108.8 14822 12523

Fig. 7. Layout of Net9 and example of the detection and
localization sets for three sensors

6.1 MSC vs. MTC
First, we compare the sensor placement design for the
identification problem obtained from our approach with
the design for the detection problem, i.e. MTC vs. MSC
(Sections 2.2, 2.3). We demonstrate our results using
Net9, from the Kentucky dataset. Although the system
supplies similar daily demand as Net1, it is spatially
more distributed with approximately 260 [km] of pipes.
Network layout and main features are shown in Figure
7 and Table 1.
Figure 7 schematically illustrates the difference be-
tween the MTC and MSC problem formulations in
the context of Net9. Consider three sensors installed
in the network, Figure 7 demonstrates the seven lo-
calization sets corresponding to seven unique sensor
states, [0, 0, 1], · · · , [1, 1, 1] and the detection set, being
the union of the localization sets. Whereas the detec-
tion problem tries to maximize the detection set, the
identification problem aims to identify distinct subsets.

Figure 8 provides a comparison between the detection
and localization scores for the MTC (blue circles) and
MSC (red squares) designs. For the detection problem,
25 sensors are sufficient to cover the entire system, hence,
we also select the first 25 sensors for the identification
problem and compare their performance. From Figure
8a it can be seen that the two designs overlap for the first
7 sensors and the MSC design only slightly outperforms
theMTC design when comparing the detection scores for
a higher number of sensors. At the same time, the MTC
design significantly outperforms the MSC design when
comparing the localization scores as shown in Figure 8b.
Similar results were attained for the other networks.

6.2 Augmented greedy vs. transformed lazy greedy
Next, we compare the solution approach based on the
augmented greedy (AG) (Section 4) and the transformed
lazy greedy (TLG) (Section 3.2). Table 2 lists the run-
ning times (Intel Core i7, 2.9 GHz, 16 GB of RAM) for
the augmented greedy and the transformed lazy greedy
approaches. For Nets 1-10, the new algorithm is 3 to 8
times faster than the transformed lazy greedy approach,
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Fig. 8. MTC versus MSC performance for Net9

depending on the maximum number of events detected
by any sensor (see Proposition 4.1). The solutions ob-
tained using the two approaches were identical. For Nets
11-12, we were not able to apply the TLG due to the
memory requirements and applied only the AG, which
further emphasizes the advantage of the AG approach.

Finally, Table 2 lists the maximum number of sensors
and the corresponding four performance scores: normal-
ized detection ID, identification II , and localization IL
scores, and worst localization set size IW . For all net-
works, the layouts and the simulation plots illustrating
these metrics as a function of the number of sensors
are available in [27]. These results demonstrate that: (1)
The number of sensors required solely for detection pur-
pose is significantly lower than the number of sensors
required for localization. (2) Between the two localiza-
tion measures, IL and IW , the localization score is more
conservative than the worst set size, requiring a larger
number of sensors. For example, consider the design for
Net9, then to detect 95% of the events, i.e., ID = 0.95,
18 sensors are sufficient, whereas to achieve IL = 0.5 we
require 79 sensors, and 38 to achieve IW = 20. This is
observed for all tested networks.
Table 2
Simulation results
Network No. of

ID II IL IW
TLG AG

sensors [min] [min]

Net1 48 0.99 0.99 0.65 12 0.23 0.08
Net2 98 0.99 1.00 0.86 12 2.39 0.58
Net3 134 0.99 1.00 0.86 7 6.93 1.65
Net4 138 0.99 1.00 0.91 8 11.98 4.93
Net5 164 0.99 1.00 0.86 6 15.58 3.85
Net6 258 1.00 1.00 0.86 8 45.46 6.31
Net7 139 1.00 1.00 0.83 8 49.12 9.31
Net8 195 1.00 1.00 0.70 8 80.55 28.07
Net9 359 1.00 1.00 0.87 6 91.57 11.06
Net10 408 1.00 1.00 0.89 14 257.41 39.48
Net11 717 1.00 1.00 0.69 9 – 50.53
Net12 1000∗ 1.00 1.00 0.38 17 – 1800

TLG - transformed lazy greedy; AG - augmented greedy;
∗terminated after 1000 iterations

