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I. INTRODUCTION 

Many problems in pure and applied mathematics have as 

their solutions the fixed point of some mapping. Therefore a 

number of procedures in numerical analysis and 

approximations theory amount to obtaining successive 

approximations to the fixed point of an approximate mapping. 

Our object in this paper to discuss about fixed point theory in 

metric spaces, also we established some fixed point theorems 

in complete metric spaces. 

 

II. BANACH FIXED POINT THEOREM 

The Banach fixed point theorem (also known as the 
contraction mapping theorem or contraction mapping 

Principle.) is an important tool in the theory of metric spaces; 

it guarantees the existence and uniqueness of fixed points of 

certain self maps of Metric space, and provides a constructive 

method to find those fixed points. 

A.  Contraction mapping 

B. Let (X, d) be a Metric space. A mapping f : 

X X is called a contraction mapping if there is a real 

number k, 0 < k < l , such that 

d (fx, fy)kd (x, y) for all x, y X 

 

The well-known Banach [1] contraction principle states 

that a contraction mapping of a Complete Metric space X into 

itself has a unique fixed points. This theorem has been 

extensively used in proving existences and uniqueness of 

solutions to various functional equations, particularly 

differential and integral equations. Because of its wide spread 

applicability there has been a search for generalization of the 

Banach contraction Principle. This celebrated principle has 

been generalized by many author, viz. chu. and Diaz [2], 
Sehgal [3]. Holmes [4]. Reich [5], 

 

Hardy and Rogers [6], Wong [7], Edelstein [11] and Kannan 

[10] others in various ways. In this paper we obtain yet an 

other generalization of this principle. 

 

III. MAIN RESULTS 

Theorem: Let f be a continuous self-map defined on a 

complete metric space (X, d). Further, let f satisfy the 

following condition. 

 

d(f(x), f(y)) d(x,f(x)).d(y, f(y)) 
d(x, y) 

for all x, y X, and for some , unique fixed point in X. 

 

d(x, y) (A) 

[0,1) with a + 

< 1 and is finite. Then f has a 

Proof: Let xo be an arbitrary point of X and let {xn} where xn 

= fn (xo) and n is a positive integer, be the sequence of iterates 
of f at xo. If xn = xn+ 1 for some n then the result is immediate. 

So let xn xn+ 1 for all n. 

Now 

d(xn+1, xn) = d(f(xn),f(xn-1) 

 

d(xn ,f(x)).d(x n 1,f(x n 1 ))  

d(xn , xn 1 ) 

d(xn , xn 1 ) 

 

   

 

d(xn ,f(xn 1 )).dxn 1, xn )  

d(xn , xn-1 ) 

d(xn , xn 1 )    
 

= d (xn, xn+1) + d(xn, xn-1) Which implies that 

 

 

d(xn 1 , xn ) 

  

d(xn , xn-1 )   

  1- 
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By the triangle inequality we have for 
m n, 

 

d(xn, xm) d(xn, xn+l) + 

d(xn+1, xn+2) +...+ d(xm-1, xm) 

 

 

n n+1 m-1    

< (k + k +....+ k ) d(xo f (xo)), where k = 

 

 1- 

 

 

1
k
- k d(x0 ,f (x0 ))n 

0 if m, n 

Since X is complete, therefore there exists a u X such 

that xn u. Further, the continuity of f in X implies 

 

f(u) = f(1im xn) 

n 

= (1im f (xn) 
n 

= u. 

Therefore u is a fixed point of f in X. Now, if there 

exists another point v u in X such that f(v) = v, then 

d(v, u) = d(f(v),(u)) 

 

 

d(v,f(v)).d(u, f(u)) 

d(v, u) d(v, u) 

 

d(v.u).d(u, u)d(v.u) d(v, u) 

= d(v, u) 

< d(v, u), (< 1) 

a contradiction. Hence u is a unique fixed point of f in X. 
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  n 

 

  

d(x1, x0 )   

 1- 