7 Related work
Event detection in water networks. In the urban wa-
ter sector, majority of previous works focused on the

sensor placement for detecting hypothetical contamina-
tion events assuming perfect sensors capable of detect-
ing all types of contaminants [5,11]. In a related work
[16], to detect the presence of contaminants in large wa-
ter distribution systems, the notion of penalty reduc-
tion function was introduced to realize various objec-
tive functions such as reduction of detection time and
the expected population affected. Submodularity of the
penalty reduction function was then used to solve sensor
placement problems efficiently and with provable guar-
antees. Moreover, various data and model-driven tech-
niques also exist that are applied for system’s state esti-
mation and event detection and isolation [10,32]. The ba-
sic premise in these methods is that once the sensors are
in place, data is collected and transmitted in real-time.
The difference between measurements, such as pressure
[28] and flow [31], and their estimated values obtained
using the network hydraulic model, is then computed.
Model based leakage detection techniques are employed
primarily on the operational side with the objective to
efficiently utilize available measurements along with the
available system model to determine the system faults.
Our approach is somewhat related to [9,33], which con-
sider pipe bursts as failure events. In [9], detection of
events in networks is studied using distance decaying
sensing function. The problem is formulated as a contin-
uous p-median facility location problem and solved us-
ing a gradient descent algorithm. However, in contrast
to [9], in which only the detection problem is considered,
we consider detection as well as location identification of
link failures. In [33] both the detection and location iden-
tification of failure events are considered in the problem
formulation.
In this work, we consider the placement of online high-
rate pressure sensors. Additional surface and inline de-
tection techniques include acoustic, umbilical, and au-
tonomous robots. These tools are principally used to ver-
ify and pinpoint the location of the burst, their operation
is typically time consuming and expensive, and they are
not suitable for continuous operation [39]. Ideally, flow
meters can also be used for detecting and localizing leaks
in water networks. However, these are more expensive
and can be typically installed on main pipelines only at
the inlets of sub-networks [23]. Furthermore most flow
meters do not react instantaneously to changes in flow,
hence are more suitable for persistent leaks [29].

Approximation algorithms. The sensor placement prob-
lem is not unique to the water sector and can be found
in many engineering applications. Sensor placement is in
essence a combinatorial optimization problem, in which
a minimum number of sensors are deployed to minimize
the uncertainty about the events of interest. The domi-
nant approach is to cast the sensor placement problem
as the classical minimum set cover (MSC) problem, in
which given a set of n elements and a collection ofm sub-
sets, the goal is to select as few subsets as possible such
that their union covers all elements. The MSC problem
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is known to be NP-hard [22]. The greedy algorithm guar-
antees the best possible approximation ratio of (lnn+1).
A key feature in the efficient and practically feasible
greedy algorithm is exploiting the submodular property,
i.e. decreasing marginal utility of the objective function.
Extensive literature exists on the greedy approximation
for submodular functions. In [17], a mutual information
criterion was proposed to select the most informative
sensors to monitor a spatial phenomenon modeled by
a Gaussian process. The submodularity property of the
criterion, as shown in [24], was then exploited to obtain a
polynomial time algorithm guaranteeing a constant fac-
tor approximation of the optimal sensor set.

Model-based diagnosis.Fault detection and identification
(FDI) and consistency based diagnosis (DX) are two dis-
tinct approaches which rely on computing sets of events
in a faulty system based on the discrepancies between
the observed and predicted system behavior [6]. In the
FDI community fault diagnosis is captured by localiz-
ing faults based on residuals that capture these faults.
The problem is then to select a set of residual genera-
tors that are sensitive to the set of faults [18,30,35]. In
the DX community, the diagnosis is derived by comput-
ing a set of conflicts that capture the faulty components
that explain the observed failures [3,8,12]. To compute
the minimum set of residual generators or the minimum
set of conflicts, the problem often relies on the MSC or
the minimum hitting set (MHS) formulation. The MSC
problem is equivalent to the MHS, in which given the
same input as in the MSC, the goal is to find the small-
est subset of elements that hits (i.e. has a non empty
intersection) every subset [6].
In previous works [18,30,35] the isolation solution is ob-
tained by first computing the set of all pair-wise faults
from a given set of faults, and then using greedy heuris-
tics to solve the MSC or the MHS problems. This is sim-
ilar to the TLG approach described in Section 3.2. Com-
puting all pair-wise events is the main computational
bottleneck, especially when applied to large scale net-
works. The AG presented in Section 4 is a faster imple-
mentation of the greedy approach for the solution of the
MTC. Its main feature is avoiding the transformation of
the MTC to the MSC/MHS, which makes it more suit-
able for large-scale distributed systems, as demonstrated
for Nets 11-12 in Table 2.

8 Conclusions and future work
In this work, we focused on the sensor placement for
fault location identification in water networks. We cast
the problem as the minimum test cover problem and sug-
gested a fast solution approach. Additionally, we tested
and analyzed the solutions using multiple performance
criteria for a suite of real water networks. The outcomes
of our approach could provide a better diagnosis of fail-
ure events in terms of improved localization and response
to failure events in operational mode, and could signif-
icantly reduce potential physical losses and service dis-

ruptions in water networks. In this work we assumed per-
fect sensing information, future extension will include
sensor placement robust to erroneous and corrupt data.

Nomenclature

Cti set of pair-wise link failures detected by the sen-
sor i

Ci set of link failures detected by the sensor i
C collection of all Ci’s
Ct collection of all Cti ’s
fD detection function
fI identification function
h hydraulic head
ID normalized detection score
II normalized identification score
IL normalized localization score
IW number of elements in the largest localization set
k maximum number of link failures detected by

any sensor
`j jth (failure) event
`tij unordered pair of (failure) events `i and `j
L set of all (failure) events
Lt set of all pair-wise (failure) events
L localization set
m total number of sensors
M influence matrix
Mt transformed influence matrix
n total number of events
p pressure
q flow
Si the location of the ith sensor
S set of all sensors
yS outputs of sensors in the set S
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9 Transient modeling

Unsteady state flow in a closed conduit can be described
by mass and momentum equations formulated as [6]:

∂h

∂t
+
a2

gA

∂q

∂x
= 0 (10)

1

gA

∂q

∂t
+
∂h

∂x
+

cq|q|
2gDA2

= 0 (11)

where h is the hydraulic head [m], q is the volumetric
flow rate [m

3

sec ], g is the gravitational acceleration [ m
sec2 ], x

is distance along the pipe [m], t is the time [sec], a is the
wave speed in the conduit [ msec ], c is a friction factor,D is
the pipe diameter [m], and A is the pipe cross sectional
area [m2].

The method of characteristics (MOC) is one of the
most common numerical techniques used to approxi-
mate the solution of the hydraulic transient. Additional
techniques used are finite differences and node charac-
teristic method. A detailed derivation of the governing
equations and the solution scheme can be found in [4,6].
The MOC transforms partial differential equations into
ordinary differential equations that apply along specific
lines (characteristics), C+ and C−, in the space-time,
x-t, plane. Two characteristic equations are solved ex-
plicitly to compute the head and flow, h∗, q∗, at new
point in time and space, (·)∗, given that the conditions
at a previous time step along the characteristic grid are
known, i.e., h+, q+ and h−, q−. For a given pipe, the

Email addresses: linasela@mit.edu (Lina Sela
Perelman), waseem.abbas@vanderbilt.edu (Waseem
Abbas), Xenofon.Koutsoukos@vanderbilt.edu (Xenofon
Koutsoukos), amins@mit.edu (Saurabh Amin).

two comparability equations are formulated as:

C+ :
a

gA
(q∗ − q+) + (h∗ − h+) +

c∆x

2gDA2
q+|q+| = 0

(12a)

C− :
a

gA
(q∗ − q−)− (h∗ − h−) +

c∆x

2gDA2
q−|q−| = 0

(12b)

Rearranging equations (12a) and (12b) we get:

C+ : h∗ = CP − bq∗ (13a)
C− : h∗ = CM + bq∗ (13b)

where

C+ : CP = h+ + q+ (b− r|q+|) (14a)
C− : CM = h− − q− (b− r|q−|) (14b)

and
b =

a

gA
(15)

r =
c∆x

2gDA2
(16)

b is a function of the physical characteristics of the pipe
and the wave speed of the fluid in the conduit. The pa-
rameter b can be viewed as the characteristic impedance,
which is associated with the transient state. r is a func-
tion of the physical characteristics of the pipe, that can
be viewed as pipe’s resistance coefficient, and is associ-
ated with the steady state. If b = 0 the set of equations
(13) is reduced to the steady state equations, where the
head losses along the pipe occur only due to friction.

We designate the points (·)+, (·)−, (·)∗ over a space-time
grid of characteristics. If i and t are indices for space and
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time, respectively, then: (·)∗ → (hi,t+1, qi,t+1), (·)+ →
(hi−1,t, qi−1,t), (·)− → (hi+1,t, qi+1,t). Then solving first
for hi,t+1, by eliminating q∗ in (13), for a single node in
the numerical grid, we get:

hi,t+1 =
1

2

[
hi−1,t + hi+1,t + b (qi−1,t − qi+1,t)

+ r (qi+1,t|qi+1,t| − qi−1,t|qi−1,t|)
]

(17)

qi,t+1 =
1

b

[
hi,t+1 − hi+1,t + qi+1,t − r|qi+1,t|

]
(18)

where r is the resistance coefficient, which is associated
with the steady state, and b is the impedance coefficient,
which is associated with the transient state. If b = 0
the set of equations (17),(18) is reduced to the steady
state, where the head loss along a pipe occurs only due
to friction [5].

At the boundaries specific conditions need to be defined
describing the head-flow relation. Common boundary
conditions, such as cross-connections and control valves,
can be found in [6]. We give an example for boundary
condition for pipe burst at location i using the orifice
head-flow equation:

hi,t+1 +
b

2
CdAd,t+1

√
2ghi,t+1 −

CM + CP
2

= 0 (19)

where Cd is the orifice discharge coefficient, Ad is
the cross-section area of the orifice, CP = hi−1,t +
qi−1,t (b− r|qi−1,t|), CM = hi+1,t − qi+1,t (b− r|qi+1,t|).
Before the burst occurs the coefficient Ad is equal to
zero and Equation(19) reduces to Equation (17). During
a burst Ad is positive, hence we can expect a change in
the hydraulic head. The relationship between the head
and the pressure measured by sensors at location i is
relative to the elevation of location i, denoted by zi, i.e.,
at any given time, pi,t = (hi,t − zi) ρg. Hence, we can
expect to detect the pipe burst by observing the differ-
ences between the expected and the measured pressures
at a given time and location in the network. Similar
approaches have been previously suggested in [7].

Figure 9 shows a raw pressure signal recorded by Visenti
[2] online sensor during a pipe burst event with 250[Hz]
sampling frequency. Figure 9 shows the dynamic na-
ture of pressure, a sharp drop in the pressure during a
pipe burst event, and a rapid return to normal operating
range. The duration of drop in pressures is just under a
few seconds, hence cannot be detected using a more tra-
ditional methods such as supervisory control and data
acquisition (SCADA) systems, which typically operate
on minutes scales.

10 Submodularity

Lemma 10.1 The detection function fD (as defined in
the Equation (6) of the main paper) is submodular.
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Fig. 9. Pressure signal during a burst event recorded from
online sensor installed in a water system

Proof – Let Cs ⊆ Cr ⊆ C, and Ci ∈ C \ Cr, then we need
to show

fD (Cs ∪ {Ci})− fD(Cs) ≥ fD (Cr ∪ {Ci})− fD(Cr)

Assume that C ′i = Ci \
⋃

Cj∈Cs
Cj , then

fD(Cs ∪ {Ci}) = fD(Cs ∪ {C ′i}) = fD(Cs) + fD({C ′i})
(20)

Moreover, let λ =

( ⋃
Ck∈Cr

Ck

)
\

( ⋃
Cj∈Cs

Cj ∪ C ′i

)
, and

µ =
⋃

Ck∈Cr
Ck ∩ C ′i, then

fD(Cr∪{Ci}) = fD(Cr∪{C ′i}) = fD(Cs∪{C ′i})+fD({λ}),
(21)

and

fD(Cr) = fD(Cs) + fD({λ}) + fD({µ}). (22)

Substituting (22) into (21) gives,

fD(Cs∪{Ci})−fD(Cs)−fD({µ}) = fD(Cr∪{Ci})−fD(Cr)

The required result follows directly. 2

11 Augmented greedy – Example 3 (cont.)

In each iteration, for every sensor i not in the test cover,
Ci is decomposed into two sets namely, Xi = Ci \ Ccov
and Yi = Ci ∩ Ccov. The utility of including a sensor
in the test cover is calculated in terms of xi and yi. xi
computes the number of pair-wise link failures detected
by Ci corresponding to the links not in Ccov, whereas
yi computes the undetected pair-wise link failures cor-
responding to the links in Ccov that can be detected by
Ci. Then, a sensor that maximizes the utility is selected
and Ccov, which is the set of covered (detected) events,
and Gu, which is the set of undetected pair-wise events
corresponding to the events detected by the sensor u al-
ready included in the test cover, are updated. We give

15



detailed steps of the algorithm using the illustrative ex-
ample in the paper (Figure 10).

1 2

3
4

5

6 7 8

`1

`2 `3

`4 `6

`5 `7 `8

`9 `10

Fig. 10. Illustrative example layout

Recall the influence matrix:

M(L,S) =



S1 S2 S3 S4 S5 S6 S7 S8

`1 1 1 1 0 1 0 0 0
`2 1 1 1 1 0 1 0 0
`3 1 1 0 1 1 0 0 1
`4 1 0 1 1 1 1 1 0
`5 1 0 1 1 0 1 1 0
`6 0 1 1 1 1 0 1 1
`7 0 0 1 1 1 1 1 1
`8 0 1 0 1 1 0 1 1
`9 0 0 1 1 0 1 1 1
`10 0 0 0 1 1 1 1 1


Initialization Ccov = ∅; C∗ = ∅; G0 = ∅; n = 10;
First iteration of the while loop, j = 1. We denote
the total number of events detected by sensor i as
ki, i,.e., ki = |Ci|. Similarly, ki,j denotes the number
of undetected events that are detected by the sensor
i in the jth iteration, i.e., ki,j = |Ci \ Ccov|. In the
first iteration ki,j = ki, ∀i. In this example, the set
of all ki,1’s is {5, 5, 7, 9, 7, 6, 7, 6}.Then, for each sen-
sor i, we compute the number of new pair-wise events
detected, xi = ki,1(n − ki,1). For instance, for sensor
1, x1 = 5(10− 5) = 25. Next, we need to compute yi
for all i. Since there is no sensor in the test cover in
the first iteration, yi = 0 for all i. The total utility of
selecting a sensor is equal to wi = xi + yi. The max-
imum wi∗ is attained for sensors 1 and 2. We select
sensor 1 to be included in the test cover, and update
C∗ ← {C1∗}, and G1, which is the set of all unde-
tected pair-wise events corresponding to the events in
X1 = C1\Ccov. Here,G1 = {{1, 2}, {1, 3}, · · · , {4, 5}}.
Finally, we update the set of covered (detected) events
Ccov ← Ccov ∪ C1 = C1 = {1, 2, 3, 4, 5}.

Second iteration of the while loop, j = 2. At the
beginning of second iteration, the event space has
been reduced from 10 to 5, i.e., n2 = 5. For each
sensor i, we first compute Xi, which is the set of
undetected events (events that are not in Ccov) that
are detected by the sensor i, i.e., Xi ← (Ci \ Ccov).
Then, we compute xi = ki,2(n2 − ki,2), where ki,2 is
|Xi|. For instance, for sensor 2, C2 = {1, 2, 3, 6, 8},
then X2 ← (C2 \ Ccov) = {6, 8} and k2,2 = 2. Then
x2 = 2(5 − 2) = 6. Next, for each sensor i, we com-
pute yi, which is the number of pair-wise events in
G1 that are detected by the sensor i. For instance, in

the case of sensor 2, six of the pair-wise events in G1,
given by {{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}},
are detected by the sensor 2. Thus, we get y2 = 6. The
values of yi for all i are given in Table 1. After this,
the utility of each sensor is computed as wi = xi + yi.
For sensor 2, the value of w2 is 12, which turns out to
be the maximum among all the sensors in the second
iteration. Thus, sensor 2 is included in the test cover.
We update C∗ ← C∗∪{C2∗}, Ccov = {1, 2, 3, 4, 5, 6, 8},
and

G1 ← G1 \ {{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}}
= {{1, 2}, {1, 3}, {2, 3}, {4, 5}}.

At the same time, a new set G2 is created, which con-
tains the set of pair-wise events in X2. Since X2 =
{6, 8}, we get G2 = {{6, 8}}.

Next iteration. We continue with the same steps until
no improvement can be made, i.e. wi = 0 for each
sensor. At the end of the algorithm, sensors in the set
{1, 2, 3, 5} are included in the test cover.

For this example, a complete account of the values of
variables in each iteration of the algorithm is given in
Table 1.

12 Evaluation on real networks (cont.)

For all networks [1,3], the layouts and the simulation
plots illustrating the four performancemetrics are shown
in Table 4. For the ease of presentation, the worst local-
ization set size, IW , is normalized by dividing it by the
number of pipes.
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Table 3
Illustrative example demonstrating the steps in the augmented greedy solution of the MTC problem

j = 1 j = 2 j = 3 j = 4 j = 5

Ccov ∅ {1, 2, 3, 4, 5} {1, 2, 3, 4, 5, 6, 8} {1, 2, · · · , 9} {1, 2, · · · , 10}
nj 10 5 3 1 0

X1, Y1 {1,2,3,4,5}, ∅ – – – –
X2, Y2 {1, 2, 3, 6, 8}, ∅ {6,8}, {1,2,3} – – –
X3, Y3 {1, 2, 4, 5, 6, 7, 9}, ∅ {6, 7, 9}, {1, 2, 4, 5} {7,9}, {1,2,4,5,6} – –
X4, Y 4 {2, 3, · · · , 10}, ∅ {6, · · · , 10}, {2, 3, 4, 5} {7, 9, 10}, {2, · · · , 6, 8} {10}, {2, 3, · · · , 9} ∅, {2, 3, · · · , 10}
X5, Y5 {1, 3, 4, 6, 7, 8, 10}, ∅ {6, 7, 8, 10}, {1, 3, 4} {7, 10}, {1, 3, 4, 6, 8} {10}, {1,3,4,6,7,8} –
X6, Y6 {2, 4, 5, 7, 9, 10}, ∅ {7, 9, 10}, {2, 4, 5} {7, 9, 10}, {2, 4, 5} {10}, {2, 4, 5, 7, 9} ∅, {2, 4, 5, 7, 9, 10}
X7, Y7 {4, 5, · · · , 10}, ∅ {6, · · · , 10}, {4, 5} {7, 9, 10}, {4, 5, 6, 8} {10}, {4, 5, · · · , 9} ∅, {4, 5, · · · , 10}
X8, Y8 {3, 6, · · · , 10}, ∅ {6, · · · , 10}, {3} {7, 9, 10}, {3, 6, 8} {10}, {3, 6, 7, 8, 9} ∅, {3, 6, · · · , 10}
x1, y1 25,0∗ – – – –
x2, y2 25, 0 6,6∗ – – –
x3, y3 21, 0 6, 4 2,3∗ – –
x4, y4 9, 0 0, 4 0, 2 0, 1 0, 0

x5, y5 21, 0 4, 6 2, 3 0,3∗ –
x6, y6 24, 0 6, 6 0, 2 0, 1 0, 0

x7, y7 21, 0 0, 6 0, 0 0, 0 0, 0

x8, y8 24, 0 0, 4 0, 2 0, 0 0, 0

G0 ∅ ∅ ∅ ∅ ∅

G1


{1, 2}, {1, 3}, {1, 4},
{1, 5}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5},
{4, 5}


{
{1, 2}, {1, 3}, {2, 3},
{4, 5}

}
{{1, 2}, {4, 5}} ∅ ∅

G2 – {{6, 8}} ∅ ∅ ∅
G3 – – {{7, 9}} ∅ ∅
G4 – – – {10} → ∅ ∅

∗ is the selected sensor with the maximum utility, i.e. wi∗ ← maxwi.
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Evaluation on real netowrks
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Table 4
Evaluation on real netowrks
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Table 4
Evaluation on real netowrks

Net 11

No. of sensors
0 100 200 300 400 500 600 700 800

S
co

re

0

0.2

0.4

0.6

0.8

1
ID

II

IL

IW

Net 12

No. of sensors
0 200 400 600 800 1000 1200

S
co

re

0

0.2

0.4

0.6

0.8

1
ID

II

IL

IW

20


	1 Introduction
	2 Problem formulation
	2.1 Network dynamics and sensing model
	2.2 Detection as MSC
	2.3 Identification as MTC

	3 Greedy MTC solution
	3.1 Detection solution
	3.2 Identification solution

	4 Augmented greedy MTC solution
	5 Application to a benchmark network
	6 Application to real networks
	6.1 MSC vs. MTC
	6.2 Augmented greedy vs. transformed lazy greedy

	7 Related work
	8 Conclusions and future work
	Acknowledgements
	References
	9 Transient modeling
	10 Submodularity
	11 Augmented greedy – Example 3 (cont.)
	12 Evaluation on real networks (cont.)
	References

